Skip to main content

Yeast TOR Signaling: A Mechanism for Metabolic Regulation

  • Chapter
Book cover TOR

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 279))

Abstract

Understanding how cell growth is regulated in response to environmental signals remains a challenging biological problem. Recent studies indicate the TOR (target of rapamycin) kinase acts within an intracellular regulatory network used by eukaryotic cells to regulate their growth according to nutrient availability. This network affects all aspects of gene expression, including transcription, translation, and protein stability, making TOR an excellent candidate as a global regulator of cellular activity. Here we review our recent studies of two specific transcriptional outputs controlled by TOR in the budding yeast, S. cerevisiae: (1) positive regulation of genes involved in ribosome biogenesis, and (2) negative regulation of genes required for de novo biosynthesis of glutamate and glutamine. These studies have raised the important issue as to how diverse nutritional cues can pass through a common signaling pathway and yet ultimately generate distinct transcriptional responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beck, T. and M.N. Hall, The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature, 1999. 402: p. 689–692

    Article  PubMed  CAS  Google Scholar 

  • Cardenas, M.E., N.S. Cutler, M.C. Lorenz, C.J. Di Como, and J. Heitman, The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev., 1999. 13: p. 3271–3279

    Article  PubMed  CAS  Google Scholar 

  • Chelstowska, A. and R.A. Butow, RTG genes in yeast that function in communication between mitochondria and the nucleus are also required for expression of genes encoding peroxisomal proteins. J. Biol. Chem., 1995. 270: p. 18141–18146

    Article  PubMed  CAS  Google Scholar 

  • Courchesne, W.E. and B. Magasanik, Regulation of nitrogen assimilation in Saccharomyces cerevisiae: roles of the URE2 and GLN3 genes. J. Bacterid., 1988. 170: p. 708–713

    CAS  Google Scholar 

  • Crespo, J.L., T. Powers, B. Fowler, and M.N. Hall, The TOR-controlled transcription activators GLN3, RTG1 and RTG3 are regulated in response to intracellular levels of glutamine. Proc. Natl. Acad. Sci. USA, 2002. in press

    Google Scholar 

  • Dennis, P.B., S. Fumagalli, and G. Thomas, Target of rapamycin (TOR): balancing the opposing forces of protein synthesis and degradation. Curr. Opin. Genet. Dev., 1999. 9: p. 49–54

    Article  PubMed  CAS  Google Scholar 

  • Dilova, I., C.-Y. Chen, and T. Powers, Mksl in concert with TOR signaling negatively regulates RTG target gene expression in S. cerevisiae. Curr. Biol., 2002. 12: p. 389–395

    Article  PubMed  CAS  Google Scholar 

  • Epstein, C.B., J.A. Waddle, W. Hale, V. Dave, J. Thornton, T.L. Macatee, H.R. Garner, and R.A. Butow, Genome-wide responses to mitochondria dysfunction. Mol. Biol. Cell, 2001. 12: p. 297–308

    PubMed  CAS  Google Scholar 

  • Hardwick, J.S., EG. Kuruvilla, J.K. Tong, A.E Shamji, and S.L. Schreiber, Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins. Proc. Natl. Acad. Sci. USA, 1999. 96: p. 14866–14870

    Article  PubMed  CAS  Google Scholar 

  • Jefferies, H.B.J., S. Fumagalli, P.B. Dennis, C. Reinhard, R.B. Pearson, and G. Thomas, Rapamycin suppresses 5′TOP mRNA translation through inhibition of p70s6k. EMBO J., 1997. 16(12): p. 3693–3704

    Article  PubMed  CAS  Google Scholar 

  • Jefferies, H.B.J, and G. Thomas, Ribosomal protein S6 phosphorylation and signal transduction, in Translational Control, J.W.B. Hershey, M.B. Mathews, and N. Sonenberg, Editors. 1996, Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY. p. 389–409

    Google Scholar 

  • Johnson, S.P. and J.R. Warner, Phosphorylation of the Saccharomyces cerevisiae equivalent of ribosomal protein S6 has no detectable effect on growth. Mol. Cell. Biol., 1987. 7: p. 1338–1345

    PubMed  CAS  Google Scholar 

  • Komeili, A., K.P. Wedaman, E.O. O’Shea, and T. Powers, Mechanism of metabolic control: Target of rapamycin signaling links nitrogen quality to the activity of the Rtgl and Rtg3 transcription factors. J. Cell Biol., 2000. 151: p. 863–878

    Article  PubMed  CAS  Google Scholar 

  • Kos, W., A.J. Kal, S. van Wilpe, and H.R Tabak, Expression of genes encoding peroxisomal proteins in Saccharomyces cerevisiae is regulated by different circuits of transcriptional control. Biochim. Biophys. Acta, 1995. 1264: p. 79–86

    Google Scholar 

  • Kovacevic, Z. and J.D. McGivan, Mitochondrial metabolism of glutamine and gluta-mate and its physiological significance. Phys. Rev., 1983. 63: p. 547–605

    CAS  Google Scholar 

  • Leicht, M., A. Simm, G. Bertsch, and J. Hoppe, Okadaic acid induces cellular hypertrophy in AKR-2B fibroblasts: involvement of the p70S6 kinase in the onset of protein and rRNA synthesis. Cell Growth Differ., 1996. 7: p. 1199–1209

    PubMed  CAS  Google Scholar 

  • Liao, X. and R.A. Butow, RTG1 and RTG2: two yeast genes required for a novel path of communication from mitochondria to the nucleus. Cell, 1993. 72: p. 61–71

    Article  PubMed  CAS  Google Scholar 

  • Liao, X., W.C. Small, P.A. Srere, and R.A. Butow, Intramitochondrial functions regulate nonmitochondrial citrate synthase (CIT2) expression in Saccharomyces cerevisiae. Mol. Cell. Biol., 1991. 11: p. 38–46

    PubMed  CAS  Google Scholar 

  • Liu, Z. and R.A. Butow, A transcriptional switch in the expression of yeast tricarboxylic acid cycle genes in response to a reduction or loss of respiratory function. Mol. Cell. Biol., 1999. 19: p. 6720–6728

    PubMed  CAS  Google Scholar 

  • Mahajan, P.B., Modulation of transcription of rRNA genes by rapamycin. Int. J. Im-munopharmacol., 1994. 16: p. 711–21

    CAS  Google Scholar 

  • McCammon, M.T., Mutants of Saccharomyces cerevisiae with defects in acetate metabolism: isolation and characterization of Acn- mutants. Genetics, 1996. 144: p. 57–69

    PubMed  CAS  Google Scholar 

  • Powers, T. and P. Walter, Regulation of ribosome biogenesis by the rapamycin-sensitive TOR-signaling pathway in Saccharomyces cerevisiae. Mol. Biol. Cell, 1999. 10: p. 987–1000

    PubMed  CAS  Google Scholar 

  • Rohde, J., J. Heitman, and M.E. Cardenas, The TOR kinases link nutrient sensing to cell growth. J. Biol. Chem., 2001. 276: p. 9583–9586

    Article  PubMed  CAS  Google Scholar 

  • Schmelzle, T. and M.N. Hall, TOR, a central controller of cell growth. Cell, 2000. 103: p. 253–262

    Article  PubMed  CAS  Google Scholar 

  • Sekito, T, Z. Liu, J. Thornton, and R.A. Butow, RTG-dependent mitochondria-to-nu-cleus signaling is regulated by Mks1 and is linked to formation of yeast prion [URE3]. Mol. Biol. Cell, 2002. 13: p. 795–804

    Article  PubMed  CAS  Google Scholar 

  • Sekito, T, J. Thorton, and R. Butow, Mitochondria-to-nuclear signaling is regulated by the subcellular localization of the transcription factors Rtg1p and Rtg3p. Mol. Biol. Cell, 2000. 11: p. 2103–2115

    PubMed  CAS  Google Scholar 

  • Shamji, A.E, EG. Kuruvilla, and S.L. Schreiber, Partitioning the transcriptional program induced by rapmycin among the effectors of the Tor proteins. Curr. Biol., 2000. 10: p. 1574–1581

    Google Scholar 

  • Thomas, G. and M.N. Hall, TOR signalling and control of cell growth. Curr. Opin. Cell Biol., 1997. 9: p. 782–787

    Article  PubMed  CAS  Google Scholar 

  • Warner, J.R., The economics of ribosome biosynthesis in yeast. Trends Biochem. Sci., 1999. 24: p. 437–440

    Article  PubMed  CAS  Google Scholar 

  • Woolford, J.L., Jr. and J.R. Warner, The ribosome and its synthesis, in The molecular biology and cellular biology of the yeast Saccharomyces cerevisiae, J.R. Broach, J.R. Pringle, and E.W. Jones, Editors. 1991, Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY. p. 587–626

    Google Scholar 

  • Zaragoza, D., A. Ghavidel, J. Heitman, and M.C. Schultz, Rapamycin induces the G0 program of transcriptional repression in yeast by interfering with the TOR signaling pathway. Mol. Cell. Biol., 1998. 18: p. 4463–4470

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Powers, T., Dilova, I., Chen, CY., Wedaman, K. (2004). Yeast TOR Signaling: A Mechanism for Metabolic Regulation. In: Thomas, G., Sabatini, D.M., Hall, M.N. (eds) TOR. Current Topics in Microbiology and Immunology, vol 279. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18930-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18930-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62360-8

  • Online ISBN: 978-3-642-18930-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics