Skip to main content

Modulation of the Protein Kinase Activity of mTOR

  • Chapter
TOR

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 279))

Abstract

mTOR is a founding member of a family of protein kinases having catalytic domains homologous to those in phosphatidylinositol 3-OH kinase. mTOR participates in the control by insulin of the phosphorylation of lipin, which is required for adipocyte differentiation, and the two translational regulators, p70S6K and PHAS-I. The phosphorylation of mTOR, itself, is stimulated by insulin in Ser2448, a site that is also phosphorylated by protein kinase B (PKB) in vitro and in response to activation of PKB activity in vivo. Ser2448 is located in a short stretch of amino acids not found in the two TOR proteins in yeast. A mutant mTOR lacking this stretch exhibited increased activity, and binding of the antibody, mTAb-1, to this region markedly increased mTOR activity. In contrast, rapamycin-FKBP12 inhibited mTOR activity towards both PHAS-I and p70S6K, although this complex inhibited the phosphorylation of some sites more than that of others. Mutating Ser2035 to Ile in the FKBP12-rapamycin binding domain rendered mTOR resistant to inhibition by rapamycin. Unexpectedly, this mutation markedly decreased the ability of mTOR to phosphorylate certain sites in both PHAS-I and p70S6K. The results support the hypotheses that rapamycin disrupts substrate recognition instead of directly inhibiting phosphotransferase activity and that mTOR activity in cells is controlled by the phosphorylation of an inhibitory regulatory domain containing the mTAb-1 epitope.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

cAMP:

Adenosine 3′,5′ cyclic phosphate

eIF:

Eukaryotic initiation factor

4E-BP1:

eIF4E-binding protein 1

FKBP-12:

FK506 binding protein of M r = 12,O0O

GST:

Glutathione S transferase

HEK:

Human embryonic kidney

PHAS:

Phosphorylated heat- and acid-stable eIF4E-binding protein

mTAb:

mTOR antibody

mTOR:

Mammalian target of rapamycin

PI 3-kinase:

Phosphatidylinositol 3-OH kinase

PKB:

Protein kinase B

p70S6K :

M r = 70,OOO ribosomal protein S6 kinase

References

  • Bondeva T, Pirola L, Bulgarelli-Leva G, Rubio I, Wetzker R, Wymann MP (1998) Bifurcation of lipid and protein kinase signals of PI3 K gamma to the protein kinases PKB and MAPK. Science 282:293–296

    Article  PubMed  CAS  Google Scholar 

  • Brunn GJ, Fadden P, Haystead TAJ, Lawrence JC, Jr (1997a) The mammalian target of rapamycin phosphorylates sites having a (Ser/Thr)-Pro motif and is activated by antibodies to a region near its COOH-terminus. J Biol Chem 272:32547–32550

    Article  PubMed  CAS  Google Scholar 

  • Brunn GJ, Hudson CC, Sekulic A, Williams, J.M., Hosoi H, Houghton, P.J., Lawrence JC, Jr., Abraham RT (1997b) Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science 277:99–101

    Article  PubMed  CAS  Google Scholar 

  • Burnett PE, Barrow RK, Cohen NA, Snyder SH, Sabatini DM (1998) RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci US A 95:1432–1437

    Article  CAS  Google Scholar 

  • Dennis PB, Pullen N, Kozma SC, Thomas G (1996) The principal rapamycin-sensitive p70s6k phosphorylation sites, T-229 and T-389, are differentially regulated by rapamycin-insensitive kinase kinases. Mol Cell Biol 16:6242–6251

    PubMed  CAS  Google Scholar 

  • Fadden P, Haystead TAJ, Lawrence JC, Jr (1997) Identification of phosphorylation sites in the translational regulator, PHAS-I, that are controlled by insulin and rapamycin in rat adipocytes. J Biol Chem 272:10240–10247

    Article  PubMed  CAS  Google Scholar 

  • Gingras A-C, Gygi SP, Raught B, Polakiewicz RD, Abraham RT, Hoekstra MF, Aeber-sold R, Sonenberg N (1999a) Regulation of 4E-BP1 phosphorylation: a novel two step mechanism. Genes Dev 13:1422–1437

    Article  PubMed  CAS  Google Scholar 

  • Gingras A-C, Raught B, Sonenberg N (1999b) eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Ann Rev Biochem 68:913–963

    Article  PubMed  CAS  Google Scholar 

  • Graves LM, Bornfeldt KE, Argast GM, Krebs EG, Kong X, Lin T-A, Lawrence JC, Jr (1995) cAMP- and rapamycin-sensitive regulation of eukaryotic initiation factor 4E and the translational regulator PHAS-I in aortic smooth muscle cells. Proc Natl Acad Sci U S A 92:7222–7226

    Article  PubMed  CAS  Google Scholar 

  • Gygi SP, Han DK, Gingras AC, Sonenberg N, Aebersold R (1999) Protein analysis by mass spectrometry and sequence database searching: tools for cancer research in the post-genomic era. Electrophoresis 20:310–319

    Article  PubMed  CAS  Google Scholar 

  • Hara K, Maruki Y, Long X, Yoshino, K., Oshiro N, Hidayat T, Tokunaga C, Avruch J, Yonezawa K (2002) Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110:177–189

    Article  PubMed  CAS  Google Scholar 

  • Hu C, Pang S, Kong X, Velleca M, Lawrence JC, Jr (1994) Molecular cloning and tissue distribution of PHAS-I, an intracellular target for insulin and growth factors. Proc Natl Acad Sci U S A 91:3730–3734

    Article  PubMed  CAS  Google Scholar 

  • Huffman TA, Mothe-Satney I, Lawrence JC, Jr (2002) Insulin-stimulated phosphorylation of lipin mediated by the mammalian target of rapamycin. Proc Natl Acad Sci US A 99:1047–1052

    Article  CAS  Google Scholar 

  • Hunter T (1995) When is a lipid kinase not a lipid kinase? When it is a protein kinase. Cell 83:1–4

    Article  PubMed  CAS  Google Scholar 

  • Kim D-H, Sarbasso DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P, and Sabatini DM (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110:163–175

    Article  PubMed  CAS  Google Scholar 

  • Kohn A, Barthel A, Kovacina KS, Boge A, Wallach B, Summers SA, Birnbaum M, Scott PH, Lawrence JC, Jr., Roth RA (1998) Construction and characterization of a conditionally active version of the Ser/Thr kinase Akt. J Biol Chem 273:11937–11943

    Article  PubMed  CAS  Google Scholar 

  • Lin T-A, Kong X, Haystead TAJ, Pause A, Belsham G, Sonenberg N, Lawrence JC, Jr (1994) PHAS-I as a link between mitogen activated protein kinase and translation initiation. Science 266:653–656

    Article  PubMed  CAS  Google Scholar 

  • Lin T-A, Kong X, Saltiel AR, Blackshear PJ, Lawrence JC, Jr (1995) Control of PHAS-I by insulin in 3T3-L1 adipocytes: synthesis, degradation, and phosphorylation by a rapamycin-sensitive and MAP kinase-independent pathway. J Biol Chem 270:18531–18538

    Article  PubMed  CAS  Google Scholar 

  • Lin T-A, Lawrence JC, Jr (1996) Control of the translational regulators, PHAS-I and PHAS-II, by insulin and cAMP in 3T3-L1 adipocytes. J Biol Chem 271:30199–30204

    Article  PubMed  CAS  Google Scholar 

  • McMahon LP, Choi K, Abraham RT, Lin T-A, Lawrence JC, Jr (2002) The rapamycin-binding domain governs substrate selectivity by the mammalian target of rapamycin. Mol Cell Biol in press

    Google Scholar 

  • Monfar M, Lemon KP, Grammer TC, Cheatham L, Chung J, Vlahos CJ, Blenis J (1995) Activation of pp70/85 kinases in interleukin-2-responsive lymphoid cells is mediated by phosphatidylinositol 3-kinase and inhibited by cyclic AMP. Mol Cell Biol 15:326–337

    PubMed  CAS  Google Scholar 

  • Mothe-Satney I, Brunn GJ, McMahon LP, Capaldo CT, Abraham RT, Lawrence JC, Jr (2000a) Mammalian target of rapamycin-dependent phosphorylation of PHAS-I in four (S/T)P sites detected by phospho-specific antibodies. J Biol Chem 275:33836–33843

    Article  PubMed  CAS  Google Scholar 

  • Mothe-Satney I, Yang D, Fadden P, Haystead TAJ, Lawrence JC, Jr (2000b) Multiple mechanisms control phosphorylation of PHAS-I in five (S/T)P sites that govern translational repression. Mol Cell Biol 20:3558–3567

    Article  PubMed  CAS  Google Scholar 

  • Nave B, Ouwens M, Withers DJ, Alessi DR, Shepherd PR (1999) Mammalian target of rapamycin is a direct target for protein kinase B: Identification of a convergence point for opposing effects of insulin and amino acid deficiency on protein translation. Biochem J 344:427–431

    Article  PubMed  CAS  Google Scholar 

  • Pause A, Belsham GJ, Gingras A-C, Donze O, Lin T-A, Lawrence JC, Jr., Sonenberg N (1994) Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature 371:762–767

    Article  PubMed  CAS  Google Scholar 

  • Peterfy M, Phan J, Xu P, Reue K (2001) Lipodystrophy in the fid mouse results from mutation of a new gene encoding a nuclear protein, lipin. Nat Genet 27:121–124

    Article  PubMed  CAS  Google Scholar 

  • Reynolds TH, Bodine S, Lawrence JC, Jr (2002) Control of Ser2448 phosphorylation in the mammalian target of rapamycin by insulin and skeletal muscle load. J Biol Chem 277:17657–17662

    Article  PubMed  CAS  Google Scholar 

  • Saitoh M, Pullen N, Brennan P, Cantrell D, Dennis PB, Thomas G (2002) Regulation of an activated S6 kinase 1 variant reveals a novel mammalian target of rapamycin phosphorylation site. J Biol Chem 277:20104–20112

    Article  PubMed  CAS  Google Scholar 

  • Schmelzle T, Hall MN (2000) TOR, a central controller of cell growth. Cell 103:253–262

    Article  PubMed  CAS  Google Scholar 

  • Scott PH, Brunn GJ, Kohn AD, Roth RA, Lawrence JC, Jr (1998a) Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase B signaling pathway. Proc Natl Acad Sci U S A 95:7772–7777

    Article  PubMed  CAS  Google Scholar 

  • Scott PH, Lawrence JC, Jr (1998b) Attenuation of mammalian target of rapamycin activity by increased cAMP in 3T3-L1 adipocytes. J Biol Chem 273:34496–34501

    Article  PubMed  CAS  Google Scholar 

  • Sekulic A, Hudson CC, Homme JL, Yin P, Otterness DM, Karnitz LM, Abraham RT (2000) A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin (mTOR) in mitogen-stimulated and transformed cells. Cancer Res 60:3504–3513

    PubMed  CAS  Google Scholar 

  • Tee AR, Proud CG (2002) Caspase cleavage of initiation factor 4E-binding protein 1 yields a dominant inhibitor of cap-dependent translation and reveals a novel regulatory motif. Mol Cell Biol 22:1674–1683

    Article  PubMed  CAS  Google Scholar 

  • Yeh WC, Bierer BE, McKnight SL (1995) Rapamycin inhibits clonal expansion and adipogenic differentiation of 3T3-L1 cells. Proc Natl Acad Sci U S A 92:11086–11090

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lawrence, J.C., Lin, TA., McMahon, L.P., Choi, K.M. (2004). Modulation of the Protein Kinase Activity of mTOR. In: Thomas, G., Sabatini, D.M., Hall, M.N. (eds) TOR. Current Topics in Microbiology and Immunology, vol 279. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18930-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18930-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62360-8

  • Online ISBN: 978-3-642-18930-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics