Skip to main content

c-Myc in Cellular Transformation and Cancer

  • Chapter
Transcription Factors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 166))

  • 427 Accesses

Abstract

The c-myc gene plays a central role in a wide diversity of cellular processes, including cell cycle, cell growth (including protein synthesis), DNA dynamics, and apoptosis. As one of the most common oncogenes in human cancer, c-myc is commonly gene amplified in solid tumors and deregulated by chromosomal translocation in hematologic malignancies. A significant body of work has already defined pathologic effects of deregulated c-myc on cell proliferation, apoptosis, adhesion, and immortality in cancer. However, recent studies have begun to shed light on two, key, additional processes in cancer: cell transformation (anchorage independent growth), and genomic instability (including loss of cell cycle DNA damage-dependent checkpoint control). This review first covers structure-function relationships of c-myc; it then focuses on the emerging aspects of transformation and genomic instability in the pathophysiologic function of this very important oncogene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atchley WR, Fitch WM (1995) Myc and Max: molecular evolution of a family of proto-oncogene products and their dimerization partner. Proc Natl Acad Sci USA 92:10217–10221

    Article  PubMed  CAS  Google Scholar 

  • Benaud CM, Dickson RB (2001) Adhesion-regulated G1 cell cycle arrest in epithelial cells requires the downregulation of c-Myc. Oncogene 20:4554–4567

    Article  PubMed  CAS  Google Scholar 

  • Blackwood EM, Luscher B, Kretzner L, Eisenman RN (1991) The Myc:Max protein complex and cell growth regulation. Cold Spring Harb Symp Quant Biol 56:109–117

    Article  PubMed  CAS  Google Scholar 

  • Ciechanover A, DiGiuseppe JA, Bercovich B, Orian A, Richter JD, Schwartz AL, and Brodeur GM (1991) Degradation of nuclear oncoproteins by the ubiquitin system in vitro. Proc Natl Acad Sci USA 88:139–143

    Article  PubMed  CAS  Google Scholar 

  • Dang CV (1999) c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol 19:1–11

    PubMed  CAS  Google Scholar 

  • Dang CV, Resar LM, Emison E, Kim S, Li Q, Prescott JE, Wonsey D, Zeller K (1999) Function of the c-Myc oncogenic transcription factor. Exp Cell Res 253:63–77

    Article  PubMed  CAS  Google Scholar 

  • Deming SL, Nass SJ, Dickson RB, Trock BJ (2000) C-myc amplification in breast cancer: a meta-analysis of its occurrence and prognostic relevance. Br J Cancer 83:1688–1695

    Article  PubMed  CAS  Google Scholar 

  • Eilers M, Picard D, Yamamoto KR, Bishop JM (1989) Chimaeras of myc oncoprotein and steroid receptors cause hormone-dependent transformation of cells. Nature 340:66–68

    Article  PubMed  CAS  Google Scholar 

  • Facchini LM, Penn LZ (1998) The molecular role of Myc in growth and transformation: recent discoveries lead to new insights FASEB J 12:633–651

    PubMed  CAS  Google Scholar 

  • Felsher DW, Bishop JM (1999) Transient excess of MYC activity can elicit genomic instability and tumorigenesis. Proc Natl Acad Sci USA 96:3940–3944

    Article  PubMed  CAS  Google Scholar 

  • Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, Greene J, Cocito A, Amati B (2003) Genomic targets of the human c-Myc protein. Genes Dev 17:1115–1129

    Article  PubMed  CAS  Google Scholar 

  • Gavine PR, Neil JC, Crouch DH (1999) Protein stabilization: a common consequence of mutations in independently derived v-Myc alleles. Oncogene 18:7552–7558

    Article  PubMed  CAS  Google Scholar 

  • Grandori C, Cowley SM, James LP, Eisenman RN (2000) The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol 16:653–699

    Article  PubMed  CAS  Google Scholar 

  • Gross-Mesilaty S, Reinstein E, Bercovich B, Tobias KE, Schwartz AL, Kahana C, Ciechanover A (1998). Basal and human papillomavirus E6 oncoprotein-induced degradation of Myc proteins by the ubiquitin pathway. Proc Natl Acad Sci USA 95:8058–8063

    Article  PubMed  CAS  Google Scholar 

  • Hann SR, Eisenman RN (1984) Proteins encoded by the human c-myc oncogene: differential expression in neoplastic cells. Mol Cell Biol 4:2486–2497

    PubMed  CAS  Google Scholar 

  • Herold S, Wanzel M, Beuger V, Frohme C, Beul D, Hillukkala T, Syvaoja J, Saluz HP, Haenel F, Eilers M (2002) Negative regulation of the mammalian UV response by Myc through association with Miz-1. Mol Cell 10:509–521

    Article  PubMed  CAS  Google Scholar 

  • Karn J, Watson JV, Lowe AD, Green SM, Vedeckis W (1989) Regulation of cell cycle duration by c-myc levels. Oncogene 4:773–787

    PubMed  CAS  Google Scholar 

  • Kato GJ, Barrett J, Villa-Garcia M, Dang CV (1990) An amino-terminal c-myc domain required for neoplastic transformation activates transcription. Mol Cell Biol 10:5914–5920

    PubMed  CAS  Google Scholar 

  • Li Q, Dang CV (1999) c-Myc overexpression uncouples DNA replication from mitosis. Mol Cell Biol 19:5339–5351

    PubMed  CAS  Google Scholar 

  • Liao DJ, Dickson RB (2000) c-Myc in breast cancer. Endocr Relat Cancer 7:143–164

    Article  PubMed  CAS  Google Scholar 

  • Liyanage M, Coleman A, du Manoir S, Veldman T, McCormack S, Dickson RB, Barlow C, Wynshaw-Boris A, Janz S, Wienberg J, Ferguson-Smith MA, Schrock E, Ried T (1996) Multicolour spectral karyotyping of mouse chromosomes. Nat Genet 14:312–315

    Article  PubMed  CAS  Google Scholar 

  • Loeb LA (1991) Mutator phenotype may be required for multistage carcinogenesis. Cancer Res 51:3075–3079

    PubMed  CAS  Google Scholar 

  • Mai S (1994) Overexpression of c-myc precedes amplification of the gene encoding dihydrofolate reductase. Gene 148:253–260

    Article  PubMed  CAS  Google Scholar 

  • Mai S, Fluri M, Siwarski D, Huppi K (1996) Genomic instability in MycER-activated Rat1A-MycER cells. Chromosome Res 4:365–371

    Article  PubMed  CAS  Google Scholar 

  • Mateyak MK, Obaya AJ, Adachi S, Sedivy JM (1997) Phenotypes of c-Myc-deficient rat fibroblasts isolated by targeted homologous recombination. Cell Growth Differ 8:1039–1048

    PubMed  CAS  Google Scholar 

  • Mateyak MK, Obaya AJ, Sedivy JM (1999) c-Myc regulates cyclin D-Cdk4 and-Cdk6 activity but affects cell cycle progression at multiple independent points. Mol Cell Biol 19:4672–4683

    PubMed  CAS  Google Scholar 

  • McCormack SJ, Weaver Z, Deming S, Natarajan G, Torri J, Johnson MD, Liyanage M, Ried T, Dickson RB (1998). Myc/p53 interactions in transgenic mouse mammary development, tumorigenesis and chromosomal instability. Oncogene 16:2755–2766

    Article  PubMed  CAS  Google Scholar 

  • Nowell P (1976). The clonal evolution of tumor cell populations. Science 194:23–28

    Article  PubMed  CAS  Google Scholar 

  • O’Hagan RC, Ohh M, David G, de Alboran M, Alt FW, Kaelin WG, DePinho AR (2000) Myc-enhanced expression of Cull promotes ubiquitin-dependent proteolysis and cell cycle progression. Genes Dev 14:2185–2191

    Article  PubMed  Google Scholar 

  • Salghetti SE, Kim SY, and Tansey WP (1999) Destruction of Myc by ubiquitin-mediated proteolysis: cancer-associated and transforming mutations stabilize Myc. EMBO J 18:717–726

    Article  PubMed  CAS  Google Scholar 

  • Sheen JH, Dickson RB (2002) Overexpression of c-Myc alters G(1)/S arrest following ionizing radiation. Mol Cell Biol 22:1819–1833

    Article  PubMed  CAS  Google Scholar 

  • Sheen JH, Woo JK, Dickson RB (2003) c-Myc alters the DNA damage-induced G2/M arrest in human mammary epithelial cells. Br J Cancer 89:1479–1485

    Article  PubMed  CAS  Google Scholar 

  • Spencer CA, Groudine M (1991) Control of c-myc regulation in normal and neoplastic cells. Adv Cancer Res 56:1–48

    Article  PubMed  CAS  Google Scholar 

  • Spotts GD, Patel SV, Xiao Q, Hann SR (1997) Identification of downstream-initiated c-Myc proteins which are dominant-negative inhibitors of transactivation by full-length c-Myc proteins. Mol Cell Biol 17:1459–1468

    PubMed  CAS  Google Scholar 

  • Tanaka H, Matsumura I, Ezoe S, Satoh Y, Sakamaki T, Albanese C, Machii T, Pestell RG, Kanakura Y (2002) E2Fl and c-Myc potentiate apoptosis through inhibition of NF-kappaB activity that facilitates MnSOD-mediated ROS elimination. Mol Cell 9:1017–1029

    Article  PubMed  CAS  Google Scholar 

  • Tlsty TD, Briot A, Gualberto A, Hall I, Hess S, Hixon M, Kuppuswamy D, Romanov S, Sage M, White A (1995) Genomic instability and cancer. Mutat Res 337:1–7

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson I, Bodmer W (1999) Selection, the mutation rate and cancer: ensuring that the tail does not wag the dog. Nat Med 5:11–12

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson IP, Novelli MR, Bodmer WF (1996). The mutation rate and cancer. Proc Natl Acad Sci USA 93:14800–14803

    Article  PubMed  CAS  Google Scholar 

  • Vafa O, Wade M, Kern S, Beeche M, Pandita TK, Hampton GM, Wahl GM (2002) c-Myc can induce DNAdamage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell 9:1031–1044

    Article  PubMed  CAS  Google Scholar 

  • Vennstrom B, Sheiness D, Zabielski J, Bishop JM (1982) Isolation and characterization of c-myc, a cellular homolog of the oncogene (v-myc) of avian myelocytomatosis virus strain 29. J Virol 42:773–779

    PubMed  CAS  Google Scholar 

  • Vogelstein B, Kinzler KW (1993) The multistep nature of cancer. Trends Genet 9:138–141

    Article  PubMed  CAS  Google Scholar 

  • Xiao Q, Claassen G, Shi J, Adachi S, Sedivy J, Hann SR (1998) Transactivation-defective c-MycS retains the ability to regulate proliferation and apoptosis. Genes Dev 12:3803–3808

    Article  PubMed  CAS  Google Scholar 

  • Yin XY, Grove L, Datta NS, Long MW, Prochownik EV (1999) C-myc overexpression and p53loss cooperate to promote genomic instability. Oncogene 18:1177–1184

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag

About this chapter

Cite this chapter

Sheen, JH., Dickson, R.B. (2004). c-Myc in Cellular Transformation and Cancer. In: Gossen, M., Kaufmann, J., Triezenberg, S.J. (eds) Transcription Factors. Handbook of Experimental Pharmacology, vol 166. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18932-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18932-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62361-5

  • Online ISBN: 978-3-642-18932-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics