Skip to main content

TOR Action in Mammalian Cells and in Caenorhabditis elegans

  • Chapter
TOR

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 279))

Abstract

The p70 S6 kinase (p70 S6K) was the first signaling element in mammalian cells shown to be inhibited by rapamycin. The activity of the p70 S6K in mammalian cell is upregulated by extracellular amino acids (especially leucine) and by signals from receptor tyrosine kinases (RTKs), primarily through activation of the type 1A PI-3 kinase. The amino acid-/rapamycin-sensitive input and the PI-3 kinase input are codominant but largely independent, in that deletion of the amino-terminal and carboxy-terminal noncatalytic sequences flanking the p70 S6K catalytic domain renders the kinase insensitive to inhibition by both rapamycin and by withdrawal of amino acids, whereas this p70 S6K mutant remains responsive to activation by RTKs and to inhibition by wortmannin. At a molecular level, this dual control of p70 S6K activity is attributable to phosphorylation of the two p70 S6K sites: The Ptd Ins 3,4,5P3-dependent kinasel (PDK1) phosphorylates p70 S6K at a Thr on the activation loop, whereas mTOR phosphorylates a Thr located in a hydrophobic motif carboxyterminal to the catalytic domain. Together these two phosphorylations engender a strong, positively cooperative activation of p70 S6K, so that each is indispensable for physiologic regulation. Like RTKs, the p70 S6K appears early in metazoan evolution and comes to represent an important site at which the more ancient, nutrient- responsive TOR pathway converges with the RTK/PI-3 kinase pathway in the control of cell growth. Dual regulation of p70 S6K is seen in Drosophila; however, this convergence is not yet evident in Caenorhabditis elegans, wherein nutrient activation of the insulin receptor (InsR) pathway negatively regulates dauer development and longevity, whereas the TOR pathway regulates overall mRNA translation through effectors distinct from p70 S6K, as in yeast. The C. elegans TOR and InsR pathways show none of the cross- or convergent regulation seen in mammalian cells. The nature of the elements that couple nutrient sufficiency to TOR activity remain to be discovered, and the mechanisms by which RTKs influence TOR activity in mammalian cells require further study. One pathway for RTK control involves the tuberous sclerosis complex, which is absent in C. elegans, but of major importance in Drosophila and higher metazoans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alcorta DA, Crews CM, Sweet LJ, Bankston L, Jones SW, Erikson RL (1989) Protein sequence and expression of chicken and mouse rsk: homologs of Xenopus laevis ribosomal S6 kinase. Mol Cell Biol 9:3850–3859

    PubMed  CAS  Google Scholar 

  • Alessi DR, James SR, Downes CP, Holmes AB, Gafrey PRJ, Reese CB, Cohen P (1997) Characterization of a 3-phosphoinositide-dependent protein kinase which phos-phorylates and activates protein kinase B. Curr Biol 7:261–269

    Article  PubMed  CAS  Google Scholar 

  • Alessi D, Kozlowski MT, Weng Q-P, Morrice N, Avruch J (1998) 3-Phosphoinositide-dependent protein kinase 1 (PDK1) phosphorylates and activates the p70 S6 kinase in vivo and in vitro. Curr Biol 8:69–81

    Article  PubMed  CAS  Google Scholar 

  • Amiri A, Keiper BD, Kawasaki I, Fan Y, Kohara Y, Rhoads RE, Strome S (2001) An isoform of eIF4E is a component of germ granules and is required for spermatogenesis in C. elegans. Development 128:3899–3912

    PubMed  CAS  Google Scholar 

  • Avruch J, Zhang XF, Kyriakis JM (1994) Raf meets Ras: completing the framework of a signal transduction pathway. Trends Biochem Sci 19:279–83

    Article  PubMed  CAS  Google Scholar 

  • Avruch J, Nemenoff RA, Pierce M, Kwok YC, Blackshear PJ (1985) Protein phosphorylations as a mode of insulin action. In: Molecular Basis for Insulin Action. Czech MP (ed) Plenum Press, New York, p263-296

    Google Scholar 

  • Balendran A, Currie R, Armstrong CG, Avruch J, Alessi DR (1999) Evidence that 3-phosphoinositide-dependent protein kinase-1 mediates phosphorylation of p70 S6 kinase in vivo at Thr-412 as well as Thr-252. J Biol Chem 274:37400–6

    Article  PubMed  CAS  Google Scholar 

  • Banerjee P, Ahmad MF, Grove JR, Kozlosky C, Price DJ, Avruch J (1990) Molecular structure of a major insulin/mitogen-activated 70-kDa S6 protein kinase. Proc Natl Acad Sci USA 87:8550–8554

    Article  PubMed  CAS  Google Scholar 

  • Barbet NC, Schneider U, Helliwell SB, Stansfield I, Tuite MF, Hall MN (1996) TOR controls translation initiation and early Gl progression in yeast. Mol Cell Biol 7:25–42

    CAS  Google Scholar 

  • Beck T, Hall MN (1999) The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402:689–692

    Article  PubMed  CAS  Google Scholar 

  • Belham C, Comb MJ, Avruch J (2001) Identification of the NIMA family kinases NEK6/7 as regulators of the p70 ribosomal S6 kinase. Curr Biol 11:1155–1167

    Article  PubMed  CAS  Google Scholar 

  • Bierer BE, Mattila PS, Standaert RF, Herzenberg LA, Burakoff SJ, Crabtree G, Schreiber SL (1990) Two distinct signal transmission pathways in T lymphocytes are inhibited by complexes formed between an immunophilin and either FK506 or rapamycin. Proc Natl Acad Sci U S A 87:9231–5

    Article  PubMed  CAS  Google Scholar 

  • Bierer BE, Somers PK, Wandless TJ, Burakoff SJ, Schreiber SL (1990) Probing immunosuppressant action with a nonnatural immunophilin ligand. Science 250:556–559

    Article  PubMed  CAS  Google Scholar 

  • Blenis J, Erikson RL (1986) Stimulation of ribosomal protein S6 kinase activity by pp60v-src or by serum: dissociation from phorbol ester-stimulated activity. Proc Natl Acad Sci USA 83:1733–1737

    Article  PubMed  CAS  Google Scholar 

  • Blommaart EF, Luiken JJ, Blommaart PJ, van Woerkom GM, Meijer A J (1995) Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat he-patocytes. J Biol Chem 270:2320–2326

    Article  PubMed  CAS  Google Scholar 

  • Bohni R, Riesgo-Escovar J, Oldham S, Brogiolo W, Stocker H, Andruss BF, Becking-ham K, Hafen E (1999) Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS 1–4. Cell 97:865–875

    Article  PubMed  CAS  Google Scholar 

  • Britton JS, Edgar BA (1998) Environmental control of the cell cycle in Drosophila: nutrition activates mitotic and endoreplicative cells by distinct mechanisms. Development 125:2149–58

    PubMed  CAS  Google Scholar 

  • Brogiolo W, Stocker H, Ikeya T, Rintelen F, Fernandez R, Hafen E (2001) An evolu-tionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr Biol 11:213–221

    Article  PubMed  CAS  Google Scholar 

  • Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS, Schreiber SL (1994) A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369:756–758

    Article  PubMed  CAS  Google Scholar 

  • Brown EJ, Beal PA, Keith CT, Chen J, Shin TB, Schreiber SL (1995) Control of p70 s6 kinase by kinase activity of FRAP in vivo. Nature 377:441–6

    Article  PubMed  CAS  Google Scholar 

  • Burnett PE, Barrow RK, Cohen NA, Snyder SH, Sabatini DM (1998) RAFT1 phosphorylation of the translational regulaTORs p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci USA 95:1432–1437

    Article  PubMed  CAS  Google Scholar 

  • Cafferkey R, Young PR, McLaughlin MM, Bergsma DJ, Koltin Y, Sathe GM, Faucette L, Eng WK, Johnson RK, Livi GP (1993) Dominant missense mutations in a novel yeast protein related to mammalian phosphatidylinositol 3-kinase and VPS34 abrogate rapamycin cytotoxicity. Mol Cell Biol 13:6012–6023

    PubMed  CAS  Google Scholar 

  • Cheatham B, Vlahos CJ, Cheatham L, Wang L, Blenis J, Kahn CR. (1994) Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis, and glucose transporter translocation. Mol Cell Biol 14:4902–4911

    PubMed  CAS  Google Scholar 

  • Chen C, Jack J, Garofalo RS (1996) The Drosophila insulin receptor is required for normal growth. Endocrinology 137:846–856

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Zheng X-F, Brown EJ, Schreiber SL (1995) Identification of an 11-kDa FKBP12-rapamycin-binding domain within the 289-kDa FKBP12-rapamycin-as-sociated protein and characterization of a critical serine residue. Proc Natl Acad Sci USA 92, 4947–4951

    Article  PubMed  CAS  Google Scholar 

  • Chen RH, Blenis J (1990) Identification of Xenopus S6 protein kinase homologs (pp90rsk) in somatic cells: phosphorylation and activation during initiation of cell proliferation. Mol Cell Biol 10:3204–3215

    PubMed  CAS  Google Scholar 

  • Chen Y, Chen H, Rhoad AE, Warner L, Caggiano TJ, Failli A, Zhang H, Hsiao CL, Nakanishi K, Molnar-Kimber KL (1994) A putative sirolimus (rapamycin) effector protein. Biochem Biophys Res Commun 203:1–7

    Article  PubMed  CAS  Google Scholar 

  • Chiu MI, Katz H, Berlin V (1994) RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex. Proc Natl Acad Sci USA 91:12574–12578

    Article  PubMed  CAS  Google Scholar 

  • Chung J, Kuo CJ, Crabtree GR, Blenis J (1992) Rapamycin-FKBP specifically blocks growth-dependent activation of and signaling by the 70 kD S6 protein. Cell 69:1227–36

    Article  PubMed  CAS  Google Scholar 

  • Chung J, Grammer TC, Lemon KP, Kazlauskas A, Blenis J (1994) PDGF- and insulin-dependent pp70 S6 k activation mediated by phosphatidylinositol-3-OH kinase. Nature 370:71–75

    Article  PubMed  CAS  Google Scholar 

  • Clokey GV, Jacobson LA (1986) The autofluorescent “lipofuscin granules” in the intestinal cells of Caenorhabditis elegans are secondary lysosomes. Mech Ageing Dev 35:79–94

    Article  PubMed  CAS  Google Scholar 

  • Cutler NS, Pan X, Heitman J, Cardenas ME (2001) The TOR signal transduction cascade controls cellular differentiation in response to nutrients. Mol Biol Cell 12:4103–4113

    PubMed  CAS  Google Scholar 

  • Di Como CJ, Arndt KT (1996) Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases. Genes Dev 10:1904–16

    Article  PubMed  Google Scholar 

  • Dumont FJ, Melino MR, Staruch MJ, Koprak SL, Fischer PA, Sigal NH (1990) The immunosuppressive macrolides FK-506 and rapamycin act as reciprocal antagonists in murine T cells. J Immunol 144:1418–1424

    PubMed  CAS  Google Scholar 

  • Dumont FJ, Staruch MJ, Koprak SL, Melino MR, Sigal NH (1990) Distinct mechanisms of suppression of murine T cell activation by the related macrolides FK-506 and rapamycin. J Immunol 144:251–258

    PubMed  CAS  Google Scholar 

  • Erikson E, Mailer JL (1985) A protein kinase from Xenopus eggs specific for ribosomal protein S6. Proc Natl Acad Sci USA 82:742–746

    Article  PubMed  CAS  Google Scholar 

  • Ferrari S, Bandi HR, Hofsteenge J, Bussian BM, Thomas G (1991) Mitogen-activated 70 K S6 kinase. Identification of in vitro 40S ribosomal S6 phosphorylation sites. J Biol Chem 266:22770–227705

    PubMed  CAS  Google Scholar 

  • Fraser AG, Kamath RS, Zipperlen P, Martinez-Campos M, Sohrmann M, Ahringer J (2000) Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408:325–330

    Article  PubMed  CAS  Google Scholar 

  • Goberdhan DC, Paricio N, Goodman EC, Mlodzik M, Wilson C (1999) Drosophila tumor suppressor PTEN controls cell size and number by antagonizing the Chico/ PI3-kinase signaling pathway. Genes Dev 13:3244–3258

    Article  PubMed  CAS  Google Scholar 

  • Grove JR, Banerjee P, Balasubramanyam A, Coffer PJ, Price DJ, Avruch J, Woodgett JR (1991) Cloning and expression of two human p70 S6 kinase polypeptides differing only at their amino termini. Mol Cell Biol 11:5541–5550

    PubMed  CAS  Google Scholar 

  • Hanks SK, Quinn AM, Hunter T (1988) The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241:42–52

    Article  PubMed  CAS  Google Scholar 

  • Hara K, Yonezawa K, Kozlowski MT, Sugimoto T, Andrabi K, Weng Q-P, Kasuga M, Nishimoto I, Avruch J (1997) Regulation of eIF-4E BP1 phosphorylation by mTOR. J Biol Chem 272:26457–26463

    Article  PubMed  CAS  Google Scholar 

  • Hara K, Yonezawa K, Weng Q-P, Kozlowski MT, Belham C, Avruch J (1998) Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem 273:14484–14494

    Article  PubMed  CAS  Google Scholar 

  • Helliwell SB, Wagner P, Kunz J, Deuter-Reinhard M, Henriquez R, Hall MN (1994) TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast. Mol Biol Cell 5:105–118

    PubMed  CAS  Google Scholar 

  • Huang H, Potter CJ, Tao W, Li DM, Brogiolo W, Hafen E, Sun H, Xu T (1999) PTEN affects cell size, cell proliferation and apoptosis during Drosophila eye development. Development 126:5365–5372

    PubMed  CAS  Google Scholar 

  • Iiboshi Y, Papst PJ, Kawasome H, Hosoi H, Abraham RT, Houghton PJ, Terada N (1999) Amino acid-dependent control of p70(s6k). Involvement of tRNA aminoa-cylation in the regulation. J Biol Chem 274:1092–1099

    Article  PubMed  CAS  Google Scholar 

  • Inui S, Sanjo H, Maeda K, Yamamoto H, Miyamoto E, Sakaguchi N (1998) Ig receptor binding protein 1 (alpha4) is associated with a rapamycin-sensitive signal transduction in lymphocytes through direct binding to the catalytic subunit of protein phosphatase 2A. Blood 92:539–46

    PubMed  CAS  Google Scholar 

  • Isotani S, Hara K, Tokunaga C, Inoue H, Avruch J, Yonezawa K (1999) Immunopuri-fied mammalian target of rapamycin phosphorylates and activates p70 S6 kinase alpha in vitro. J Biol Chem 274:34493–34498

    Article  PubMed  CAS  Google Scholar 

  • Jacinto E, Guo B, Arndt KT, Schmelzle T, Hall MN (2001) TIP41 interacts with TAP42 and negatively regulates the TOR signaling pathway. Mol Cell 8:1017–1026

    Article  PubMed  CAS  Google Scholar 

  • Jankowska-Anyszka M, Lamphear BJ, Aamodt EJ, Harrington T, Darzynkiewicz E, Stolarski R, Rhoads RE (1998) Multiple isoforms of eukaryotic protein synthesis initiation factor 4E in Caenorhabditis elegans can distinguish between mono- and trimethylated mRNA cap structures. J Biol Chem 273:10538–10542

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Broach JR (1999) Tor proteins and protein phosphatase 2A reciprocally regulate Tap42 in controlling cell growth in yeast. EMBO J 18:2782–92

    Article  PubMed  CAS  Google Scholar 

  • Jones SW, Erikson E, Blenis J, Mailer JL, Erikson RL. (1988) A Xenopus ribosomal protein S6 kinase has two apparent kinase domains that are each similar to distinct protein kinases. Proc Natl Acad Sci USA 85:3377–3781

    Article  PubMed  CAS  Google Scholar 

  • Keiper BD, Lamphear BJ, Deshpande AM, Jankowska-Anyszka M, Aamodt EJ, Blumenthal T, Rhoads RE (2000) Functional characterization of five eIF4E iso-forms in Caenorhabditis elegans. J Biol Chem 275:10590–10596

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Dalton VM, Eggerton KP, Scott SV, Klionsky DJ. (1999) Apg7p/Cvt2p is required for the cytoplasm-to-vacuole targeting, macroautophagy, and peroxisome degradation pathways. Mol Biol Cell 10:1337–1351

    PubMed  CAS  Google Scholar 

  • Kimura K, Tissenbaum HA, Liu Y, Ruvkun G (1997) daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277:942–946

    Article  PubMed  CAS  Google Scholar 

  • Kostich M, Fire A, Fambrough DM (2000). Identification and molecular-genetic characterization of a LAMP/CD68-like protein from Caenorhabditis elegans. J Cell Sci 113:2595–2606

    PubMed  CAS  Google Scholar 

  • Kunz J, Henriquez R, Schneider U, Deuter-Reinhard M, Mowa NR, Hall MN (1993) Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for Gl progression. Cell 73:585–596

    Article  PubMed  CAS  Google Scholar 

  • Long X, Spycher C, Han ZS, Rose AM, Mttller F, Avruch J (2002) TOR deficiency in C. elegans causes developmental arrest and intestinal atrophy by inhibition of mRNA translation. Curr Biol 12:1448–1461

    Article  PubMed  CAS  Google Scholar 

  • Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, Klionsky DJ, Ohsumi M, Ohsumi Y (1998) A protein conjugation system essential for autophagy. Nature 395:395–398

    Article  PubMed  CAS  Google Scholar 

  • Montagne J, Stewart MJ, Stocker H, Hafen E, Kozma SC, Thomas G (1999) Drosophila S6 kinase: a regulator of cell size. Science 285:2126–2129

    Article  PubMed  CAS  Google Scholar 

  • Morris, J.Z., Tissenbaum, H.A., and Ruvkun, G. (1996). A phosphatidyinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 382:536–539

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhay NK, Price DJ, Kyriakis JM, Pelech S, Sanghera J, Avruch J (1992) An array of insulin-activated, proline-directed (Ser/Thr) protein kinases phosphory-late the p70 S6 kinase. J Biol Chem 267:3325–3335

    Google Scholar 

  • Nemenoff RA, Gunsalus JR, Avruch J (1986) An insulin-stimulated (ribosomal S6) protein kinase from soluble extracts of H4 hepatoma cells. Arch Biochem Biophys 245:196–203

    Article  PubMed  CAS  Google Scholar 

  • Noda T, Ohsumi Y (1998) Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem 273:3963–3966

    Article  PubMed  CAS  Google Scholar 

  • Oldham S, Montagne J, Radimerski T, Thomas G, Hafen E (2000) Genetic and biochemical characterization of dTOR, the Drosophila homolog of the target of rapamycin. Genes Dev 14:2689–94

    Article  PubMed  CAS  Google Scholar 

  • Paradis S, Ailion M, Toker A, Thomas JH, Ruvkun G (1999) A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans. Genes Dev 13:1438–1452

    Article  PubMed  CAS  Google Scholar 

  • Paradis S, Ruvkun G (1998) Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev 12:2488–2498

    Article  PubMed  CAS  Google Scholar 

  • Pearson RB, Dennis PB, Han JW, Williamson NA, Kozma SC, Wettenhall RE, Thomas G (1995) The principal target of rapamycin-induced p70 S6k inactivation is a novel phosphorylation site within a conserved hydrophobic domain. EMBO J 14:5279–5287

    PubMed  CAS  Google Scholar 

  • Peterson RT, Desai BN, Hardwick JS, Schreiber SL (1999) Protein phosphatase 2A interacts with the 70-kDa S6 kinase and is activated by inhibition of FKBP12-ra-pamycin associated protein. Proc Natl Acad Sci USA 96:4438–4442

    Article  PubMed  CAS  Google Scholar 

  • Pierce SB, Costa M, Wisotzkey R, Devadhar S, Homburger SA, Buchman AR, Ferguson KC, Heller J, PlattDM, Pasquinelli AA, Liu LX, Doberstein SK, Ruvkun G (2001) Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. Genes Dev 15:672–86

    Article  PubMed  CAS  Google Scholar 

  • Price DJ, Grove, JR, Calvo V, Avruch J, Bierer BE (1992) Rapamycin-induced inhibition of the 70-kilodalton S6 protein kinase. Science 257:973–977

    Article  PubMed  CAS  Google Scholar 

  • Price DJ, Gunsalus JR, Avruch J (1990) Insulin activates a 70 kDa S6 kinase through serine/threonine-specific phosphorylation of the enzyme polypeptide. Proc Natl Acad Sci USA 87:7944–7948

    Article  PubMed  CAS  Google Scholar 

  • Price DJ, Mukhopadhyay NK, Avruch J (1991) Insulin-activated protein kinases phosphorylate a pseudosubstrate synthetic peptide inhibitor of the p70 S6 kinase. J Biol Chem 265:16281–16284

    Google Scholar 

  • Price DJ, Nemenoff RA, Avruch J (1989) Purification of a hepatic S6 kinase from cy-cloheximide-treated rats. J Biol Chem 264:13825–13833

    PubMed  CAS  Google Scholar 

  • Radimerski T, Montagne J, Rintelen F, Stocker H, van Der Kaay J, Downes CP, Hafen E, Thomas G (2002) dS6K-regulated cell growth is dPKB/dPI(3)K-independent, but requires dPDK1. Nat Cell Biol 4:251–255

    Article  PubMed  CAS  Google Scholar 

  • Raught B, Gingras A-C, Sonenberg N (2000) Regulation of ribosomal recruitment in eukaryotes. In Translational Control of Gene Expression, Sonenberg N, Hershey JWB and Mathews MB (eds) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, p 671–693.

    Google Scholar 

  • Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH (1994) RAFT1: A mammalian protein that binds to FKBP 12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78:35–43

    Article  PubMed  CAS  Google Scholar 

  • Sabers CJ, Martin MM, Brunn GJ, Williams JM, Dumont FJ, Wiederrecht G, Abraham RT (1995) Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem 270:815–822

    Article  PubMed  CAS  Google Scholar 

  • Schmelzle T, Hall MN (2000). TOR, a central controller of cell growth. Cell 103, 253–262

    Article  PubMed  CAS  Google Scholar 

  • Scott PH, Brunn GJ, Kohn AD, Roth RA, Lawrence, JC Jr. (1998) Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase B signaling pathway. Proc Natl Acad Sci USA 95:7772–7777

    Article  PubMed  CAS  Google Scholar 

  • Shioi T, McMullen JR, Kang PM, Douglas PS, Obata T, Franke TF, Cantley LC, Izumo S (2002) Akt/protein kinase B promotes organ growth in transgenic mice. Mol Cell Biol 22:2799–2809

    Article  PubMed  CAS  Google Scholar 

  • Stan R, McLaughlin MM, Cafferkey R, Johnson RK, Rosenberg M, Livi G (1994) Interaction between FKBP12-rapamycin and TOR involves a conserved serine residue. J Biol Chem 269:32027–32030

    PubMed  CAS  Google Scholar 

  • Stocker H, Hafen E (2000) Genetic control of cell size. Curr Opin Genet Dev 10:529–535

    Article  PubMed  CAS  Google Scholar 

  • Sturgill TW, Ray LB, Erickson E, Mailer JL (1988) Insulin-stimulated MAP-2 kinase phosphorylates and activates ribosomal protein S6 kinase II. Nature 334:715–718

    Article  PubMed  CAS  Google Scholar 

  • Takei N, Kawamura M, Hara K, Yonezawa K, Nawa H (2001) Brain-derived neurotrophic factor enhances neuronal translation by activating multiple initiation processes: comparison with the effects of insulin. J Biol Chem 276:42818–25

    Article  PubMed  CAS  Google Scholar 

  • Verdu J, Buratovich MA, Wilder EL, Birnbaum MJ (1999) Cell-autonomous regulation of cell and organ growth in Drosophila by Akt/PKB. Nat Cell Biol 1:500–506

    Article  PubMed  CAS  Google Scholar 

  • Vilella-Bach M, Nuzzi P, Fang Y, Chen J. (1999) The FKBP12-rapamycin-binding domain is required for FKBP12-rapamycin-associated protein kinase activity and Gl progression. J Biol Chem 274:4266–4272

    Article  PubMed  CAS  Google Scholar 

  • Weng Q-P, Andrabi K, Kozlowski MT, Grove JR, Avruch J (1995a) Multiple independent inputs are required for activation of the p70 S6 kinase. Mol Cell Biol 15:2333–2340

    PubMed  CAS  Google Scholar 

  • Weng Q-P, Andrabi K, Klippel A, Kozlowski MT, Williams LT, Avruch J (1995b) Phos-phatidylinositol-3 kinase signals activation of p70 S6 kinase in situ through site-specific p70 phosphorylation. Proc Natl Acad Sci USA 92:5744–5748

    Article  PubMed  CAS  Google Scholar 

  • Weng Q-P, Kozlowski M, Belham C, Zhang A, Comb M, Avruch J (1998) Regulation of the p70 S6 kinase by phosphorylation in vivo: Analysis using site-specific anti phosphopeptide antibodies. J Biol Chem 273:16621–16629

    Article  PubMed  CAS  Google Scholar 

  • Wettenhall REH, Erikson E, Mailer JL (1992) Ordered multisite phosphorylation of Xenopus ribosomal protein S6 by S6 kinase II. J Biol Chem 267:9021–9027

    PubMed  CAS  Google Scholar 

  • White J (1988) The anatomy. In The Nematode Caenorhabditis elegans, Wood WB (ed) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, p 81–122

    Google Scholar 

  • Williams MR, C Arthur JS, Balendran A, van der Kaay J, Poli V, Cohen P, Alessi D (2000) The role of 3- phosphoinositide-dependent protein kinase 1 in activating AGC kinases defined in embryonic stem cells. Curr Biol 10:439–448

    Article  PubMed  CAS  Google Scholar 

  • Yokogami K, Wakisaka S, Avruch J, Reeves SA (2000) Serine phosphorylation and maximal activation of STAT3 during CNTF signaling is mediated by the rapamycin target mTOR. Curr Biol 10:47–50

    Article  CAS  Google Scholar 

  • Zhang H, Stallock JP, Ng JC, Reinhard C, Neufeld TP (2000) Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev 14, 2712–2724

    Article  PubMed  CAS  Google Scholar 

  • Zheng X-F, Fiorentino D, Chen J, Crabtree GR, Schreiber SL (1995) TOR kinase domains are required for two distinct functions, only one of which is inhibited by rapamycin. Cell 82:121–130

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Long, X., Müller, F., Avruch, J. (2004). TOR Action in Mammalian Cells and in Caenorhabditis elegans . In: Thomas, G., Sabatini, D.M., Hall, M.N. (eds) TOR. Current Topics in Microbiology and Immunology, vol 279. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18930-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18930-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62360-8

  • Online ISBN: 978-3-642-18930-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics