Skip to main content
Book cover

TOR pp 245–257Cite as

Novel Regulatory Mechanisms of mTOR Signaling

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 279))

Abstract

As a master regulator of cellular processes ranging from cell growth and proliferation to differentiation, the mammalian target of rapamycin (mTOR) is critically involved in a complex signaling network. mTOR appears to govern an amino acid sensing pathway that integrates with a phosphatidylinositol 3-kinase-dependent mitogenic pathway to activate the downstream effectors. Recent findings have revealed some unexpected regulatory mechanisms of mTOR signaling. A direct link between mTOR and mitogenic signals is found to be mediated by the lipid second messenger phosphatidic acid. In addition, cytoplasmic-nuclear shuttling of mTOR appears to be required for the cytoplasmic functions of this protein. A new picture of the rapamycin-sensitive signaling network is emerging, with implications in putative upstream regulators and additional downstream targets for mTOR.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alessi, DR, Kozlowski, MT, Weng, QP, Morrice, N, and Avruch, J (1998) 3-Phospho-inositide-dependent protein kinase 1 (PDK1) phosphorylates and activates the p70 S6 kinase in vivo and in vitro. Curr Biol 8:69–81

    Article  PubMed  CAS  Google Scholar 

  • Brenneisen, P, Wenk, J, Wlaschek, M, Krieg, T, and Scharffetter-Kochanek, K (2000) Activation of p70 ribosomal protein S6 kinase is an essential step in the DNA damage-dependent signaling pathway responsible for the ultraviolet B-mediated increase in interstitial collagenase (MMP-1) and stromelysin-1 (MMP-3) protein levels in human dermal fibroblasts. J Biol Chem 275:4336–4344

    Article  PubMed  CAS  Google Scholar 

  • Brown, EJ, Beal, PA, Keith, CT, Chen, J, Shin, TB, and Schreiber, SL (1995) Control of p70 s6 kinase by kinase activity of FRAP in vivo. Nature 377:441–446

    Article  PubMed  CAS  Google Scholar 

  • Brown, EJ, Albers, MW, Shin, TB, Ichikawa, K, Keith, CT, Lane, WS, and Schreiber, SL (1994) A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369:756–758

    Article  PubMed  CAS  Google Scholar 

  • Brunn, GJ, Hudson, CC, Sekulic, A, Williams, JM, Hosoi, H, Houghton, PJ, Lawrence, JC, Jr., and Abraham, RT (1997) Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science 277:99–101

    Article  PubMed  CAS  Google Scholar 

  • Buckland, AG and Wilton, DC (2000) Anionic phospholipids, interfacial binding and the regulation of cell functions. Biochim Biophys Acta 1483:199–216

    Article  PubMed  CAS  Google Scholar 

  • Castedo, M, Ferri, KF, Blanco, J, Roumier, T, Larochette, N, Barretina, J, Amendola, A, Nardacci, R, Metivier, D, Este, JA, Piacentini, M, and Kroemer, G (2001) Human immunodeficiency virus 1 envelope glycoprotein complex-induced apoptosis involves mammalian target of rapamycin/FKBP12-rapamycin-associated protein-mediated p53 phosphorylation. J Exp Med 194:1097–1110

    Article  PubMed  CAS  Google Scholar 

  • Chen, J, Zheng, XF, Brown, EJ, and Schreiber, SL (1995) Identification of an 11-kDa FKBP12-rapamycin-binding domain within the 289-kDa FKBP12-rapamycin-as-sociated protein and characterization of a critical serine residue. Proc Natl Acad Sci US A 92:4947–4951

    Article  CAS  Google Scholar 

  • Chiu, MI, Katz, H, and Berlin, V (1994) RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex. Proc Natl Acad Sci USA 91:12574–12578

    Article  PubMed  CAS  Google Scholar 

  • Choi, J, Chen, J, Schreiber, SL, and Clardy, J (1996) Structure of the FKBP12-ra-pamycin complex interacting with the binding domain of human FRAP. Science 273:239–242

    Article  PubMed  CAS  Google Scholar 

  • Chou, MM and Blenis, J (1996) The 70 kDa S6 kinase complexes with and is activated by the Rho family G proteins Cdc42 and Racl. Cell 85:573–583

    Article  PubMed  CAS  Google Scholar 

  • Du, G, Altshuller, YM, Kim, Y, Han, JM, Ryu, SH, Morris, AJ, and Frohman, MA (2000) Dual requirement for rho and protein kinase C in direct activation of phospholipase DI through G protein-coupled receptor signaling. Mol Biol Cell 11:4359–4368

    PubMed  CAS  Google Scholar 

  • English, D, Cui, Y, and Siddiqui, RA (1996) Messenger functions of phosphatidic acid. Chem Phys Lipids 80:117–132

    Article  PubMed  CAS  Google Scholar 

  • Exton, JH (1999) Regulation of phospholipase D. Biochim Biophys Acta 1439:121–133

    Article  PubMed  CAS  Google Scholar 

  • Fang, Y, Vilella-Bach, M, Bachmann, R, Flanigan, A, and Chen, J (2001) Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 294:1942–1945

    Article  PubMed  CAS  Google Scholar 

  • Frohman, MA, Sung, TC, and Morris, AJ (1999) Mammalian phospholipase D structure and regulation. Biochim Biophys Acta 1439:175–186

    Article  PubMed  CAS  Google Scholar 

  • Fumagalli, S and Thomas, G, S6 phosphorylation and signal transduction, in Translational control of gene expression, N. Sonenberg, J.W.B. Hershey, and M.B. Mathews, Editors. 2000, Cold Spring Harbor Lab Press: Cold Spring Harbor, p. 695–718

    Google Scholar 

  • Geng, D, Chura, J, and Roberts, MF (1998) Activation of phospholipase D by phosphatidic acid. Enhanced vesicle binding, phosphatidic acid-Ca2+ interaction, or an allosteric effect? J Biol Chem 273:12195–12202

    Article  PubMed  CAS  Google Scholar 

  • Gingras, AC, Raught, B, and Sonenberg, N (1999) eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 68:913–963

    Article  PubMed  CAS  Google Scholar 

  • Gingras, AC, Raught, B, and Sonenberg, N (2001) Regulation of translation initiation by FRAP/mTOR. Genes Dev 15:807–826

    Article  PubMed  CAS  Google Scholar 

  • Graves, LM, He, Y, Lambert, J, Hunter, D, Li, X, and Earp, HS (1997) An intracellular calcium signal activates p70 but not p90 ribosomal S6 kinase in liver epithelial cells. J Biol Chem 272:1920–1928

    Article  PubMed  CAS  Google Scholar 

  • Hara, K, Yonezawa, K, Weng, Q-P, Kozlowski, MT, Belham, C, and Avruch, J (1998) Amino Acid Sufficiency and mTOR Regulate p70 S6 Kinase and eIF-4E BP1 through a Common Effector Mechanism. J. Biol. Chem. 273:14484–14494

    Article  PubMed  CAS  Google Scholar 

  • Houle, MG and Bourgoin, S (1999) Regulation of phospholipase D by phosphorylation-dependent mechanisms. Biochim Biophys Acta 1439:135–149

    Article  PubMed  CAS  Google Scholar 

  • Iiboshi, Y, Papst, PJ, Kawasome, H, Hosoi, H, Abraham, RT, Houghton, PJ, and Terada, N (1999) Amino acid-dependent control of p70(s6 k). Involvement of tRNA aminoacylation in the regulation. J Biol Chem 274:1092–1099

    Article  PubMed  CAS  Google Scholar 

  • Keith, CT and Schreiber, SL (1995) PIK-related kinases: DNA repair, recombination, and cell cycle checkpoints. Science 270:50–51

    Article  PubMed  CAS  Google Scholar 

  • Kim, JE and Chen, J (2000) Cytoplasmic-nuclear shuttling of FKBP12-rapamycin-as-sociated protein is involved in rapamycin-sensitive signaling and translation initiation. Proc Natl Acad Sci U S A 97:14340–14345

    Article  PubMed  CAS  Google Scholar 

  • Kunz, J, Schneider, U, Howald, I, Schmidt, A, and Hall, MN (2000) HEAT repeats mediate plasma membrane localization of Tor2p in yeast. J Biol Chem 275:37011–37020

    Article  PubMed  CAS  Google Scholar 

  • Leung, DW (2001) The structure and functions of human lysophosphatidic acid acyl-transferases. Front Biosci 6: D944-953

    Article  PubMed  CAS  Google Scholar 

  • Nishi, K, Yoshida, M, Fujiwara, D, Nishikawa, M, Horinouchi, S, and Beppu, T (1994) Leptomycin B targets a regulatory cascade of crml, a fission yeast nuclear protein, involved in control of higher order chromosome structure and gene expression. J Biol Chem 269:6320–6324

    PubMed  CAS  Google Scholar 

  • Park, IH, Bachmann, R, Shirazi, H, and Chen, J (2002) Regulation of ribosomal S6 kinase 2 by mammalian target of rapamycin. J Biol Chem 277: 31423–31429

    Article  PubMed  CAS  Google Scholar 

  • Peterson, RT and Schreiber, SL (1998) Translation control: connecting mitogens and the ribosome. Curr Biol 8: R248-250

    Article  PubMed  CAS  Google Scholar 

  • Sabatini, DM, Erdjument-Bromage, H, Lui, M, Tempst, P, and Snyder, SH (1994) RAFT1: a mammalian protein that binds to FKBP 12 in a rapamycin- dependent fashion and is homologous to yeast TORs. Cell 78:35–43

    Article  PubMed  CAS  Google Scholar 

  • Sabatini, DM, Barrow, RK, Blackshaw, S, Burnett, PE, Lai, MM, Field, ME, Bahr, BA, Kirsch, J, Betz, H, and Snyder, SH (1999) Interaction of RAFT1 with gephyrin required for rapamycin-sensitive signaling. Science 284:1161–1164

    Article  PubMed  CAS  Google Scholar 

  • Sabers, CJ, Martin, MM, Brunn, GJ, Williams, JM, Dumont, FJ, Wiederrecht, G, and Abraham, RT (1995) Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem 270:815–822

    Article  PubMed  CAS  Google Scholar 

  • Schmelzle, T and Hall, MN (2000) TOR, a central controller of cell growth. Cell 103:253–262

    Article  PubMed  CAS  Google Scholar 

  • Segrest, JP, Jones, MK, De Loof, H, Brouillette, CG, Venkatachalapathi, YV, and Anantharamaiah, GM (1992) The amphipathic helix in the exchangeable apolipoproteins: a review of secondary structure and function. J. Lipid Res. 33:141–166

    PubMed  CAS  Google Scholar 

  • Sung, TC, Roper, RL, Zhang, Y, Rudge, SA, Temel, R, Hammond, SM, Morris, AJ, Moss, B, Engebrecht, J, and Frohman, MA (1997) Mutagenesis of phospholipase D defines a superfamily including a trans-Golgi viral protein required for poxvirus pathogenicity. Embo J 16:4519–4530

    Article  PubMed  CAS  Google Scholar 

  • van Blitterswijk, WJ and Houssa, B (2000) Properties and functions of diacylglycerol kinases. Cell Signal 12:595–605

    Article  PubMed  Google Scholar 

  • Vilella-Bach, M, Nuzzi, P, Fang, Y, and Chen, J (1999) The FKBP12-rapamycin-bind-ing domain is required for FKBP12-rapamycin- associated protein kinase activity and Gl progression. J Biol Chem 274:4266–4272

    Article  PubMed  CAS  Google Scholar 

  • Willard, FS, Berven, LA, and Crouch, MF (2001) Lysophosphatidic acid activates the 70-kDa S6 kinase via the lipoxygenase pathway. Biochem Biophys Res Commun 287:607–613

    Article  PubMed  CAS  Google Scholar 

  • Withers, DJ, Ouwens, DM, Nave, BT, van der Zon, GC, Alarcon, CM, Cardenas, ME, Heitman, J, Maassen, JA, and Shepherd, PR (1997) Expression, enzyme activity, and subcellular localization of mammalian target of rapamycin in insulin-responsive cells. Biochem Biophys Res Commun 241:704–709

    Article  PubMed  CAS  Google Scholar 

  • Xu, G, Kwon, G, Marshall, CA, Lin, TA, Lawrence, JC, Jr., and McDaniel, ML (1998) Branched-chain amino acids are essential in the regulation of PHAS-I and p70 S6 kinase by pancreatic beta-cells. A possible role in protein translation and mitogenic signaling. J Biol Chem 273:28178–28184

    Article  PubMed  CAS  Google Scholar 

  • Yang, SF, Freer, S, and Benson, AA (1967) Transphosphatidylation by phospholipase D. J Biol Chem 242:477–484

    PubMed  CAS  Google Scholar 

  • Zhang, Y, Altshuller, YM, Hammond, SM, Hayes, F, Morris, AJ, and Frohman, MA (1999) Loss of receptor regulation by a phospholipase DI mutant unresponsive to protein kinase C. Embo J 18:6339–6348

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y, Dong, Z, Nomura, M, Zhong, S, Chen, N, and Bode, AM (2001) Signal transduction pathways involved in phosphorylation and activation of p70S6 K following exposure to UVA irradiation. J Biol Chem 276:20913–20923

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, J. (2004). Novel Regulatory Mechanisms of mTOR Signaling. In: Thomas, G., Sabatini, D.M., Hall, M.N. (eds) TOR. Current Topics in Microbiology and Immunology, vol 279. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18930-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18930-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62360-8

  • Online ISBN: 978-3-642-18930-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics