Skip to main content

Transcription Factors in the Control of Tumor Development and Progression by TGF-β Signaling

  • Chapter
Transcription Factors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 166))

  • 433 Accesses

Abstract

Transforming growth factor-β (TGF-β) is a cytokine that controls homeostasis and/or remodeling in many tissues, including most if not all epithelial tissues. These functions are mediated by the regulation of diverse cellular processes, such as cell proliferation, cell death or survival, cell migration and invasion, and cell differentiation. In human cancers TGF-β functions as a tumor suppressor in early stages, but converts into a tumor promoter in later stages of the disease. Understanding the molecular basis for this switch in TGF-β function is highly relevant, if TGF-β is to be exploited as a target in cancer therapy. Since most of the cellular TGF-β responses characterized to date are mediated by the transcriptional control of direct target genes of TGF-β signaling, this inevitably entails the analysis of the transcriptional mediators of TGF-β function in normal cells as well as tumor cells of different malign ant potential. This review will discuss some of the important transcriptional mediators involved, with emphasis on the mammary epithelium as an example of the complex role of TGF-β in regulating normal and tum origenic tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Affolter M, Bellusci S, Itoh N, Shilo B, Thiery JP, Werb Z (2003) Tube or not tube: remodeling epithelial tissues by branching morphogenesis. Dev. Cell 4:11–18

    Article  PubMed  CAS  Google Scholar 

  • Akiyoshi S, Inoue H, Hanai J-i, Kusanagi K, Nemoto N, Miyazono K, Kawabata M (1999) c-Ski acts as a transcriptional co-repressor in transforming growth factor-β signaling through interaction with Smads. J Biol Chem 274:35269–35277

    Article  PubMed  CAS  Google Scholar 

  • Albert T, Wells J, Funk JO, Pullner A, Raschke EE, Stelzer G, Meisterernst M, Farnham PJ, Eick D (2001) The chromatin structure of the dual c-myc promoter Pl/P2 is regulated by separate elements. J Biol Chem 276:20482–20490

    Article  PubMed  CAS  Google Scholar 

  • Alliston T, Choy L, Ducy P, Karsenty G, Derynck R (2001) TGF-beta-induced repression of CBFA1 by Smad3 decreases cbfa1 and osteocalcin expression and inhibits osteoblast differentiation. EMBO J 20:2254–2272

    Article  PubMed  CAS  Google Scholar 

  • Attisano L, Wrana JL (2002) Signal transduction by the TGF-beta superfamily. Science 296:1646–1647

    Article  PubMed  CAS  Google Scholar 

  • Bai RY, Koester C, Ouyang T, Hahn SA, Hammerschmidt M, Peschel C, Duyster J (2002) SMIF, a Smad4-interacting protein that functions as a co-activator in TGFbeta signalling. Nat Cell Biol 4:181–190

    Article  PubMed  CAS  Google Scholar 

  • Bakin AV, Rinehart C, Tomlinson AK, Arteaga CL (2002) p38 mitogen-activated protein kinase is required for TGFbeta-mediated fibroblastic transdifferentiation and cell migration. J Cell Sci 115:3193–3206

    PubMed  CAS  Google Scholar 

  • Bakin AV, Tomlinson AK, Bhowmick NA, Moses HL, Arteaga CL (2000) Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem 275:36803–36810

    Article  PubMed  CAS  Google Scholar 

  • Balmain A (2002) Cancer: new-age tumour suppressors. Nature 417:235–237

    Article  PubMed  CAS  Google Scholar 

  • Barcellos-Hoff MH, Ewan KB (2000) Transforming growth factor-beta and breast cancer: Mammary gland development. Breast Cancer Res 2:92–99

    Article  PubMed  CAS  Google Scholar 

  • Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, Garcia De Herreros A (2000) The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2:84–89

    Article  PubMed  CAS  Google Scholar 

  • Bhowmick NA, Ghiassi M, Bakin A, Aakre M, Lundquist CA, Engel ME, Arteaga CL, Moses HL (2001) Transforming growth factor-beta 1 mediates epithelial to mesenchymal trans differentiation through a RhoA-dependent mechanism. Mol Biol Cell 12:27–36

    PubMed  CAS  Google Scholar 

  • Boulay J.L, Mild G, Lowy A, Reuter J, Lagrange M, Terracciano L, Laffer U, Herrmann R, Rochlitz C (2003) SMAD7 is a prognostic marker in patients with colorectal cancer. Int J Cancer 104:446–449

    Article  PubMed  CAS  Google Scholar 

  • Brooks DJ, Woodward S, Thompson FH, Dos Santos B, Russell M, Yang JM, Guan XY, Trent J, Alberts DS, Taetle R (1996) Expression of the zinc finger gene EVI-1 in ovarian and other cancers. Br J Cancer 74:1518–1525

    Article  PubMed  CAS  Google Scholar 

  • Calonge MJ, Massague J (1999) Smad4/DPC4 silencing and hyper active ras jointly disrupt transforming growth factor-β antiproliferative responses in colon cancer cells. J Biol Chem 274:33637–33643

    Article  PubMed  CAS  Google Scholar 

  • Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA (2000) The transcription factor snail controls epithelial-mesenchymal transition s by repressing E-cadherin expression. Nat Cell Biol 2:76–83

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389-395 Chang H, Brown CW, Matzuk MM (2002) Genetic analysis of the mammalian transforming growth factor-beta superfamily. Endocrinol Rev 23:787–823

    Google Scholar 

  • Chen CR, Kang Y, Massague J (2001a) Defective repression of c-myc in breast cancer cells: A loss at the core of the transforming growth factor beta growth arrest program. Proc Natl Acad Sci USA 98:992–999

    Article  PubMed  CAS  Google Scholar 

  • Chen CR, Kang Y, Siegel PM, Massague J (2002) E2F4/5 and p107 as Smad cofactors link ing the TGFbeta receptor to c-myc repression. Cell 110:19–32

    Article  PubMed  CAS  Google Scholar 

  • Chen T, Carter D, Garrigue-Antar L, Reiss M (1998a) Transforming growth factor β type I receptor kinase mutant associated with metastatic breast cancer. Cancer Res. 58:4805–4810

    PubMed  CAS  Google Scholar 

  • Chen T, de Vries EG, Hollema H, Yegen HA, Vellucci VF, Strickler HD, Hildesheim A, Reiss M (1999) Structural alterations of transforming growth factor-β receptor genes in human cervical carcinoma. Int J Cancer 82:43–51

    Article  PubMed  CAS  Google Scholar 

  • Chen T, Yan W, Wells RG, Rimm DL, McNiff J, Leffell D, Reiss M (2001b) Novel inactivating mutations of transforming growth factor-beta type I receptor gene in head-and-neck cancer metastases. Int J Cancer 93:653–661

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Rubock MJ, Whitman M (1996) A transcriptional partner of MAD proteins in TGF-β signalling. Nature 383:691–696

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Weisberg E, Fridmacher V, Watanabe M, Naco G, Whitman M (1997) Smad4 and FAST-1 in the assembly of activin-responsive factor. Nature 389:85–89

    Article  PubMed  CAS  Google Scholar 

  • Chen YG, Hata A, Lo RS, Wotton D, Shi Y, Pavletich N, Massague J (1998b) Determinants of specificity in TGF-β signal transduction. Genes Dev 12:2144–2152

    Article  PubMed  CAS  Google Scholar 

  • Chen YG, Massagué J (1999) Smad1 recognition and activation by the ALK1 group of transforming growth factor-β family receptors. J Biol Chem 274:3672–3677

    Article  PubMed  CAS  Google Scholar 

  • Coleman RE, Rubens RD (1987) The clinical course of bone metastases from breast cancer. Br J Cancer 55:61–66

    Article  PubMed  CAS  Google Scholar 

  • Colmenares C, Sutrave P, Hughes SH, Stavnezer E (1991) Activation of the c-ski oncogene by overexpression. J Virol 65:4929–4935

    PubMed  CAS  Google Scholar 

  • Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E, Mareel M, Huylebroeck D, van Roy F (2001) The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7:1267–1278

    Article  PubMed  CAS  Google Scholar 

  • Cordenonsi M, Dupont S, Maretto S, Insinga A, Imbriano C, Piccolo S (2003) Links between tumor suppressors: p53 is required for TGF-beta gene responses by cooperating with Smads. Cell 113:301–314

    Article  PubMed  CAS  Google Scholar 

  • Cui W, Fowlis DJ, Bryson S, Duffie E, Ireland H, Balmain A, Akhurst RJ (1996) TGFβ1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 86:531–542

    Article  PubMed  CAS  Google Scholar 

  • Dai JL, Schutte M, Bansal RK, Wilentz RE, Sugar AY, Kern SE (1999) Transforming growth factor-beta responsiveness in DPC4/SMAD4-null cancer cells. Mol Carcinog 26:37–43

    Article  PubMed  CAS  Google Scholar 

  • Dalal BI, Keown PA, Greenberg AH (1993) Immunocytochemical localization of secreted transforming growth factor-fit to the advancing edges of primary tumors and to lymph node metastases of human mammary carcinoma. Am J Pathol 143:381–389

    PubMed  CAS  Google Scholar 

  • Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM (1998) Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J 17:3091–3100

    Article  PubMed  CAS  Google Scholar 

  • Derynck R, Akhurst RJ, Balmain A (2001) TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 29:117–129

    Article  PubMed  CAS  Google Scholar 

  • Dillon DA, Howe CL, Bosari S, Costa J (1998) The molecular biology of breast cancer: accelerating clinical applications. Crit Rev Oncog 9:125–140

    Article  PubMed  CAS  Google Scholar 

  • Dowdy SC, Mariani A, Janknecht R (2003) HER2/Neu and TAK1 mediated up-regulation of the TGF-β inhibitor Smad7 via the ETS protein ER81. J Biol Chem 278:44377–44384

    Article  PubMed  CAS  Google Scholar 

  • Duff SE, Li C, Garland JM, Kumar S (2003) CD105is important for angiogenesis: evidence and potential applications. FASEB J 17:984–992

    Article  PubMed  CAS  Google Scholar 

  • Ebisawa T, Fukuchi M, Murakami G, Chiba T, Tanaka K, Imamura T, Miyazono K (2001) Smurf1 interacts with transforming growth factor-beta type 1 receptor through Smad7 and induces receptor degradation. J Biol Chem 276:12477–12480

    Article  PubMed  CAS  Google Scholar 

  • Ellenrieder V, Hendler SF, Boeck W, Seufferlein T, Menke A, Ruhland C, Adler G, Gress T (2001) Transforming growth factor beta1 treatment leads to an epithelial-mesenchymal transdifferentiation of pancreatic cancer cells requiring extracellular signal-regulated kinase 2 activation. Cancer Res 61:4222–4228

    PubMed  CAS  Google Scholar 

  • Engel ME, McDonnell MA, Law BK, Moses HL (1999) Interdependent SMAD and JNK signaling in transforming growth factor-β-mediated transcription. J Biol Chem 274:37413–37420

    Article  PubMed  CAS  Google Scholar 

  • Ewan KB, Shyamala G, Ravani SA, Tang Y, Akhurst R, Wakefield L, Barcellos-Hoff MH (2002) Latent transforming growth factor-beta activation in mammary gland: regulation by ovarian hormones affects ductal and alveolar proliferation. Am J Pathol 160:2081–2093

    Article  PubMed  CAS  Google Scholar 

  • Feng XH, Derynck R (1997) A kinase subdomain of transforming growth factor-β (TGF-β) type I receptor determines the TGF-ß intracellular signaling activity. EMBO J 16:3912–3922

    Article  PubMed  CAS  Google Scholar 

  • Feng XH, Lin X, Derynck R (2000) Smad2, Smad3 and Smad4 cooperate with Sp1 to induce p15(Ink4B) transcription in response to TGF-beta. EMBO J 19:5178–93

    Article  PubMed  CAS  Google Scholar 

  • Feng XH, Zhang Y, Wu RY, Derynck R (1998) The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for smad3 in TGF-β-induced transcriptional activation. Genes Dev 12:2153–2163

    Article  PubMed  CAS  Google Scholar 

  • Fonsatti E, Del Vecchio L, Altomonte M, Sigalotti L, Nicotra MR, Coral S, Natali PG, Maio M (2001) Endoglin: An accessory component of the TGF-beta-binding receptor-complex with diagnostic, prognostic, and bioimmunotherapeutic potential in human malignancies. J Cell Physiol 188:1–7

    Article  PubMed  CAS  Google Scholar 

  • Fukuchi M, Imamura T, Chiba T, Ebisawa T, Kawabata M, Tanaka K, Miyazono K (2001) Ligand-dependent degradation of Smad3 by a ubiquitin ligase complex of ROC1 and associated proteins. Mol Biol Cell 12:1431–1443

    PubMed  CAS  Google Scholar 

  • Fumagalli S, Doneda L, Nomura N, Larizza L (1993) Expression of the c-ski proto-oncogene in human melanoma cell lines. Melanoma Res 3:23–27

    Article  PubMed  CAS  Google Scholar 

  • Gebert J, Sun M, Ridder R, Hinz U, Lehnert T, Moller P, Schackert HK, Herfarth C, von Knebel Doeberitz M (2000) Molecular profiling of sporadic colorectal tumors by microsatellite analys is. Int J Oncol 16:169–179

    PubMed  CAS  Google Scholar 

  • Germain S, Howell M, Esslemont GM, Hill CS (2000) Homeodomain and winged-helix transcription facto rs recruit activated Smads to distinct promoter elements via a common Smad interaction motif. Genes Dev 14:435–451

    PubMed  CAS  Google Scholar 

  • Ghellal A, Li C, Hayes M, Byrne G, Bundred N, Kumar S (2000) Prognostic significance of TGF beta 1 and TGF beta 3 in human breast carcinoma. Anticancer Res 20:4413–4418

    PubMed  CAS  Google Scholar 

  • Goggins M, Shekher M, Turnacioglu K, Yeo CI, Hruban RH, Kern SE (1998) Genetic alterations of the transforming growth factor β receptor genes in pancreatic and biliary adenocarcinomas. Cancer Res 58:5329–5332

    PubMed  CAS  Google Scholar 

  • Gorsch SM, Memoli VA, Stukel TA, Gold LI, Arrick BA (1992) Immunohistochemical staining for transforming growth factor beta 1 associates with disease progression in human breast cancer. Cancer Res 52:6949–6952

    PubMed  CAS  Google Scholar 

  • Goumans MJ, Mummery C (2000) Functional analysis of the TGFbeta receptor/Smad pathway through gene ablation in mice. Int J Dev Biol 44:253–265

    PubMed  CAS  Google Scholar 

  • Goumans MJ, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, ten Dijke P (2002) Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO J 21:1743–1753.

    Article  PubMed  CAS  Google Scholar 

  • Grady WM, Myeroff LL, Swinler SE, Rajput A, Thiagalingam S, Lutterbaugh JD, Neumann A, Brattain MG, Chang J, Kim SJ, Kinzler KW, Vogelstein B, Willson JK, Markowitz S (1999) Mutational inactivation of transforming growth factor β receptor type II in microsatellite stable colon cancers. Cancer Res 59:320–324

    PubMed  CAS  Google Scholar 

  • Grande M, Franzen A, Karlsson JO, Ericson LE, Heldin NE, Nilsson M (2002) Transforming growth factor-beta and epidermal growth factor synergistically stimulate epithelial to mesenchymal transition (EMT) through a MEK-dependent mechanism in primary cultured pig thyrocytes. J Cell Sci 115:4227–4236

    Article  PubMed  CAS  Google Scholar 

  • Grimm OH, Gurdon JB (2002) Nuclear exclusion of Smad2 is a mechanism leading to loss of competence. Nat Cell Biol 4:519–522

    Article  PubMed  CAS  Google Scholar 

  • Grinberg AV, Kerppola T (2003) Both Max and TFE3 cooperate with Smad proteins to bind the plasminogen activator inhibitor-1 promoter, but they have opposite effects on transcriptional activity. J Biol Chem 278:11227–11236

    Article  PubMed  CAS  Google Scholar 

  • Grunert S, Jechlinger M, Beug H (2003) Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat Rev Mol Cell Biol 4:657–665

    Article  PubMed  CAS  Google Scholar 

  • Guttmacher AE, Marchuk DA, White RIJ (1995) Hereditary hemorrhagic telangiectasia. N Engl J Med 333:918–924

    Article  PubMed  CAS  Google Scholar 

  • Hahn SA, Schutte M, Hoque ATMS, Moskaluk CA, da Costa LT, Rozenblum E, Weinstein CL, Fischer A, Yeo CR, Hruban RH, Kern SE (1996) DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271:350–353

    Article  PubMed  CAS  Google Scholar 

  • Hanafusa H, Ninomiya-Tsuji J, Masuyama N, Nishita M, Fujisawa J, Shibuya H, Matsumoto K, Nishida E (1999) Involvement of the p38 mitogen-activated protein kinase pathway in transforming growth factor-beta-induced gene expression. J Biol Chem 274:27161–27167

    Article  PubMed  CAS  Google Scholar 

  • Hanai J, Chen LF, Kanno T, Ohtani-Fujita N, Kim WY, Guo WH, Imamura T, Ishidou Y, Fukuchi M, Shi MJ, Stavnezer J, Kawabata M, Miyazono K, Ito Y (1999) Interaction and functional cooperation of PEBP2/CBF with Smads. Synergistic induction of the immunoglobulin germline Calpha promoter. J Biol Chem 274:31577–31582

    Article  PubMed  CAS  Google Scholar 

  • Hata A, Lagna G, Massagué J, Hemmati-Brivanlou A (1998) Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor. Genes Dev 12:186–197

    CAS  Google Scholar 

  • Hata A, Seoane J, Lagna G, Montalvo E, Hemmati-Brivanlou A, Massague J (2000) OAZ uses distinct DNA-and protein-binding zinc fingers in separate BMP-Smad and Olf signaling pathways. Cell 100:229–240

    Article  PubMed  CAS  Google Scholar 

  • Hay ED (1995) An overview of epithelio-mesenchymal transformation. Acta Anat. (Basel) 154:8–20

    Article  CAS  Google Scholar 

  • Hayashi H, Abdollah S, Qiu Y, Cai J, Xu YY, Grinnell BW, Richardson MA, Topper JN, Gimbrone MA, Wrana JL, Falb D (1997) The MAD-related protein Smad7 associates with the TGFβ receptor and functions as an antagonist of TGFβ signaling. Cell 89:1165–1173

    Article  PubMed  CAS  Google Scholar 

  • He J, Tegen SB, Krawitz AR, Martin GS, Luo K (2003) The transforming activity of Ski and SnoN is dependent on their ability to repress the activity of Smad proteins. J Biol Chem 278:30540–30547

    Article  PubMed  CAS  Google Scholar 

  • Herold S, Wanzel M, Beuger V, Frohme C, Beul D, Hillukkala T, Syvaoja J, Saluz HP, Haenel F, Eilers M (2002) Negative regulation of the mammalian UV response by Myc through association with Miz-1. Mol Cell 10:509–521

    Article  PubMed  CAS  Google Scholar 

  • Hocevar BA, Brown TL, Howe PH (1999) TGF-β induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway. EMBO J 18:1345–1356

    Article  PubMed  CAS  Google Scholar 

  • Hocevar BA, Smine A, Xu XX, Howe PH (2001) The adaptor molecule Disabled-2 links the transforming growth factor beta receptors to the Smad pathway. Embo J 20:2789–2801

    Article  PubMed  CAS  Google Scholar 

  • Hua X, Liu X, Ansari DO, Lodish HF (1998) Synergistic cooperation of TFE3 and smad proteins in TGF-beta-induced transcription of the plasminogen activator inhibitor-1 gene. Genes Dev 12:3084–3095

    Article  PubMed  CAS  Google Scholar 

  • Hua X, Miller ZA, Benchabane H, Wrana JL, Lodish HF (2000) Synergism between transcription factors TFE3 and Smad3 in transforming growth factor-beta-induced transcription of the Smad7 gene. J Biol Chem 275:33205–33208

    Article  PubMed  CAS  Google Scholar 

  • Imamura T, Takase M, Nishihara A, Oeda E, Hanai J, Kawabata M, Miyazono K (1997) Smad6 inhibits signalling by the TGF-ß superfamily. Nature 389:622–626

    Article  PubMed  CAS  Google Scholar 

  • Ito Y, Miyazono K (2003) RUNX transcription factors as key target s of TGF-beta super-family signaling. Curr Opin Genet Dev 13:43–47

    Article  PubMed  CAS  Google Scholar 

  • Itoh S, Thorikay M, Kowanetz M, Moustakas A, Itoh F, Heldin CH, ten Dijke P (2003) Elucidation of Smad requirement in transforming growth factor-beta type I receptor-induced responses. J Biol Chem 278:3751–3761

    Article  PubMed  CAS  Google Scholar 

  • Izutsu K, Kurokawa M, Imai Y, Maki K, Mitani K, Hirai H (2001) The corepressor CtBP interacts with Evi-1 to repress transforming growth factor beta signaling. Blood 97:2815–2822

    Article  PubMed  CAS  Google Scholar 

  • Janda E, Lehmann K, Killisch I, Iechlinger M, Herzig M, Downward J, Beug H, Grunert S (2002) Ras and TGFβ cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J. Cell Biol 156:299–313

    Article  PubMed  CAS  Google Scholar 

  • Jang CW, Chen CH, Chen CC, Chen JY, Su YH, Chen RH (2002) TGF-beta induces apoptosis through Smad-mediated expression of DAP-kinase. Nat Cell Biol 4:51–58

    Article  PubMed  CAS  Google Scholar 

  • Janknecht R, Wells NJ, Hunter T (1998) TGF-β-stimulated cooperation of smad proteins with the coactivators CBP/p300. Genes Dev 12:2114–2119

    Article  PubMed  CAS  Google Scholar 

  • Jhappan C, Geiser AG, Kordon EC, Bagheri D, Henninghausen L, Roberts AB, Smith GH, Merlino G (1993) Targeting expression of a transforming growth factor β1 transgene to the pregnant mammary gland inhibits alveolar development and lactation. EMBO J 12:1835–1845

    PubMed  CAS  Google Scholar 

  • Johnson DW, Berg JN, Baldwin MA, Gallione CJ, Marondel I, Yoon SJ, Stenzel TT, Speer M, Pericak-Vance MA, Diamond A, Guttmacher AE, Jackson CE, Attisano L, Kucherlapati R, Porteous ME, Marchuk DA (1996) Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nature Genet 13:189–195

    Article  PubMed  CAS  Google Scholar 

  • Kakonen SM, Selander KS, Chirgwin JM, Yin JJ, Burns S, Rankin WA, Grubbs BG, Dallas M, Cui Y, Guise TA (2002) Transforming growth factor-beta stimulates parathyroid hormone-related protein and osteolytic metastases via Smad and mitogen-activated protein kinase signaling pathways. J Biol Chem 277:24571–24578

    Article  PubMed  CAS  Google Scholar 

  • Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, Guise TA, Massague J (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549

    Article  PubMed  CAS  Google Scholar 

  • Kato Y, Habas R, Katsuyama Y, Naar AM, He X (2002) Acomponent of the ARC/Mediator complex requ ired for TGF beta/Nodal signalling. Nature 418:641–646

    Article  PubMed  CAS  Google Scholar 

  • Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH, Wrana JL (2000) Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell 6:1365–1375

    Article  PubMed  CAS  Google Scholar 

  • Kilbey A, Stephens V, Bartholomew C (1999) Loss of cell cycle control by deregulation of cyclin-dependent kinase 2 kinase activity in Evi-l transformed fibroblasts. Cell Growth Differ. 10:601–610

    PubMed  CAS  Google Scholar 

  • Kim WS, Park C, Hong SK, Park BK, Kim HS, Park K (2000) Microsatellite instability(MSI) in non-small cell lung cancer(NSCLC) is highly associated with transforming growth factor-beta type II receptor(TGF-beta RII) frameshift mutation. Anticancer Res 20:1499–502

    PubMed  CAS  Google Scholar 

  • Kleeff J, Ishiwata T, Maruyama H, Friess H, Truong P, Buchler MW, Falb D, Korc M (1999) The TGF-β signaling inhibitor Smad7 enhances tumorigenicity in pancreatic cancer. Oncogene 18:5363–5372

    Article  PubMed  CAS  Google Scholar 

  • Korchynskyi O, ten Dijke P (2002) Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response element s in the Id1 promoter. J Biol Chem 277:4883–4891

    Article  PubMed  CAS  Google Scholar 

  • Kordon EC, McKnight RA, Jhappan C, Hennighausen L, Merlino G, Smith GH (1995) Ectopic TGF beta 1 expression in the secretory mammary epithelium induces early senescence of the epithelial stem cell population. Dev Biol 168:47–61

    Article  PubMed  CAS  Google Scholar 

  • Kouzarides T (1999) Histone acetylases and deacetylase s in cell proliferation. Curr Opin Genet Dev 9:40–48

    Article  PubMed  CAS  Google Scholar 

  • Kretzschmar M (2000) Transforming growth factor-beta and breast cancer: Transforming growth factor-beta/SMAD signaling defects and cancer. Breast Cancer Res 2:107–115

    Article  PubMed  CAS  Google Scholar 

  • Kretzschmar M, Doody J, Timokhina I, Massagué J (1999) A mechanism of repression of TGFβ/Smad signaling by oncogenic Ras. Genes Dev 13:804–816

    Article  PubMed  CAS  Google Scholar 

  • Kretzschmar M, Liu F, Hata A, Doody J, Massagué J (1997) The TGF-β mediator Smad1 is directly phosphorylated and functionally activated by the BMP receptor kinase. Genes Dev 11:984–995

    Article  PubMed  CAS  Google Scholar 

  • Kretzschmar M, Massagué J (1998) SMADs:mediators and regulators of TGFβ family signalling. Curr Opin Genet Dev 8:103–111

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Ghellal A, Li C, Byrne G, Haboubi N, Wang JM, Bundred N (1999) Breast carcinoma: vascular density determined using CD105 antibody correlates with tumor prognosis. Cancer Res. 59:856–861

    PubMed  CAS  Google Scholar 

  • Kurokawa M, Mitani K, Imai Y, Ogawa S, Yazaki Y, Hirai H (1998a) The t(3;21) fusion product, AMLl/Evi-l, interacts with Smad3 and blocks transforming growth factor, β-mediated growth inhibition of myeloid cells. Blood 92:4003–4012

    PubMed  CAS  Google Scholar 

  • Kurokawa M, Mitani K, Irie K, Matsuyama T, Takahashi T, Chiba S, Yazaki Y, Matsumoto K, Hirai H (1998b) The oncoprotein Evi-1 represses TGF-β signalling by inhibiting Smad3. Nature 394:92–96

    Article  PubMed  CAS  Google Scholar 

  • Kurokawa M, Ogawa S, Tanaka T, Mitani K, Yazaki Y, Witte ON, Hirai H (1995) The AML1/Evi-l fusion protein in the t(3;21) translocation exhibits transforming activity on Rat1 fibroblasts with dependence on the Evi-l sequence. Oncogene 11:833–840

    PubMed  CAS  Google Scholar 

  • Labbe E, Letamendia A, Attisano L (2000) Association of Smads with lymphoid enhancer binding factor 1/T cell-specific factor mediates cooperative signaling by the transforming growth factor-β and wnt pathways. Proc Natl Acad Sci USA 97:8358–8363

    Article  PubMed  CAS  Google Scholar 

  • Landstrom M, Heldin NE, Bu S, Hermansson A, Itoh S, ten Dijke P, Heldin CH (2000) Smad7 mediates apoptosis induced by transforming growth factor beta in prostatic carcinoma cells. Curr Biol 10:535–538

    Article  PubMed  CAS  Google Scholar 

  • Larisch S, Yi Y, Lotan R, Kerner H, Eimerl S, Tony Parks W, Gottfried Y, Birkey Reffey S, de Caestecker MP, Danielpour D, Book-Melamed N, Timberg R, Duckett CS, Lechleider RJ, Steller H, Orly J, Kim SJ, Roberts AB (2000) A novel mitochondrial septin-like protein, ARTS, mediates apoptosis dependent on its P-loop motif. Nat Cell Biol 2:915–921

    Article  PubMed  CAS  Google Scholar 

  • Larsson J, Goumans MJ, Sjostrand LJ, van Rooijen MA, Ward D, Leveen P, Xu X, ten Dijke P, Mummery CL, Karlsson S (2001) Abnormal angiogenesis but intact hematopoietic potential in TGF-beta type I receptor-deficient mice. EMBO J 20:1663–1673

    Article  PubMed  CAS  Google Scholar 

  • Li C, Gardy R, Seon BK, Duff SE, Abdalla S, Renehan A, O’Dwyer ST, Haboubi N, Kumar S (2003) Both high intratumoral microvessel density determined using CD105 anti body and elevated plasma levels of CD105 in colorectal cancer patients correlate with poor prognosis. Br J Cancer 88:1424–1431

    Article  PubMed  CAS  Google Scholar 

  • Li QL, Ito K, Sakakura C, Fukamachi H, Inoue K, Chi XZ, Lee KY, Nomura S, Lee CW, Han SB, Kim HM, Kim WJ, Yamamoto H, Yamashita N, Yano T, Ikeda T, Itohara S, Inazawa J, Abe T, Hagiwara A, Yamagishi H, Ooe A, Kaneda A, Sugimura T, Ushijima T, Bae SC, Ito Y (2002) Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 109:113–124

    Article  PubMed  CAS  Google Scholar 

  • Liang J, Zubovitz J, Petrocelli T, Kotchetkov R, Connor MK, Han K, Lee JH, Ciarallo S, Catzavelos C, Beniston R, Franssen E, Slingerland JM (2002) PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat Med 8:1153–1160

    Article  PubMed  CAS  Google Scholar 

  • Lin X, Liang M, Feng XH (2000) Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in transforming growth factor-beta signaling. J Biol Chem 275:36818–36822

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Pouponnot C, Massague J (1997) Dual role of the Smad4/DPC4 tumor suppressor in TGFB-inducible transcriptional responses. Genes Dev 11:3157–3167

    Article  PubMed  CAS  Google Scholar 

  • Lo RS, Chen YG, Shi YG, Pavletich N, Massague J (1998) The L3 loop: a structural motif determining specific interactions between SMAD proteins and TGF-β receptors. EMBO J 17:996–1005

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Rovira T, Chalaux E, Massague J, Rosa JL, Ventura F (2002) Direct binding of Smad1 and Smad4 to two distinct motifs mediates bone morphogenetic protein-specific transcriptional activation of Id1 gene. J Biol Chem 277:3176–3185

    Article  PubMed  CAS  Google Scholar 

  • Lucke CD, Philpott A, Metcalfe JC, Thompson AM, Hughes-Davies L, Kemp PR, Hesketh R (2001) Inhibiting mutations in the transforming growth factor beta type 2 receptor in recurrent human breast cancer. Cancer Res 61:482–485

    PubMed  CAS  Google Scholar 

  • Luo K, Stroschein SL, Wang W, Chen D, Martens E, Zhou S, Zhou Q (1999) The Ski oncoprotein interacts with the Smad proteins to repress TGFβ signaling. Genes Dev. 13:2196–2206

    Article  PubMed  CAS  Google Scholar 

  • Macias-Silva M, Abdollah S, Hoodless PA, Pirone R, Attisano L, Wrana JL (1996) MADR2 is a substrate of the TGF6 receptor and phosphorylation is required for nuclear accumulation and signaling. Cell 87:1215–1224

    Article  PubMed  CAS  Google Scholar 

  • Macias-Silva M, Hoodless PA, Tang SJ, Buchwald M, Wrana JL (1998) Specific activation of Smad1 signaling pathways by the BMP7 type I receptor, ALK2. J Biol Chem 273:25628–25636

    Article  PubMed  CAS  Google Scholar 

  • Malumbres M, Barbacid M (2003) Ras oncogenes: the first 30 years. Nat Rev Cancer 3:459–465

    Article  PubMed  CAS  Google Scholar 

  • Markowitz SD, Roberts AB (1996) Tumor suppressor activity of the TGF-β pathway in human cancers. Cytokine Growth Factor Rev 7:93–102

    Article  PubMed  CAS  Google Scholar 

  • Marshall C (1999) How do small GTPase signal transduction pathways regulate cell cycle entry? Curr Opin Cell Biol 11:732–736

    Article  PubMed  CAS  Google Scholar 

  • Massague J, Blain SW, Lo RS (2000) TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 103:295–309

    Article  PubMed  CAS  Google Scholar 

  • Massague J (2003) Integration of Smad and MAPK pathways: a link and a linker revisited. Genes Dev 17:2993–2997

    Article  PubMed  CAS  Google Scholar 

  • McAllister KA, Grogg KM, Johnson DW, Gallione CJ, Baldwin MA, Jackson MK, Helmbold EA, Markel DS, McKinnon WC, Murrell J, McCormick MK, Pericak-Vance MA, Heutik P, Oostra BA, Haitjema T, Westerman CJJ, Porteus ME, Guttmacher AE, Letarte M, Marchuck DA (1994) Endoglin, a TGF-β binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nature Genet 8:345–351

    Article  PubMed  CAS  Google Scholar 

  • McEarchern JA, Kobie JJ, Mack V, Wu RS, Meade-Tollin L, Arteaga CL, Dumont N, Besselsen D, Seftor E, Hendrix MJ, Katsanis E, Akporiaye E (2001) Invasion and metastas is of a mammary tumor involves TGF-beta signaling. Int J Cancer 91:76–82

    Article  PubMed  CAS  Google Scholar 

  • Medrano EE (2003) Repression of TGF-beta signaling by the oncogenic protein SKI in human melanomas: consequences for proliferation, survival, and metastasis. Oncogene 22:3123–3129

    Article  PubMed  CAS  Google Scholar 

  • Miettinen PJ, Ebner R, Lopez AR, Derynck R (1994) TGF-β induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol 127:2021–2036

    Article  PubMed  CAS  Google Scholar 

  • Miller DW, Graulich W, Karges B, Stahl S, Ernst M, Ramaswamy A, Sedlacek HH, Muller R, Adamkiewicz J (1999) Elevated expression of endoglin, a component of the TGF-β-receptor complex, correlates with proliferation of tumor endothelial cells. Int J Cancer 81:568–572

    Article  PubMed  CAS  Google Scholar 

  • Moustakas A, Souchelnytskyi S, Heldin CH (2001) Smad regulation in TGF-beta signal transduction. J Cell Sci 114:4359–4369

    PubMed  CAS  Google Scholar 

  • Mundy GR (2002) Metastasis: Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2:584–593

    Article  PubMed  CAS  Google Scholar 

  • Muraoka RS, Dumont N, Ritter CA, Dugger TC, Brantley DM, Chen J, Easterly E, Roebuck LR, Ryan S, Gotwals PJ, Koteliansky V, Arteaga CL (2002) Blockade of TGF-beta inhibits mammary tumor cell viability, migration, and metastases. J Clin Invest 109:1551–1559

    PubMed  CAS  Google Scholar 

  • Nakao A, Afrakhte M, Moren A, Nakayama T, Christian JL, Heuchel R, Itoh S, Kawabata M, Heldin NE, Heldin CH, ten Dijke P (1997) Identification of Smad7, a TGFβ-inducible antagonist of TGF-β signaling. Nature 389:631–635

    Article  PubMed  CAS  Google Scholar 

  • Nguyen AV, Pollard JW (2000) Transforming growth factor β3 induces cell death during the first stage of mammary gland involution. Development 127:3107–3118

    PubMed  CAS  Google Scholar 

  • Nishihara A, Hanai JI, Okamoto N, Yanagisawa J, Kato S, Miyazono K, Kawabata M (1998) Role of p300, a transcriptional coactivator, in signalling of TGF-β. Genes Cells 3:613–623

    Article  PubMed  CAS  Google Scholar 

  • Nomura N, Sasamoto S, Ishii S, Date T, Matsui M, Ishizaki R (1989) Isolation of human cDNA clones of ski and the ski-related gene, sno. Nucleic Acids Res 17:5489–5500

    Article  PubMed  CAS  Google Scholar 

  • Nomura T, Khan MM, Kaul SC, Dong HD, Wadhwa R, Colmenares C, Kohno I, Ishii S (1999) Ski is a component of the histone deacetylase complex required for transcriptional repression by Mad and thyroid hormone receptor. Genes Dev 13:412–423

    Article  PubMed  CAS  Google Scholar 

  • Nucifora G (1997) The EVI1 gene in myeloid leukemia. Leukemia 11:2022–2031

    Article  PubMed  CAS  Google Scholar 

  • Oft M, Akhurst RJ, Balmain A (2002) Metastasis is driven by sequential elevation of H-ras and Smad2 levels. Nat Cell Biol 4:487–494

    Article  PubMed  CAS  Google Scholar 

  • Oft M, Heider KH, Beug H (1998) TGFβ signaling is necessary for carcinoma cell invasiveness and metastasis. Curr Biol 8:1243–1252

    Article  PubMed  CAS  Google Scholar 

  • Oft M, Peli J, Rudaz C, Schwarz H, Beug H, Reichmann E (1996) TGF-β1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev 10:2462–2477

    Article  PubMed  CAS  Google Scholar 

  • Oh SP, Seki T, Goss KA, Imamura T, Yi Y, Donahoe PK, Li L, Miyazono K, ten Dijke P, Kim S, Li E (2000) Activin receptor-like kinase 1 modulates transforming growth factor-β1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci USA 97:2626–2631

    Article  PubMed  CAS  Google Scholar 

  • Ota T, Fujii M, Sugizaki T, Ishii M, Miyazawa K, Aburatani H, Miyazono K (2002) Targets of transcriptional regulation by two distinct type I receptors for transforming growth factor-beta in human umbilical vein endothelial cells. J Cell Physiol 193:299–318

    Article  PubMed  CAS  Google Scholar 

  • Pasche B, Kolachana P, Nafa K, Satagopan J, Chen YG, Lo RS, Brener D, Yang D, Kirstein L, Oddoux C, Ostrer H, Vineis P, Varesco L, Ihanwar S, Luzzatto L, Massague J, Offit K (1999) TβR-I(6A) is a candidate tumor susceptibility allele. Cancer Res 59:5678–5682

    PubMed  CAS  Google Scholar 

  • Patil S, Wildey GM, Brown TL, Choy L, Derynck R, Howe PH (2000) Smad7 is induced by CD40 and protects WEHI 231 B-lymphocytes from transforming growth factor-beta induced growth inhibition and apoptosis. J Biol Chem 275:38363–38370

    Article  PubMed  CAS  Google Scholar 

  • Peinado H, Quintanilla M, Cano A (2003) Transforming growth factor beta-l induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J Biol Chem 278:21113–21123

    Article  PubMed  CAS  Google Scholar 

  • Pelengaris S, Khan M, Evan G (2002) c-MYC: more than just a matter of life and death. Nat Rev Cancer 2:764–76

    Article  PubMed  CAS  Google Scholar 

  • Pera EM, Ikeda A, Eivers E, De Robertis EM (2003) Integration of IGF, FGF, and anti-BMP signals via Smad1 phosphorylation in neural induction. Genes Dev 17:3023–3028

    Article  PubMed  CAS  Google Scholar 

  • Perez-Moreno MA, Locascio A, Rodrigo I, Dhondt G, Portillo F, Nieto MA, Cano A (2001) A new role for E12/E47 in the repression of E-cadherin expression and epithelial-mesenchymal transitions. J Biol Chem 276:27424–27431

    Article  PubMed  CAS  Google Scholar 

  • Perlman R, Schiemann WP, Brooks MW, Lodish HF, Weinberg RA (2001) TGF-β-induced apoptosis is mediated by the adapter protein Daxx that facilitates JNK activation. Nat Cell Biol 3:708–714

    Article  PubMed  CAS  Google Scholar 

  • Petritsch C, Beug H, Balmain A, Oft M (2000) TGF-beta inhibits p70 S6 kinase via protein phosphatase 2A to induce G(1) arrest. Genes Dev 14:3093–3101

    Article  PubMed  CAS  Google Scholar 

  • Piek E, Ju WJ, Heyer J, Escalante-Alcalde D, Stewart CL, Weinstein M, Deng C, Kucherlapati R, Bottinger EP, Roberts AB (2001) Functional characterization of trans forming growth factor beta signaling in Smad2-and Smad3-deficient fibroblasts. J Biol Chem 276:19945–19953

    Article  PubMed  CAS  Google Scholar 

  • Piek E, Moustakas A, Kurisaki A, Heldin CH, ten Dijke P (1999) TGF-(beta) type I receptor/ALK-5 and Smad proteins mediate epithelial to mesenchymal transdifferentiation in NMuMG breast epithelial cells. J Cell Sci 112:4557–4568

    PubMed  CAS  Google Scholar 

  • Pierce DF, Johnson MD, Matsui Y, Robinson SD, Gold LI, Purchio AF, Daniel CW, Hogan BLM, Moses HL (1993) Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-β1. Genes Dev 7:2308–2317

    Article  PubMed  CAS  Google Scholar 

  • Pinto M, Oliveira C, Cirnes L, Carlos Machado J, Ramires M, Nogueira A, Carneiro F, Seruca R (2003) Promoter methylation of TGFbeta receptor I and mutation of TGFbeta receptor II are frequent events in MSI sporadic gastric carcinomas. J Pathol 200:32–38

    Article  PubMed  CAS  Google Scholar 

  • Postigo AA (2003) Opposing functions of ZEB proteins in the regulation of the TGFbeta/BMP signaling pathway. EMBO J 22:2443–2452

    Article  PubMed  CAS  Google Scholar 

  • Pouponnot C, Jayaraman L, Massague J (1998) Physical and functional interaction of SMADs and p300/CBP. J Biol Chem 273:22865–22868

    Article  PubMed  CAS  Google Scholar 

  • Qing J, Zhang Y, Derynck R (2000) Structural and functional characterization of the transforming growth factor-beta-induced Smad3/c-Jun transcriptional cooperativity. J Biol Chem 275:38802–38812

    Article  PubMed  CAS  Google Scholar 

  • Rayman JB, Takahashi Y, Indjeian VB, Dannenberg JH, Catchpole S, Watson RJ, te Riele H, Dynlacht BD (2002) E2F mediates cell cycle-dependent transcriptional repression in vivo by recruitment of an HDAC1/mSin3B corepressor complex. Genes Dev 16:933–947

    Article  PubMed  CAS  Google Scholar 

  • Reed JA, Bales E, Xu W, Okan NA, Bandyopadhyay D, Medrano EE (2001) Cytoplasmic localization of the oncogenic protein Ski in human cutaneous melanomas in vivo: functional implications for transforming growth factor beta signaling. Cancer Res 61:8074–8078

    PubMed  CAS  Google Scholar 

  • Robinson SD, Silberstein GB, Roberts AB, Flanders KC, Daniel CW (1991) Regulated expression and growth inhibitory effects of transforming growth factor-beta isoforms in mouse mammary gland development. Development 113:867–878

    PubMed  CAS  Google Scholar 

  • Rodriguez-Pascual F, Redondo-Horcajo M, Lamas S (2003) Functional cooperation between Smad proteins and activator protein-1 regulates transforming growth factor beta-mediated induction of endothelin-1 expression. Circ Res 92:1288–1295

    Article  PubMed  CAS  Google Scholar 

  • Roman BL, Pham VN, Lawson ND, Kulik M, Childs S, Lekven AC, Garrity DM, Moon RT, Fishman MC, Lechleider RJ, Weinstein BM (2002) Disruption of acvrll increases endothelial cell number in zebrafish cranial vessels. Development 129:3009–3019

    PubMed  CAS  Google Scholar 

  • Saito H, Tsujitani S, Oka S, Kondo A, Ikeguchi M, Maeta M, Kaibara N (2000) An elevated serum level of transform ing growth factor-beta 1 (TGF-beta 1) significantly correlated with lymph node metastasis and poor prognosis in patients with gastric carcinoma. Anticancer Res. 20:4489–4493

    PubMed  CAS  Google Scholar 

  • Sano Y, Harada J, Tashiro S, Gotoh-Mandeville R, Maekawa T, Ishii S (1999a) ATF-2 is a common nuclear target of Smad and TAK1 pathways in transforming growth factor beta signaling. J Biol Chem 274:8949–8957

    Article  PubMed  CAS  Google Scholar 

  • Sano Y, Harada J, Tashiro S, Gotoh-Mandeville R, Maekawa T, Ishii S (1999b) ATF-2 is a common nuclear target of Smad and TAK1 pathways in transforming growth factor-beta signaling. J Biol Chem 274:8949–8957

    Article  PubMed  CAS  Google Scholar 

  • Sater AK, El-Hodiri HM, Goswami M, Alexander TB, AI-Sheikh O, Etkin LD, Akif Uzman J (2003) Evidence for antagonism of BMP-4 signals by MAP kinase during Xenopus axis determination and neural specification. Differentiation 71:434–444

    Article  PubMed  CAS  Google Scholar 

  • Schiemann WP, Pfeifer WM, Levi E, Kadin ME, Lodish HF (1999) A deletion in the gene for transforming growth factor β type I receptor abolishes growth regulation by transforming growth factor β in a cutaneous T-cell lymphoma. Blood 94:2854–2861

    PubMed  CAS  Google Scholar 

  • Sekelsky JJ, Newfeld SJ, Raftery LA, Chartoff EH, Gelbart WM (1995) Genetic characterization and cloning of Mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics 139:1347–1358

    PubMed  CAS  Google Scholar 

  • Seoane J, Le HV, Massague J (2002) Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419:729–734

    Article  PubMed  CAS  Google Scholar 

  • Seoane J, Pouponnot C, Staller P, Schader M, Eilers M, Massague J (2001) TGFbeta influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nat Cell Biol 3:400–408

    Article  PubMed  CAS  Google Scholar 

  • Shariat SF, Shalev M, Menesses-Diaz A, Kim IY, Kattan MW, Wheeler TM, Slawin KM (2001) Preoperative plasma levels of transforming growth factor beta(1) (TGF-beta(1)) strongly predict progression in patients undergoing radical prostatectomy. J Clin Oncol 19:2856–2864

    PubMed  CAS  Google Scholar 

  • Shen X, Hu PP, Liberati NT, Datto MB, Frederick JP, Wang XF (1998) TGF-β-induced phosphorylation of Smad3 regulates its interaction with coactivator p300/CREB-binding protein. Mol Biol Cell 9:3309–3319

    PubMed  CAS  Google Scholar 

  • Shi Y, Hata A, Lo RS, Massagué J, Pavletich NP (1997) A structural basis for mutational inactivation of the tumour suppressor Smad4. Nature 388:87–93

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113:685–700

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Wang YF, Jayararnan L, Yang H, Massague J, Pavletich NP (1998) Crystal structure of a Smad MH1 domain bound to DNA:insights on DNA binding in TGF-β signaling. Cell 94:585–594

    Article  PubMed  CAS  Google Scholar 

  • Shibuya H, Iwata H, Masuyama N, Gotoh Y, Yamaguchi K, Irie K, Matsumoto K, Nishida E, Ueno N (1998) Role of TAKI and TABI in BMP signaling in early Xenopus development. EMBO J 17:1019–1028

    Article  PubMed  CAS  Google Scholar 

  • Shibuya H, Yamaguchi K, Shirakabe K, Tonegawa A, Gotoh Y, Ueno N, Irie K, Nishida E, Matsumoto K (1996) TAB1: an activator of the TAK1 MAPKKK in TGF-β signal transduction. Science 272:1179–1182

    Article  PubMed  CAS  Google Scholar 

  • Shin I, Bakin AV, Rodeck U, Brunet A, Arteaga CL (2001) Transforming growth factor beta enhances epithelial cell survival via Akt-dependent regulat ion of FKHRL1. Mol Biol Cell 12:3328–3339

    PubMed  CAS  Google Scholar 

  • Shin I, Yakes FM, Rojo F, Shin NY, Bakin AV, Baselga J, Arteaga CL (2002) PKB/Akt mediates cell-cycle progression by phosphorylation of p27(Kip1) at threonine 157 and modulation of its cellular localization. Nat Med 8:1145–1152

    Article  PubMed  CAS  Google Scholar 

  • Sikder HA, Devlin MK, Dunlap S, Ryu B, Alani RM (2003) Id proteins in cell growth and tumorigenesis. Cancer Cell 3:525–530

    Article  PubMed  CAS  Google Scholar 

  • Silberstein GB, Daniel CW (1987) Reversible inhibition of mammary gland growth by transforming growth factor-β. Science 237:291–293

    Article  PubMed  CAS  Google Scholar 

  • Sirard C, Kim S, Mirtsos C, Tadich P, Hoodless PA, Hie A, Maxson R, Wrana JL, Mak TW (2000) Targeted disruption in murine cells reveals variable requirement for Smad4 in transforming growth factor beta-related signaling. J Biol Chem 275:2063–2070

    Article  PubMed  CAS  Google Scholar 

  • Staller P, Peukert K, Kiermaier A, Seoane J, Lukas J, Karsunky H, Moroy T, Bartek J, Massague J, Hanel F, Eilers M (2001) Repression of p15INK4b expression by Myc through association with Miz-1. Nat Cell Biol 3:392–399

    Article  PubMed  CAS  Google Scholar 

  • Stroschein SL, Wang W, Zhou S, Zhou Q, Luo K (1999) Negative feedback regulation of TGF-β signaling by the SnoN oncoprotein. Science 286:771–774

    Article  PubMed  CAS  Google Scholar 

  • Sun PD, Davies D (1995) The cystine-knot growth factor superfamily. Ann Rev Biophys Biomol Struct 24:269–291

    Article  CAS  Google Scholar 

  • Sun Y, Liu X, Eaton EN, Lane WS, Lodish HF, Weinberg RA (1999) Interaction of the Ski oncoprotein with Smad3 regulates TGF-β signaling. Mol Cell 4:499–509

    Article  PubMed  CAS  Google Scholar 

  • Takigawa M, Nakanishi T, Kubota S, Nishida T (2003) Role of CTGF/HCS24/ecogenin in skeletal growth control. J Cell Physiol 194:256–266

    Article  PubMed  CAS  Google Scholar 

  • Teraoka H, Sawada T, Yamashita Y, Nakata B, Ohira M, Ishikawa T, Nishino H, Hirakawa K (2001) TGF-beta1 promotes liver metastasis of pancreatic cancer by modulating the capacity of cellular invasion. Int J Oncol 19:709–715

    PubMed  CAS  Google Scholar 

  • Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2:442–454

    Article  PubMed  CAS  Google Scholar 

  • Thomas G, Hall MN (1997) TOR signalling and control of cell growth. Curr Opin Cell Biol 9:782–787

    Article  PubMed  CAS  Google Scholar 

  • Tsushima H, Ito N, Tamura S, Matsuda Y, Inada M, Yabuuchi I, Imai Y, Nagashima R, Misawa H, Takeda H, Matsuzawa Y, Kawata S (2001) Circulating transforming growth factor beta 1 as a predictor of liver metastasis after resection in colorectal cancer. Clin Cancer Res 7:1258–1262

    PubMed  CAS  Google Scholar 

  • Urness LD, Sorensen LK, Li DY (2000) Arteriovenous malformations in mice lacking activin receptor-like kinase-1. Nat Genet 26:328–331

    Article  PubMed  CAS  Google Scholar 

  • Valderrama-Carvajal H, Cocolakis E, Lacerte A, Lee EH, Krystal G, Ali S, Lebrun JJ (2002) Activin/TGF-beta induce apoptosis through Smad-dependent expression of the lipid phosphatase SHIP. Nat Cell Biol 4:963–969

    Article  PubMed  CAS  Google Scholar 

  • van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I, Hurlstone A, van der Horn K, Batlle E, Coudreuse D, Haramis AP, Tjon-Pon-Fong M, Moerer P, van den Born M, Soete G, Pals S, Eilers M, Medema R, Clevers H (2002) The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111:241–250

    Article  PubMed  Google Scholar 

  • Viglietto G, Motti ML, Bruni P, Melillo RM, D’Alessio A, Califano D, Vinci F, Chiappetta G, Tsichlis P, Bellacosa A, Fusco A, Santoro M (2002) Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27(Kip1) by PKB/Akt-mediated phosphorylation in breast cancer. Nat Med 8:1136–1144

    Article  PubMed  CAS  Google Scholar 

  • Wakefield LM, Roberts AB(2002) TGF-beta signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev 12:22–29

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Wu TT, Catalano PJ, Ueki T, Satriano R, Haller DG, Benson ABr, Hamilton SR (2001) Molecular predictors of survival after adjuvant chemotherapy for colon cancer. N Engl J Med 344:1196–1206

    Article  PubMed  CAS  Google Scholar 

  • Weeks BH, He W, Olson KL, Wang XJ (2001) Inducible expression of transforming growth factor beta1 in papillomas causes rapid metastasis. Cancer Res 61:7435–7443

    PubMed  CAS  Google Scholar 

  • Weidner N, Semple JP, Welch WR, Folkman J (1991) Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma. N Engl J Med 324:1–8

    Article  PubMed  CAS  Google Scholar 

  • Weinmann AS, Bartley SM, Zhang T, Zhang MQ, Farnham PJ (2001) Use of chromatin immunoprecipitation to clone novel E2F target promoters. Mol Cell Biol 21:6820–6832

    Article  PubMed  CAS  Google Scholar 

  • Wicks SJ, Lui S, Abdel-Wahab N, Mason RM, Chantry A (2000) Inactivation of smad-transforming growth factor beta signaling by Ca2+-calmodulin-dependent protein kinase II. Mol Cell Biol 20:8103–8111

    Article  PubMed  CAS  Google Scholar 

  • Wong C, Rougier-Chapman EM, Frederick JP, Datto MB, Liberati NT, Li JM, Wang XF (1999) Smad3-Smad4 and AP-l complexes synergize in transcriptional activation of the C-Jun promoter by transforming growth factor beta. Mol Cell Biol 19:1821–1830

    PubMed  CAS  Google Scholar 

  • Wotton D, Lo RS, Lee S, Massague J (1999) A Smad transcriptional corepressor. Cell 97:29–39

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Chen YG, Ozdamar B, Gyuricza CA, Chong PA, Wrana JL, Massague J, Shi Y (2000) Structural basis of Smad2 recognition by the Smad anchor for receptor activation. Science 287:92–97

    Article  PubMed  CAS  Google Scholar 

  • WU JW, Hu M, Chai J, Seoane J, Huse M, Li C, Rigotti DJ, Kyin S, Muir TW, Fairman R, Massague J, Shi Y (2001) Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-beta signaling. Mol Cell 8:1277–1289

    Article  PubMed  CAS  Google Scholar 

  • Wu JW, Krawitz AR, Chai J, Li W, Zhang F, Luo K, Shi Y (2002) Structural mechanism of Smad4 recognition by the nuclear oncoprotein Ski: insights on Ski-mediated repression of TGF-beta signaling. Cell 111:357–367

    Article  PubMed  CAS  Google Scholar 

  • Xie W, Mertens JC, Reiss DJ, Rimm DL, Camp RL, Haffty BG, Reiss M (2002) Alterations of Smad signaling in human breast carcinoma are associated with poor outcome: a tissue microarray study. Cancer Res 62:497–505

    PubMed  CAS  Google Scholar 

  • Xu W, Angelis K, Danielpour D, Haddad MM, Bischof O, Campisi J, Stavnezer E, Medrano EE (2000) Ski acts as a co-repressor with Smad2 and Smad3 to regulate the response to type beta transforming growth factor. Proc Natl Acad Sci VSA 97:5924–5929

    Article  CAS  Google Scholar 

  • Yagi K, Furuhashi M, Aoki H, Goto D, Kuwano H, Sugamura K, Miyazono K, Kato M (2002) c-myc is a downstream target of the Smad pathway. J Biol Chem 277:854–861

    Article  PubMed  CAS  Google Scholar 

  • Yagi K, Goto D, Hamamoto T, Takenoshita S, Kato M, Miyazono K (1999) Alternatively spliced variant of Smad2 lacking exon 3. Comparison with wild-type Smad2 and Smad3. J Biol Chem 274:703–709

    Article  PubMed  CAS  Google Scholar 

  • Yahata T, de Caestecker MP, Lechleider RJ, Andriole S, Roberts AB, Isselbacher KJ, Shioda T (2000) The MSGI non-DNA-binding transactivator binds to the p300/CBP coactivators, enhancing their functional link to the Smad transcription factors. J Biol Chem 275:8825–8834

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi K, Nagai S, Ninomiya-Tsuji J, Nishita M, Tarnai K, Irie K, Ueno N, Nishida E, Shibuya H, Matsumoto K (1999) XIAP, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB1-TAK1 in the BMP signaling pathway. EMBO J 18:179–187

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I, Ueno N, Taniguchi T, Nishida E, Matsumoto K (1995) Identification of a member of the MAPKKK family as a potential mediator of TGF-β signal transduction. Science 270:2008–2011

    Article  PubMed  CAS  Google Scholar 

  • Yamamura Y, Hua X, Bergelson S, Lodish HF (2000) Critical role of Smads and AP-1 complex in transforming growth factor-beta-dependent apoptosis. J Biol Chem 275:36295–36302

    Article  PubMed  CAS  Google Scholar 

  • Yang YA, Dukhanina O, Tang B, Mamura M, Letterio JJ, MacGregor J, Patel SC, Khozin S, Liu ZY, Green J, Anver MR, Merlino G, Wakefield LM (2002a) Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects. J Clin Invest 109:1607–1615

    PubMed  CAS  Google Scholar 

  • Yang YA, Tang B, Robinson G, Hennighausen L, Brodie SG, Deng CX, Wakefield LM (2002b) Smad3 in the mammary epithelium has a nonredundant role in the induction of apoptosis, but not in the regulation of proliferation or differentiation by transforming growth factor-beta. Cell Growth Differ 13:123–130

    PubMed  CAS  Google Scholar 

  • Yin JJ, Selander K, Chirgwin JM, Dallas M, Grubbs BG, Wieser R, Massague J, Mundy GR, Guise TA (1999) TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone meta stases development. J Clin Invest 103:197–206

    Article  PubMed  CAS  Google Scholar 

  • Yingling JM, Datto MB, Wong C, Frederick JP, Liberati NT, Wang X-F (1997) Tumor suppressor Smad4 is a transforming growth factor ß-inducible DNA binding protein. Mol Cell Biol 17:7019–28

    PubMed  CAS  Google Scholar 

  • Yu L, Hebert MC, Zhang YE (2002) TGF-beta receptor-activated p38 MAP kinase mediates Smad-independent TGF-beta responses. EMBO J 21:3749–3759

    Article  PubMed  CAS  Google Scholar 

  • Zavadil J, Bitzer M, Liang D, Yang YC, Massimi A, Kneitz S, Piek E, Bottinger EP (2001) Genetic programs of epithelial cell plasticity directed by transforming growth factor-beta. Proc Natl Acad Sci USA 98:6686–6691

    Article  PubMed  CAS  Google Scholar 

  • Zawel L, Dai JL, Buckhaults P, Zhou S, Kinzler KW, Vogelstein B, Kern SE (1998) Human Smad3 and Smad4 are sequence-specific transcription activators. Mol Cell 1:611–617

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Chang C, Gehling DJ, Hemmati-Brivanlou A, Derynck R (2001) Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase. Proc Natl Acad Sci USA 98:974–979

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Feng XH, Derynck R (1998) Smad3 and Smad4 cooperate with C-Jun/c-Fos to mediate TGF-β-induced transcription. Nature 394:909–913

    Article  PubMed  CAS  Google Scholar 

  • Zhang YW, Yasui N, Ito K, Huang G, Fujii M, Hanai J, Nogami H, Ochi T, Miyazono K, Ito Y (2000) A RUNX2/PEBP2alpha A/CBFA1 mutation displaying impaired transactivation and Smad interaction in cleidocranial dysplasia. Proc Natl Acad Sci USA 97:10549–10554

    Article  PubMed  CAS  Google Scholar 

  • Zhou G, Lee SC, Yao Z, Tan TH (1999) Hematopoietic progenitor kinase 1 is a component of transforming growth factor β-induced c-Jun N-terminal kinase signaling cascade. J Biol Chem 274:13133–13138

    Article  PubMed  CAS  Google Scholar 

  • Zhu H, Kavsak P, Abdollah S, Wrana JL, Thomsen GH (1999) A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature 400:687–693

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kretzschmar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag

About this chapter

Cite this chapter

Timokhina, I., Lecanda, J., Kretzschmar, M. (2004). Transcription Factors in the Control of Tumor Development and Progression by TGF-β Signaling. In: Gossen, M., Kaufmann, J., Triezenberg, S.J. (eds) Transcription Factors. Handbook of Experimental Pharmacology, vol 166. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18932-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18932-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62361-5

  • Online ISBN: 978-3-642-18932-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics