Skip to main content

Kinase Activities Associated with mTOR

  • Chapter
TOR

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 279))

Abstract

Although mTOR is a member of the PI-kinase-related kinase family, mTOR possesses serine-threonine protein kinase activities, which phosphorylate itself and exogenous substrates. mTOR autophosphorylates in vitro and is phosphorylated in vivo on serine residues. Ser2481, which is located in a His-Ser-Phe motif near the conserved car boxyl- terminal mTOR tail, has been reported as an autophosphorylation site in vivo and in vitro. The significance of the autophosphorylation remains unclear. Another phosphorylation site on mTOR in vivo is Ser2448. This site appears not to be an autophosphorylation site but a site potentially phosphorylated by protein kinase B (PKB). mTOR immunopurified from culture cells or tissues phosphorylates in vitro p70 S6 kinase (p70) α and p70β, mainly on Thr412 or Thr401, respectively, located in a Phe-Thr-Tyr motif. Another exogenous substrate phosphorylated by immunopurified mTOR in vitro is eIF4E-binding protein 1 (4E-BP1) at sites corresponding to those phosphorylated in vivo during insulin stimulation in a Ser/Thr-Pro motif. Recently, raptor, a 150-kDa TOR-binding protein that contains a carboxyl-terminal WD-repeat domain, was discovered as a scaffold for the mTOR-catalyzed phosphorylation of 4E- BP1 and for the mTOR-mediated phosphorylation and activation of p70α. Other potential substrates phosphorylated by mTOR are nPKCδ, nPKCε:, STAT3, and p53. The requirement of raptor for binding to and phosphorylation by mTOR of these potential substrates would clarify their physiological importance in the mTOR signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alessi, D. R., Kozlowski, M. T., Weng, Q. R, Morrice, N., and Avruch, J. (1998) 3-Phosphoinositide-dependent protein kinase 1 (PDK1) phosphorylates and activates the p70 S6 kinase in vivo and in vitro. Curr Biol 8, 69–81

    Article  PubMed  CAS  Google Scholar 

  • Avruch, J., Belham, C, Weng, Q.-R, Hara, K., and Yonezawa, K. (2001) The p70 S6 kinase integrates nutrient and growth signals to control translational capacity. In Progress in Molecular and Subcellular Biology, R. E. Rhoads, ed. (Berlin Heider-berg), pp. 115–154

    Google Scholar 

  • Azpiazu, I., Saltiel, A. R., DePaoli Roach, A. A., and Lawrence, J. C. (1996) Regulation of both glycogen synthase and PHAS-I by insulin in rat skeletal muscle involves mitogen-activated protein kinase-independent and rapamycin-sensitive pathways. J Biol Chem 271, 5033–5039

    Article  PubMed  CAS  Google Scholar 

  • Banerjee, P., Ahmad, M. R, Grove, J. R., Kozlosky, C, Price, D. J., and Avruch, J. (1990) Molecular structure of a major insulin/mitogen-activated 70-kDa S6 protein kinase. Proc Natl Acad Sci U S A 87, 8550–8554

    Article  PubMed  CAS  Google Scholar 

  • Beretta, L., Gingras, A. C, Svitkin, Y. V., Hall, M. N., and Sonenberg, N. (1996) Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J 15, 658–664

    PubMed  CAS  Google Scholar 

  • Brown, E. J., Albers, M. W., Shin, T. B., Ichikawa, K., Keith, C. T, Lane, W. S., and Schreiber, S. L. (1994) A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369, 756–758

    Article  PubMed  CAS  Google Scholar 

  • Brown, E. J., Beal, P. A., Keith, C. T, Chen, J., Shin, T. B., and Schreiber, S. L. (1995) Control of p70 s6 kinase by kinase activity of FRAP in vivo. Nature 377, 441–446

    Article  PubMed  CAS  Google Scholar 

  • Brunn, G. J., Fadden, P., Haystead, T. A. J., and Lawrence, J. C, Jr. (1997a) The mammalian target of rapamycin phosphorylates sites having a (Ser/Thr)-Pro motif and is activated by antibodies to a region near its COOH terminus. J Biol Chem 272,32547-32550

    Article  PubMed  CAS  Google Scholar 

  • Brunn, G. J., Hudson, C. C, Sekulic, A., Williams, J. M., Hosoi, H., Houghton, P. J., Lawrence, J. C, Jr., and Abraham, R. T. (1997b) Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science 277, 99–101

    Article  PubMed  CAS  Google Scholar 

  • Burnett, P. E., Barrow, R. K., Cohen, N. A., Snyder, S. H., and Sabatini, D. M. (1998) RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci U S A 95, 1432–1437

    Article  PubMed  CAS  Google Scholar 

  • Castedo, M., Ferri, K. R, Blanco, J., Roumier, T, Larochette, N., Barretina, J., Amen-dola, A., Nardacci, R., Metivier, D., Este, J. A., et al. (2001) Human immunodeficiency virus 1 envelope glycoprotein complex-induced apoptosis involves mammalian target of rapamycin/FKBP12-rapamycin-associated protein-mediated p53 phosphorylation. J Exp Med 194, 1097–1110

    Article  PubMed  CAS  Google Scholar 

  • Chiu, M. I., Katz, H., and Berlin, V. (1994) RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex. Proc Natl Acad Sci U S A 91, 12574–12578

    Article  PubMed  CAS  Google Scholar 

  • Chung, J., Kuo, C. J., Crabtree, G. R., and Blenis, J. (1992) Rapamycin-FKBP specifically blocks growth-dependent activation of and signaling by the 70 kd S6 protein kinases. Cell 69, 1227–1236

    Article  PubMed  CAS  Google Scholar 

  • Fadden, P., Haystead, T. A., and Lawrence, J. C, Jr. (1997) Identification of phosphorylation sites in the translational regulator, PHAS-I, that are controlled by insulin and rapamycin in rat adipocytes. J Biol Chem 272, 10240–10247

    Article  PubMed  CAS  Google Scholar 

  • Ferrari, S., Bannwarth, W., Morley, S. J., Totty, N. R, and Thomas, G. (1992) Activation of p70s6 k is associated with phosphorylation of four clustered sites displaying Ser/Thr-Pro motifs. Proc Natl Acad Sci U S A 89, 7282–7286

    Article  PubMed  CAS  Google Scholar 

  • Fox, H. L., Kimball, S. R., Jefferson, L. S., and Lynch, C. J. (1998) Amino acids stimulate phosphorylation of p70S6 k and organization of rat adipocytes into multicellular clusters. Am J Physiol 274, C206-213

    PubMed  CAS  Google Scholar 

  • Gingras, A.-C, Gygi, S. P., Raught, B., Polakiewicz, R. D., Abraham, R. T, Hoekstra, M. E, Aebersold, R., and Sonenberg, N. (1999) Regulation of 4E-BP1 phosphorylation: a noble two-step mechanism. Genes Dev 13, 1422–1437

    Article  PubMed  CAS  Google Scholar 

  • Gingras, A.-C, Raught, B., Gygi, S. P., Niedzwiecka, A., Miron, M., Burley, S. K., Polakiewicz, R. D., Wyslouch-Cieszynska, A., Aebersold, R., and Sonenberg, N. (2001) Hierarchical phosphorylation of the translational initiator 4E-BP1. Genes Dev 15, 2852–2864

    Article  PubMed  CAS  Google Scholar 

  • Gout, L, Minami, T, Hara, K., Tsujishita, Y., Filonenko, V., Waterfield, M. D, and Yonezawa, K. (1998) Molecular cloning and characterization of a novel p70 S6 kinase, p70 S6 kinase beta containing a proline-rich region. J Biol Chem 273, 30061–30064

    Article  PubMed  CAS  Google Scholar 

  • Hara, K., Yonezawa, K., Kozlowski, M. T, Sugimoto, T, Andrabi, K., Weng, Q. P., Kasuga, M., Nishimoto, I., and Avruch, J. (1997) Regulation of eIF-4E BP1 phosphorylation by mTOR. J Biol Chem 272, 26457–26463

    Article  PubMed  CAS  Google Scholar 

  • Hara, K., Yonezawa, K., Weng, Q. P., Kozlowski, M. T., Belham, C, and Avruch, J. (1998) Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem 273, 14484–14494

    Article  PubMed  CAS  Google Scholar 

  • Hara, K., Maruki, Y., Long, X., Yoshino, K., Oshiro, N., Hidayat, S., Tokunaga, C, Avruch, J., and Yonezawa, K. (2002) Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110, 177–189

    Article  PubMed  CAS  Google Scholar 

  • Isotani, S., Hara, K., Tokunaga, C, Inoue, H., Avruch, J., and Yonezawa, K. (1999) Immunopurified mammalian target of rapamycin phosphorylates and activates p70 S6 kinase alpha in vitro. J Biol Chem 274, 34493–34498

    Article  PubMed  CAS  Google Scholar 

  • Keith, C. T, and Schreiber, S. L. (1995) PIK-related kinases: DNA repair, recombination, and cell cycle checkpoints. Science 270, 50–51

    Article  PubMed  CAS  Google Scholar 

  • Kim, D-H., Sarbassov, D. D., Siraj, M. A., King, J. E., Latek R. R., Erdjument-Bromage, H., Tempst, P., and Sabatini, D. M. (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163–175

    Article  PubMed  CAS  Google Scholar 

  • Koh, H., Jee, K., Lee, B., Kim, J., Kim, D., Yun, Y. H., Kim, J. W, Choi, H. S., and Chung, J. (1999) Cloning and characterization of a nuclear S6 kinase, S6 kinase-related kinase (SRK); a novel nuclear target of Akt. Oncogene 18, 5115–5119

    Article  PubMed  CAS  Google Scholar 

  • Kozma, S. C, Ferrari, S., Bassand, P., Siegmann, M., Totty, N., and Thomas, G. (1990) Cloning of the mitogen-activated S6 kinase from rat liver reveals an enzyme of the second messenger subfamily. Proc Natl Acad Sci U S A 87, 7365–7369

    Article  PubMed  CAS  Google Scholar 

  • Kuo, C. J., Chung, J., Fiorentino, D. E, Flanagan, W. M., Blenis, J., and Crabtree, G. R. (1992) Rapamycin selectively inhibits interleukin-2 activation of p70 S6 kinase. Nature 358, 70–73

    Article  PubMed  CAS  Google Scholar 

  • Lee-Fruman, K. K., Kuo, C. J., Lippincott, J., Terada, N., and Blenis, J. (1999) Characterization of S6K2, a novel kinase homologous to S6K1. Oncogene 18, 5108–5114

    Article  PubMed  CAS  Google Scholar 

  • Minami, T, Hara, K., Oshiro, N., Ueoku, S., Yoshino, K., Tokunaga, C, Shirai, Y., Sai-to, N., Gout, I., and Yonezawa, K. (2001) Distinct regulatory mechanism for p70 S6 kinase β from that for p70 S6 kinase α. Genes Cells 6, 1003–1015

    Article  PubMed  CAS  Google Scholar 

  • Moser, B. A., Dennis, P. B., Pullen, N., Pearson, R. B., Williamson, N. A., Wettenhall, R. E., Kozma, S. C, and Thomas, G. (1997) Dual requirement for a newly identified phosphorylation site in p70s6 k. Mol Cell Biol 17, 5648–5655

    PubMed  CAS  Google Scholar 

  • Mothe-Satney, I., Brunn, G. J., McMahon, L. P., Capaldo, C. T, Abraham, R. T, and Lawrence, J. C. (2000) Mammalian target of rapamycin-dependent phosphorylation of PHAS-I in four (S/T)P sites detected by phospho-specific antibodies. J Biol Chem 275, 33836–33843

    Article  PubMed  CAS  Google Scholar 

  • Nave, B. T, Ouwens, M., Withers, D. J., Alessi, D. R., and Shepherd, P. R. (1999) Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem J 344, 427–431

    Article  PubMed  CAS  Google Scholar 

  • Nishiuma, T., Hara, K., Tsujishita, Y., Kaneko, K., Shii, K., and Yonezawa, K. (1998) Characterization of the phosphoproteins and protein kinase activity in mTOR immunoprecipitates. Biochem Biophys Res Commun 252, 440–444

    Article  PubMed  CAS  Google Scholar 

  • Parekh, D., Ziegler, W, Yonezawa, K., Hara, K., and Parker, P. J. (1999) Mammalian TOR controls one of two kinase pathways acting upon nPKC delta and nPKC epsi-lon. J Biol Chem 274, 34758–34764

    Article  PubMed  CAS  Google Scholar 

  • Patti, M. E., Brambilla, E., Luzi, L., Landaker, E. J., and Kahn, C. R. (1998) Bidirectional modulation of insulin action by amino acids. J Clin Invest 101, 1519–1529

    Article  PubMed  CAS  Google Scholar 

  • Pearson, R. B., Dennis, P. B., Han, J. W, Williamson, N. A., Kozma, S. C, Wettenhall, R. E., and Thomas, G. (1995) The principal target of rapamycin-induced p70s6 k inactivation is a novel phosphorylation site within a conserved hydrophobic domain. EMBO J 14, 5279–5287

    PubMed  CAS  Google Scholar 

  • Peterson, R. T, Beal, P. A., Comb, M. J., and Schreiber, S. L. (2000) FKBP12-ra-pamycin-associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive condition. J Biol Chem 275, 7416–7423

    Article  PubMed  CAS  Google Scholar 

  • Price, D. J., Grove, J. R., Calvo, V., Avruch, J., and Bierer, B. E. (1992) Rapamycin-induced inhibition of the 70-kilodalton S6 protein kinase. Science 257, 973–977

    Article  PubMed  CAS  Google Scholar 

  • Price, D. J., Mukhopadhyay, N. K., and Avruch, J. (1991) Insulin-activated protein kinases phosphorylate a pseudosubstrate synthetic peptide inhibitor of the p70 S6 kinase. J Biol Chem 266, 16281–16284

    PubMed  CAS  Google Scholar 

  • Pullen, N., Dennis, P. B., Andjelkovic, M., Dufner, A., Kozma, S. C, Hemmings, B. A., and Thomas, G. (1998) Phosphorylation and activation of p70s6 k by PDKL Science 279, 707–710

    Google Scholar 

  • Sabatini, D. M., Erdjument-Bromage, H., Lui, M., Tempst, P., and Snyder, S. H. (1994) RAFT1: a mammalian protein that binds to FKBP 12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78, 35–43

    Article  PubMed  CAS  Google Scholar 

  • Sabers, C. J., Martin, M. M., Brunn, G. J., Williams, J. M., Dumont, F. J., Wiederrecht, G., and Abraham, R. T. (1995) Isolation of a protein target of the FKBP12-ra-pamycin complex in mammalian cells. J Biol Chem 270, 815–822

    Article  PubMed  CAS  Google Scholar 

  • Shigemitsu, K., Tsujishita, Y., Hara, K., Nanahoshi, M., Avruch, J., and Yonezawa, K. (1999) Regulation of translational effectors by amino acid and mammalian target of rapamycin signaling pathways. Possible involvement of autophagy in cultured hepatoma cells. J Biol Chem 274, 1058–1065

    Article  PubMed  CAS  Google Scholar 

  • Shima, H., Pende, M., Chen, Y., Fumagalli, S., Thomas, G., and Kozma, S. C. (1998) Disruption of the p70(s6 k)/p85(s6 k) gene reveals a small mouse phenotype and a new functional S6 kinase. EMBO J 17, 6649–6659

    Article  PubMed  CAS  Google Scholar 

  • Sonenberg, N. (1996) mRNA 5′ Cap-binding protein eIF4E and control of cell growth. In Translational control, W. B. Hershey, M. B. Mathews, and N. Sonenberg, eds. (Cold Spring Harbor, NY, Cold Spring Harbor Laboratory), pp. 245–270

    Google Scholar 

  • Takahashi, T, Hara, K., Inoue, H., Kawa, Y., Tokunaga, C, Hidayat, S., Yoshino, K., Kuroda, Y., and Yonezawa, K. (2000) Carboxyl-terminal region conserved among phosphoinositide-kinase-related kinases is indispensable for mTOR function in vivo and in vitro. Genes Cells 5, 765–775

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., Campbell, L. E., Miller, C. M., and Proud, C. G. (1998) Amino acid availability regulates p70 S6 kinase and multiple translation factors. Biochem J 334, 261–267

    PubMed  CAS  Google Scholar 

  • Weng, Q. P., Andrabi, K., Klippel, A., Kozlowski, M. T, Williams, L. T, and Avruch, J. (1995) Phosphatidylinositol 3-kinase signals activation of p70 S6 kinase in situ through site-specific p70 phosphorylation. Proc Natl Acad Sci U S A 92, 5744–5748

    Article  PubMed  CAS  Google Scholar 

  • Xu, G., Marshall, C. A., Lin, T. A., Kwon, G., Munivenkatappa, R. B., Hill, J. R., Lawrence, J. C, Jr., and McDaniel, M. L. (1998) Insulin mediates glucose-stimulated phosphorylation of PHAS-I by pancreatic beta cells. An insulin-receptor mechanism for autoregulation of protein synthesis by translation. J Biol Chem 273, 4485–4491

    Article  PubMed  CAS  Google Scholar 

  • Yokogami, K., Wakisaka, S., Avruch, J., and Reeves, S. A. (2000) Serine phosphorylation and maximal activation of STAT3 during CNTF signaling is mediated by the rapamycin target mTOR. Curr Biol 10, 47–50

    Article  PubMed  CAS  Google Scholar 

  • Zakian, V. A. (1995) ATM-related genes: what do they tell us about functions of the human gene? Cell 82, 685–687

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yonezawa, K., Yoshino, KI., Tokunaga, C., Hara, K. (2004). Kinase Activities Associated with mTOR. In: Thomas, G., Sabatini, D.M., Hall, M.N. (eds) TOR. Current Topics in Microbiology and Immunology, vol 279. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18930-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18930-2_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62360-8

  • Online ISBN: 978-3-642-18930-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics