Skip to main content

mTOR as a Target for Cancer Therapy

  • Chapter
TOR

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 279))

Abstract

The target of rapamycin, mTOR, acts as a sensor for mitogenic stimuli, such as insulin-like growth factors and cellular nutritional status, regulating cellular growth and division. As many tumors are driven by autocrine or paracrine growth through the type-I insulin-like growth factor receptor, mTOR is potentially an attractive target for molecular targeted treatment. Further, a rationale for anticipating tumor-selective activity based on transforming events frequently identified in malignant disease is becoming established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beretta L, Gingras AC, Svitkin YV, Hall MN, Sonenberg N (1996) Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBOJ 15:658–664

    CAS  Google Scholar 

  • Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS, Schreiber SL (1994) A mammalian protein targeted by Gl-arresting rapamycin-receptor complex. Nature 369:756–758

    Article  PubMed  CAS  Google Scholar 

  • Butt A.J., Firth S.M. and Baxter R.C. (1999) The IGF axis and programmed cell death . Immunol and Cell Biol. 77:256–262

    Article  CAS  Google Scholar 

  • Chen J, Zheng XF, Brown EJ, Schreiber SL (1995) Identification of an 11-kDa FKBPI2-rapamycin-binding domain within the 289-kDa FKBPI2-rapamycin-associated protein and characterization of a critical serine residue . Proc Natl Acad Sci USA 92:4947–4951

    Article  PubMed  CAS  Google Scholar 

  • Chiu MI, Katz H, Berlin V (1994) RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex . Proc Natl Acad Sci USA 91:12574–12578

    Article  PubMed  CAS  Google Scholar 

  • Chung J, Kuo CJ, Crabtree GR. Blenis J.(1992) Rapamycin -FKBP specifically blocks growth-dependent activation of and signaling by the 70 kd S6 protein kinases. Cell 69:1227–1236

    Article  PubMed  CAS  Google Scholar 

  • Damiens E (2000) Molecular events that regulate cell proliferation: an approach for the development of new anticancer drugs. Prog Cell Cycle Res 4:219–233

    Article  PubMed  CAS  Google Scholar 

  • DeBenedetti A, Harris AL. (1999) eIF4E expression in tumors: its possible role in

    Google Scholar 

  • progression of malignancies. Int. J. Biochem. Cell Biol 31:59–72

    Google Scholar 

  • Dennis PB, Jaeschke A, Saitoh M, Fowler B, Kozma SC, Thomas G. (2001) Mammalian TOR: a homeostatic ATP sensor. Science. 294:1102–1105

    Article  PubMed  CAS  Google Scholar 

  • Dennis PB, Pullen N, Kozma SC, Thomas G (1996) The principal rapamycin-sensitive p70s6 k phosphorylation sites, T-229 and T-389, are differentially regulated by rapamycin-insensitive kinase kinases. Mol Cell Biol 16:6242–6451

    PubMed  CAS  Google Scholar 

  • Dilling MB, Dias P, Shapiro DN, Germain GS, Johnson RK, Houghton PJ (1994) Rapamycin selectively inhibits the growth of childhood rhabdomyosarcoma cells through inhibition of signaling via the type I insulin-like growth factor receptor. Cancer Res 54:903–907

    PubMed  CAS  Google Scholar 

  • Dilling MB, Germain GS, Dudkin L, Zhang X, Harwood FC, and Houghton PJ (2002) Acquired resistance to rapamycin correlates with down regulation of 4E-BP1 the suppressor of eukaryotic initiation factor 4E. J Biol Chem (in press).

    Google Scholar 

  • Douglass EC, Valentine M, Etcubanas E, Parham D, Webber BL, Houghton PJ, Houghton JA, Green AA. (1987) A specific chromosomal abnormality in rhabdomyosarcoma. Cytogenet Cell Genet. 45:148–155

    Article  PubMed  CAS  Google Scholar 

  • Douros J, Suffhess M (1981) New antitumor substances of natural origin. Cancer Treat Rev 8:63–87

    Article  PubMed  CAS  Google Scholar 

  • Dudkin L, Dilling MB, Cheshire PJ, Harwood FC, Hollingshead M, Arbuck SG, Travis R, Sausville EA, Houghton PJ: (2001) Biochemical correlates of mTOR inhibition by the rapamycin ester CCI-779 and tumor growth inhibition. Clin Cancer Res. 7:1758–1764.

    PubMed  CAS  Google Scholar 

  • El-Badry OM, Minniti C, Kohn EC, Houghton PJ, Daughaday WH, Helman LJ (1990) Insulin-like growth factor II acts as an autocrine growth and motility factor in human rhabdomyosarcoma tumors. Cell Growth Differ 1:325–331

    PubMed  CAS  Google Scholar 

  • Eng CP, Sehgal SN, Vezina C (1984) Activity of rapamycin (AY-22,989) against transplanted tumors. J Antibiot (Tokyo) 37:1231–1237

    Article  CAS  Google Scholar 

  • Epstein JA, Lam P, Jepeal L, Maas RL, Shapiro DN. (1995) Pax3 inhibits myogenic differentiation of cultured myoblast cells. J Biol Chem. 270:11719–22.

    Article  PubMed  CAS  Google Scholar 

  • Flanagan, W.M., Carthésy, B., Bram, R.J., and Crabtree, J.R. (1991) Nuclear association of a T-cell transcription factor blocked by FK-506 and cyclosporin A. Nature 352:803–807

    Article  PubMed  CAS  Google Scholar 

  • Fruman DA, Wood MA, Gjertson CK, Katz HR, Burakoff SJ, Bierer BE (1995) FK506 binding protein 12 mediates sensitivity to both FK506 and rapamycin in murine mast cells. Eur J Immunol 25:563–571

    Article  PubMed  CAS  Google Scholar 

  • Fujio Y., Nguyen T., Wencker D., Kitsis R.N., and Walsh K. (2000) Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation 101:660–667

    Article  PubMed  CAS  Google Scholar 

  • Galili N, Davis RJ, Fredericks WJ, Mukhopadhyay S, Rauscher FJ 3rd, Emanuel BS, Rovera G, Barr FG. (1993) Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat Genet. 5:230–235

    Article  PubMed  CAS  Google Scholar 

  • Geoerger B, Kerr K, Tang CB, Fung KM, Powell B, Sutton LN, Phillips PC, Janss AJ (2001) Antitumor activity of the rapamycin analog CCI-779 in human primitive neuroectodermal tumor/medulloblastoma models as single agent and in combination chemotherapy. Cancer Res 61:1527–1532

    PubMed  CAS  Google Scholar 

  • Gibbons JJ, Discafani C, Peterson R, Hernandez R, Skotnicki J, Frost P (1999) The effect of CCI-779, a novel macrolide anti-tumor agent, on the growth of human tumor cells in vitro and in nude mouse xenografts in vivo. Proc Am Assoc Cancer Res 40:301

    Google Scholar 

  • Gottschalk AR, Boise LH, Thompson CB, Quintans J (1994) Identification of immu-nosuppressant-induced apoptosis in a murine B-cell line and its prevention by bcl-x but not bcl-2. Proc Natl Acad Sci USA 91:7350–7354

    Article  PubMed  CAS  Google Scholar 

  • Grewe M, Gansauge F, Schmid RM, Adler G, Seufferlein T (1999) Regulation of cell growth and cyclin D1 expression by the constitutively active FRAP-p70s6 K pathway in human pancreatic cancer cells. Cancer Res 59:3581–3587

    PubMed  CAS  Google Scholar 

  • Hazelton BJ, Houghton JA, Parham DM, Douglass EC, Torrance PM, Holt H, Houghton PJ. (1987) Characterization of cell lines derived from xenografts of childhood rhabdomyosarcoma. Cancer Res. 47:4501–4507

    PubMed  CAS  Google Scholar 

  • Heitman J, Movva NR, Hall MN (1991) Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253:905–909

    Article  PubMed  CAS  Google Scholar 

  • Hidalgo M, Rowinsky EK (2000) The rapamycin-sensitive signal transduction pathway as a target for cancer therapy. Oncogene 19:6680–6686

    Article  PubMed  CAS  Google Scholar 

  • Hidalgo M, Rowinsky E, Erlichman C, Drengler R, Marshall B, Adjei A, Hammond L, Galanis E, Edwards T, Burton J, Boni J, Dukart G, Tolcher A, Dukart G, Buckner J (2000) Phase I and pharmacological study of CCI-779, a cell cycle inhibitor. Clin Cancer Res 6:4548S.

    Google Scholar 

  • Hosoi H, Dilling MB, Liu LN, Danks MK, Shikata T, Sekulic A, Abraham RT, Lawrence JC Jr, Houghton PJ (1998) Studies on the mechanism of resistance to rapamycin in human cancer cells. Mol Pharmacol 54:815–824

    PubMed  CAS  Google Scholar 

  • Hosoi H, Dilling MB, Shikata T, Liu LN, Shu L, Ashmun RA, Germain GS, Abraham RT, Houghton PJ (1999) Rapamycin causes poorly reversible inhibition of mTOR and induces p53-independent apoptosis in human rhabdomyosarcoma cells. Cancer Res 59:886–894

    PubMed  CAS  Google Scholar 

  • Houchens DP, Ovejera AA, Riblet SM, Slagel DE (1983) Human brain tumor xenografts in nude mice as a chemotherapy model. Eur J Cancer Clin Oncol 19:799–805

    Article  PubMed  CAS  Google Scholar 

  • Houghton PJ, Harwood FC, Veverka KA, Sharif M. Rapid activation of ERK1/2 in response to type I insulin-like growth factor is dependent on the rapamycin-target mTOR kinase. (2001) Proc Am Assoc Cancer Res 42:679

    Google Scholar 

  • Huang S, Liu LN, Hosoi H, Dilling MB, Shikata T, Houghton PJ (2001) p53/p21CIP1 cooperate in enforcing rapamycin-induced G1 arrest and determine the cellular response to rapamycin. Cancer Res 61:3373–3381

    PubMed  CAS  Google Scholar 

  • Huang S, Shu L, Dilling MB, Easton J, Harwood FC, Ichijo H, Houghton PJ (2003) Sustained activation of the JNK cascade and rapamycin-induced apoptosis are suppressed by p53/p21Cip1. Molecular Cell (in press)

    Google Scholar 

  • Hultsch T, Martin R, Hohman RJ (1992) The effect of the immunophilin ligands rapamycin and FK506 on proliferation of mast cells and other hematopoietic cell lines. Mol Biol Cell 3:981–987

    PubMed  CAS  Google Scholar 

  • <List>Iiboshi, Y Papst, P.J., Kawasome, H., Hosoi, H., Abraham, R.T., Houghton, P.J., Terada, N. (1999) Amino acid-dependent control of p70S6 K: involvement of tRNA aminoacylation in the regulation. J Biol Chem. 274, 1092–1099

    Article  PubMed  CAS  Google Scholar 

  • Kalebic T, Tsokos M, Helman LJ. (19940 In vivo treatment with antibody against IGF-1 receptor suppresses growth of human rhabdomyosarcoma and down-regulates p34cdc2. Cancer Res. 54:5531–5534

    Google Scholar 

  • Kulik G., Klippel A., and Weber MJ. (1997) Antiapoptotic signalling by the insulin-like growth factor I receptor, Phosphatidylinositol 3-kinase, and Akt. Molecular and Cellular Biology 17:1595–1606

    PubMed  CAS  Google Scholar 

  • Kuo CJ, Chung J, Fiorentino DF, Flanagan WM, Blenis J, Crabtree, GR. (1992) Rapamycin selectively inhibits interleukin-2 activation of p70S6 K. Nature. 358:70–73.

    Article  PubMed  CAS  Google Scholar 

  • Lieberthal W, Fuhro R, Andry CC, Rennke H, Abernathy VE, Koh JS, Valeri R, Levine JS (2001) Rapamycin impairs recovery from acute renal failure: role of cell-cycle arrest and apoptosis of tubular cells. Am J Physiol Renal Physiol 281:F693-706

    PubMed  CAS  Google Scholar 

  • Lin T-A, Kong X, Haystead, TAJ, Pause AS, Belsham G, Sonenberg N, Lawrence JC. Jr. (1994). PHAS-I as a link between mitogen-activated protein kinase and translation initiation. Science 266:653–656

    Article  PubMed  CAS  Google Scholar 

  • Lazaris-Karatzas A, Smith MR, Frederickson RM, Jaramillo ML, Liu YL, Kung HF, Sonenberg N. (1992) Ras mediates translation initiation factor 4E-induced malignant transformation. Genes Dev. 6:1631–1642

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Marx SO, Kiyokawa H, Koff A, Massague J, Marks AR (1996) Rapamycin resistance tied to defective regulation of p27Kip1. Mol Cell Biol 16:6744–6751

    PubMed  CAS  Google Scholar 

  • Macaulay, V.M.: Insulin-like growth factors and cancer. (1992) Br. J. Cancer 65:311–320

    Article  PubMed  CAS  Google Scholar 

  • McCaffrey, P.G., Luo, C, Kerpola, T.K., Jain, J., Badalian, T.M., Ho, A.M., Burgeon, E., Lane, W.S., Lambert, J.N., Curran, T, Verdine, G.L., Rao, A., and Hogan, P.G. (1993) Isolation of the cyclosporin-sensitive T-cell transcription factor NFATp. Science 262:750–754

    Article  PubMed  CAS  Google Scholar 

  • Metcalfe SM, Canman CE, Milner J, Morris RE, Goldman S, Kastan MB. (1997) Rapamycin and p53 act on different pathways to induce Gl arrest in mammalian cells. Oncogene.l5:1635–1642

    Google Scholar 

  • Muthukkumar S, Ramesh TM, Bondada S (1995) Rapamycin, a potent immunosuppressive drug, causes programmed cell death in B lymphoma cells. Transplantation 60:264–270

    Article  PubMed  CAS  Google Scholar 

  • Neshat MS, Mellinghoff IK, Tran C, Stiles B, Thomas G, Petersen R, Frost P, Gibbons JJ, Wu H, Sawyers CL (2001) Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci USA 98:10314–10319

    Article  PubMed  CAS  Google Scholar 

  • Ogawa T, Tokuda M, Tomizawa K, Matsui H, Itano T, Konishi R, Nagahata S, Hatase O (1998) Osteoblastic differentiation is enhanced by rapamycin in rat osteoblast-like osteosarcoma (ROS 17/2.8) cells. Biochem Biophys Res Commun 249:226–230

    Article  PubMed  CAS  Google Scholar 

  • Pause, A., Belsham, G.J., Gingras, A-C, Donze, O., Lin, T-A., Lawrence, J.C. Jr, and Sonenberg, N. (1994) Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature 371:762–767

    Article  PubMed  CAS  Google Scholar 

  • Podsypanina K, Lee RT, Politis C, Hennessy I, Crane A, Puc J, Neshat M, Wang H, Yang L, Gibbons J, Frost P, Dreisbach V, Blenis J, Gaciong Z, Fisher P, Sawyers C, Hedrick-Ellenson L, Parsons R (2001) An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/− mice. Proc Natl Acad Sci USA 98:10320–10325

    Article  PubMed  CAS  Google Scholar 

  • Raymond E, Alexandre J, Depenbrock H, Vago AN, Faivre S, Lahr-Randak A, Mater-man E, Boni J, Abbas S, Angevin E, Escudier B, Armand JP (2000) CCI-779, an ester analogue of rapamycin that interacts with PTEN/PI3 kinase pathways: a phase I study utilizing a weekly intravenous schedule. Clin Cancer Res 6:4549S

    Google Scholar 

  • Reiss K, Porcu P, Sell C, Pietrzkowski Z, Baserga R. (1992) The insulin-like growth factor 1 receptor is required for the proliferation of hemopoietic cells. Oncogene 7:2243–2248

    PubMed  CAS  Google Scholar 

  • Rohde J., Heitman, J., Cardenas, M.E. (2001) The TOR kinases link nutrient sensing to cell growth. J. Biol. Chem. 276:9583–9586

    Article  PubMed  CAS  Google Scholar 

  • Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH (1994) RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78:35–43

    Article  PubMed  CAS  Google Scholar 

  • Sabers CJ, Martin MM, Brunn GJ, Williams JM, Dumont FJ, Wiederrecht G, Abraham RT (1995) Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem 270:815–822

    Article  PubMed  CAS  Google Scholar 

  • Schmelzle T, Hall MN (2000) TOR, a central controller of cell growth. Cell 103:253–262

    Article  PubMed  CAS  Google Scholar 

  • Schreiber, S.L. and Crabtree, G.R. (1992) The mechanism of action of cyclosporin A and FK506. Immunol. Today 13:136–142

    Article  PubMed  CAS  Google Scholar 

  • Sell C, Baserga R., and Rubin, R. (1995) Insulin-like growth factor I (IGF-I) and the IGF-I receptor prevent etoposide-induced apoptosis. Cancer Res 55:303–306

    PubMed  CAS  Google Scholar 

  • Seufferlein T, Rozengurt E (1996) Rapamycin inhibits constitutive p70s6 k phosphorylation, cell proliferation, and colony formation in small cell lung cancer cells. Cancer Res 56:3895–3897

    PubMed  CAS  Google Scholar 

  • Schreiber SL (1991) Chemistry and biology of the im-munophilins and their immunosuppressive ligands. Science 251:283–287

    Article  PubMed  CAS  Google Scholar 

  • Shah SA, Potter MW, Ricciardi R, Perugini RA, Callery MP (2001) Frap-p70s6 k signaling is required for pancreatic cancer cell proliferation. J Surg Res 97:123–130

    Article  PubMed  CAS  Google Scholar 

  • Shapiro DN, Sublett JE, Li B, Downing JR, Naeve CW. (1993) Fusion of PAX3 to a member of the forkhead family of transcription factors in human alveolar rhabdomyosarcoma. Cancer Res. 53:5108–5112

    PubMed  CAS  Google Scholar 

  • Shapiro DN, Jones BG, Shapiro LH, Dias P, Houghton PJ (1994) Antisense-mediated reduction in insulin-like growth factor-I receptor expression suppresses the malignant phenotype of a human alveolar rhabdomyosarcoma. J Clin Invest 94:1235–1242

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Frankel A, Radvanyi LG, Penn LZ, Miller RG, Mills GB (1995) Rapamycin enhances apoptosis and increases sensitivity to cisplatin in vitro. Cancer Res 55:1982–1988

    PubMed  CAS  Google Scholar 

  • Simpson L, Parsons R (2001) PTEN: life as a tumor suppressor. Exp Cell Res 264:29–41

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama H, Papst P, Gelfand EW, Terada N (1996) p70 S6 kinase sensitivity to rapamycin is eliminated by amino acid substitution of Thr229. J Immunol 157:656–660

    PubMed  CAS  Google Scholar 

  • Terada N, Lucas, JJ, Szepesi A, Franklin RA, Takase K, Gelfand EW. (1992) Rapamycin inhibits the phosphorylation of p70S6 K in IL-2 and mitogen activated human T cells. Biochem. Biophys. Res. Comm. 186:1315–1321

    Article  PubMed  CAS  Google Scholar 

  • Toretsky JA, Helman LJ. (1996) Involvement of IGF-II in human cancer. J Endocrinol. 149:367–372

    Article  PubMed  CAS  Google Scholar 

  • Thimmaiah KN, Veverka KA, Patel DH, Houghton PJ (2001) Protection against rapamycin induced apoptosis by type I insulin-like growth factor is independent of Erk1/2 activity. Proc Am Assoc Cancer Res 42:801

    Google Scholar 

  • Thimmaiah KN, Easton J, Huang S, Veverka KA, Germain GS, Harwood FC, Houghton PJ (2003) Insulin-like growth factor I-mediated protection from rapamycin-in-duced apoptosis is independent of Ras-Erk1-Erk2 and phosphatidylinositol 3’-ki-nase-Akt signaling pathways. Cancer Res 63:364–374

    PubMed  CAS  Google Scholar 

  • von Manteuffel SR, Dennis PB, Pullen N, Gingras AC, Sonenberg N, Thomas G. (1997) The insulin-induced signalling pathway leading to S6 and initiation factor 4E binding protein 1 phosphorylation bifurcates at a rapamycin-sensitive point immediately upstream of p70s6 k. Mol Cell Biol. 17:5426–5436

    Google Scholar 

  • Yu K, Toral-Barza L, Discafani C, Zhang WG, Skotnicki J, Frost P, Gibbons JJ (2001) mTOR, a novel target in breast cancer: the effect of CCI-779, an mTOR inhibitor, in preclinical models of breast cancer. Endocr Relat Cancer 8:249–258

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Houghton, P.J., Huang, S. (2004). mTOR as a Target for Cancer Therapy. In: Thomas, G., Sabatini, D.M., Hall, M.N. (eds) TOR. Current Topics in Microbiology and Immunology, vol 279. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18930-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18930-2_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62360-8

  • Online ISBN: 978-3-642-18930-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics