Skip to main content

Plant Growth and the TOR Pathway

  • Chapter
TOR

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 279))

Abstract

In mammalian, insect, and yeast cells, TOR proteins are essential regulators of cell growth in response to environmental signals including nutrients, mitogens, and stresses. Although many aspects of the TOR-dependent signalling pathway are conserved between animals and fungi, important differences have also been found and are likely to be related to the ecophysiological adaptations of these organisms. The TOR protein also exists in plants. This review will first discuss specific aspects of plants concerning the contribution of cell growth to overall growth, as well as their responses to nutrient starvation, with emphasis on recent results obtained through genetic analysis in the model plant Arabidopsi thaliana. This is followed by the current status of the genetic analysis of the TOR gene in this plant and the search for potential members of a TOR pathway in the Arabidopsis genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • The Arabidopsis initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Aubert S, Gout E, Bligny R, Marty-Mazars D, Barrieu F, Alabouvette J, Marty F and Douce R (1996). Ultrastructure and biochemical caracterization of autophagy in higher plant cells subjected to carbon deprivation: control by the supply of mitochondria with respiratory substrates. J. Cell Biol. 133:1251–1263

    Article  PubMed  CAS  Google Scholar 

  • Autran D and Traas J (2001) Organisation et fonctionnement des cellules souches végétales: le méristème apical d’Arabidopsis. Medecine Sci. 17:836–844

    Google Scholar 

  • Baker H, Sidorowicz A, Sehgal SN and Vézina C (1978) Rapamycin (AY-22,989), a new antifungal antibiotic. I. In vitro and in vivo evaluation. J. Antibiotics 31:539–545

    Article  CAS  Google Scholar 

  • Baldauf SL, Roger AJ, Wenk-Siefert I and Doolitle WF (2000) A Kingdom-level phy-logeny of eucaryotes based on combined protein data. Science 290:972–977

    Article  PubMed  CAS  Google Scholar 

  • Beeckman T, Burssens S and Inzé D (2001) The peri-cell-cycle in Arabidopsis. J. Exp. Bot. 52:403–411

    Article  PubMed  CAS  Google Scholar 

  • Brouquisse R, Gaudillère JP and Raymond P (1998) Induction of a carbon-starvation-related proteolysis in whole maize plants submitted to light/dark cycles and to extended darkness. Plant Physiol. 117:1281–1291

    Article  PubMed  CAS  Google Scholar 

  • Chen JG, Ullah H, Young JC, Sussman MR and Jones AM (2001) ABP1 is required for organized cell elongation and division in Arabidopsis embryogenesis. Genes Dev. 15:902–911

    Article  PubMed  CAS  Google Scholar 

  • Cockcroft CE, den Boer BGW, Healy JMS and Murray JAH (2000) Cyclin D control of growth rate in plants. Nature 405:575–579

    Article  PubMed  CAS  Google Scholar 

  • Cosentino GP, Schmelzle T, Haghighat A, Helliwell SB, Hall MN and Sonenberg N (2000) Eaplp, a novel eukaryotic translation initiation factor 4E-associated protein in Saccharomyces cerevisiae. Mol. Cell. Biol. 20:4604–4613

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove DJ (1997) Relaxation on a high-stress environment: the molecular basis of extensible cell walls and cell enlargement. Plant Cell 9:1031–1041

    Article  PubMed  CAS  Google Scholar 

  • D’Agostino IB and Kieber JJ (1999) Molecular mechanisms of cytokinin action. Curr. Opin. Plant Biol. 2:359–364

    Article  PubMed  Google Scholar 

  • Datar SA, Jacobs HW, de la Cruz AFA, Lehner CF and Edgar BA (2000) The Drosophila cyclin D-Cdk4 complex promotes cellular growth. EMBO J. 19:4543–4554

    Article  PubMed  CAS  Google Scholar 

  • Deak M, Casamayor A, Currie RA, Downes CP and Alessi DR (1999) Characterisation of a plant 3-phosphoinositide-dependent protein kinase-1 homologue which contains a pleckstrin homology domain. FEBS Lett. 451:220–226

    Article  PubMed  CAS  Google Scholar 

  • De Veylder L, Beeckman T, Beemster GT, Krols L, Terras F, Landrieu I, Van Der Schueren E, Maes S, Naudts M and Inze D (2001a) Functional analysis of cyclin-dependent kinase inhibitors of Arabidopsis. Plant Cell 13:1653–1668

    PubMed  Google Scholar 

  • De Veylder L, Beemster GTS, Beeckman T and Inze D (2001b) CKSlAt overexpres-sion in Arabidopsis thaliana inhibits growth by reducing meristem size and inhibiting cell-cycle progression. Plant J. 25:617–626

    Article  PubMed  Google Scholar 

  • Donnely PM, Bonetta D, Tsukaya H and Dengler RE (1999) Cell cycling and cell enlargement in developing leaves of Arabidopsis. Dev. Biol. 215:407–419

    Article  Google Scholar 

  • Forde BG and Lorenzio H (2001) The nutritional control of root development. Plant Soil 232:51–68

    Article  CAS  Google Scholar 

  • Freire MA, Tourneur C, Granier F, Camonis J, El Amrani A, Browning KS and Roba-glia C (2000) Plant lipoxygenase 2 is a translation initiation factor-4E-binding protein. Plant Mol. Biol. 44:129–140

    Article  PubMed  CAS  Google Scholar 

  • Gan S, Amasino RM (1995) Inhibition of leaf senescence by auto regulated production of cytokinin. Science 270:1986–1988.

    Article  PubMed  CAS  Google Scholar 

  • Garcia Flores C, Aguilar R, Reyes de la Cruz H, Albores M and Sanchez de Jimenez E (2001) A maize insulin-like growth factor signals to a transduction pathway that regulates protein synthesis in maize. Biochem. J. 358:95–100

    Article  PubMed  CAS  Google Scholar 

  • Haber AH (1962) Non-essentiality of concurrent cell divisions for degree of polarization of leaf growth. I. Studies with radiation-induced mitotic inhibition. Am. J. Bot. 49:583–589

    Article  Google Scholar 

  • Harris DM, Myrick TL and Rundle SJ (1999) The Arabidopsis homolog of yeast TAP42 and mammalian a4 binds to the catalytic subunit of protein phosphatase 2A and is induced by chilling. Plant Physiol. 121:606–617

    Article  Google Scholar 

  • Hemerly A, de Almeida Engler J, Bergounioux C, Van Montagu M, Engler G, Inze D and Ferreira P (1995) Dominant negative mutants of the cdc2 kinase uncouple cell division from iterative plant development. EMBO J. 14:3925–3936

    PubMed  CAS  Google Scholar 

  • Hepler PK, Vidali L and Cheung AY (2001) Polarized cell growth in higher plants. Annu. Rev. Cell Dev. Biol. 17:159–187

    Article  PubMed  CAS  Google Scholar 

  • Hwang I and Sheen J (2001) Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413:383–389

    Article  PubMed  CAS  Google Scholar 

  • Kaplan DR and Hagemann W (1991) The relationship of cell and organism in vascular plants. Bioscience 41:693–703

    Article  Google Scholar 

  • Kende H and Zeevaart JAD (1997) The five “classical” plant hormones. Plant Cell 9:1197–1210

    Article  PubMed  CAS  Google Scholar 

  • Malamy JE and Benfey PN (1997) Down and out in Arabidopsis: the formation of lateral roots. Trends Plant Sci. 2:390–396

    Article  Google Scholar 

  • Mansfield SG and Briarty LG (1990) Development of the free-nuclear endosperm in Arabidopsis thaliana L. Arab. Inf. Serv. 27:53–64

    Google Scholar 

  • Mansfield SG and Briarty LG (1991) Early embryogenesis in Arabidopsis thaliana. II. The developing embryo. Can. J. Bot. 69:461–476

    Article  Google Scholar 

  • Mansfield SG, Briarty LG, Erni S (1991) Early embryogenesis in Arabidopsis thaliana. I. The mature embryo sac. Can. J. Bot. 69:447–460

    Article  Google Scholar 

  • Masle J (2000) The effects of elevated CO2 concentrations on cell division rates, growth patterns, and blade anatomy in young wheat plants are modulated by factors related to leaf position, vernalization, and genotype. Plant Physiol. 122:1399–1415

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka K, Bassham D, Raikhel N and Nakamura K (1995) Different sensitivity to wortmannin of two vacuolar sorting signals indicates the presence of distinct sorting machineries on tobacco cells. J. Cell Biol. 130:1307–1318

    Article  PubMed  CAS  Google Scholar 

  • Meijer M, and Murray, JAH (2001) Cell cycle controls and the development of plant form. Curr. Opin. Plant Biol. 4:44–49

    Article  PubMed  CAS  Google Scholar 

  • Menand B, Desnos T, Nussaume L, Berger F, Bouchez D, Meyer C and Robaglia C (2002) Expression and disruption of the Arabidopsis TOR (Target of Rapamycin) gene. Proc. Natl. Acad. Sci. USA 99 :6422–6427

    Article  PubMed  CAS  Google Scholar 

  • Mizukami Y and Fischer RL (2000) Plant organ size control: AINTEGUMENTA regulates growth and cell number during organogenesis. Proc. Natl. Acad. Sci. USA 97:942–947

    Article  PubMed  CAS  Google Scholar 

  • Munnik T, Irvine RF and Musgrave A (1998) Phospholipid signalling in plants. Biochem. Biophys. Acta 1389:222–272

    Article  PubMed  CAS  Google Scholar 

  • Owen H and Makaroff C (1995) Ultrastructure of microsporogenesis and microga-metogenesis in Arabidopsis thaliana (L. Heynh.) ecotype Wassilewskija. Proto-plasma, 185:7–21

    Google Scholar 

  • Pien S, Wyrzykowska J, McQueen-Mason S, Smart C and Fleming A (2001) Local expression of expansin induces the entire process of leaf development and modifies leaf shape. Proc Natl Acad Sci U S A 98:11812–11817

    Article  PubMed  CAS  Google Scholar 

  • Reinhardt D, Mandela T and Kuhlemeiera C (2000) Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12 : 507–518

    PubMed  CAS  Google Scholar 

  • Richards DE, King KE, Ait-ali T and Harberd NP (2001) How gibberellin regulates plant growth and development: a molecular genetic analysis of gibberellin signaling. Annu. Rev. Plant Mol. Biol. 52:67–88

    Article  CAS  Google Scholar 

  • Riou-Khamlichi C, Huntley R, Jacqmard A and Murray JAH (1999) Cytokinin activation of Arabidopsis cell division trough a D-type cyclin. Science 283:1541–1544

    Article  PubMed  CAS  Google Scholar 

  • Riou-Khamlichi C, Menges M, Healy J and Murray JAH (2000) Sugar control of the plant cell cycle: differential regulation of Arabidopsis D-type cyclin gene expression. Mol. Cell. Biol. 20:4513–4521

    Article  PubMed  CAS  Google Scholar 

  • Turck F, Kozma SC, Thomas G and Nagy, F (1998) A heat-sensitive Arabidopsis thaliana kinase substitutes for human p70s6 k function in vivo. Mol. Cell. Biol. 18:2038–2044

    PubMed  CAS  Google Scholar 

  • Weisman R, Finkelstein S. and Choder M (2001) Rapamycin blocks sexual development in fission yeast through inhibition of the cellular function of an FKBP 12 homolog. J Biol. Chem. 276:24736–24742

    Article  PubMed  CAS  Google Scholar 

  • Whittington AT, Vugrek O, Wei KJ, Hasenbein NG, Sugimoto K, Rashbrooke MC and Wasteneys GO (2001) MORI is essential for organizing cortical microtubules in plants. Nature 411:610–613

    Article  PubMed  CAS  Google Scholar 

  • Yu SM (1999) Cellular and genetic responses of plants to sugar starvation. Plant Physiol. 121:687–693

    Article  PubMed  CAS  Google Scholar 

  • Zhao and Sack (1999) Ultrastructure of stomatal development in Arabidopsis (Bras-sicaceae) leaves. Am. J. Bot. 86:929–939

    Article  Google Scholar 

  • Zhang H and Forde BG (1998) An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279:407–409

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Jennings AJ, Barlow PW and Forde BG (1999) Dual pathways for regulation of root branching by nitrate. Proc. Natl. Acad. Sci. USA 96:6529–6534

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Menand, B., Meyer, C., Robaglia, C. (2004). Plant Growth and the TOR Pathway. In: Thomas, G., Sabatini, D.M., Hall, M.N. (eds) TOR. Current Topics in Microbiology and Immunology, vol 279. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18930-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18930-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62360-8

  • Online ISBN: 978-3-642-18930-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics