Skip to main content

Contribution of Calcareous Plankton Groups to the Carbonate Budget of South Atlantic Surface Sediments

  • Chapter

Abstract

A total of more than 400 surface sediment samples from the equatorial, central and subpolar South Atlantic Ocean were investigated for their carbonate content as well as for the carbonate contribution from various calcareous plankton groups. The modem pattern of marine carbonate production is exemplified by comparing two sediment traps located in different domains of the South Atlantic. In addition, this paper presents new carbonate calculations for the content of coccoliths, calcareous dinocysts, planktic foraminifera, and pteropods in surface sediments. In general, carbonate input of the different organism groups is highly variable although dominated by both planktic foraminifera and coccolithophorids. Whereas coccolith carbonate dominates the oligotrophic gyres of the South Atlantic, carbonate derived from planktic foraminifera is much more important in more fertile, mesotrophic areas, such as the equatorial divergence zone. In contrast, calcareous dinocysts only supply a minor proportion of calcium carbonate to the sediments. The aragonite content, mainly derived from pteropod shells, is of regional importance at the continental margin of the western South Atlantic. Here, aragonite contents of up to 50 wt-% of the total sediments were measured. Carbonate dissolution has a major effect below the lysocline depth, but also in highly productive areas (supralysoclinal dissolution). Foraminiferal carbonate is much more affected by dissolution than either coccolith or calcareous dinocyst carbonate. Preservation of pteropod shells is restricted to relatively shallow parts of the ocean distant from continental margins, as aragonite is much more susceptible to dissolution than calcite. As a result, the maximum aragonite content is observed at an intermediate depth, i.e. between 2000 to 3000m.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrantes F (2000) 200 000 yr diatom records from Atlantic upwelling sites reveal maximum productivity during LGM and a shift in phytoplankton community structure at 185 000 yr. Earth Planet Sci Lett 176: 7–16

    Article  Google Scholar 

  • Archer DE (1996) An atlas of the distribution of calcium carbonate in sediments of the deep-sea. Glob Biogeochem Cycl 10: 159–174

    Article  Google Scholar 

  • Archer D, Emerson S, Reimers C (1989) Dissolution of calcite in deep-sea sediments: pH and O2 microelec-trode results. Geochim Cosmochim Acta 53: 2831–2845

    Article  Google Scholar 

  • Arz HW, Pätzold J, Wefer G (1999) Climatic changes during the last deglaciation recorded in sediment cores from the northeastern Brazilian continental margin. Geo-Mar Lett 19: 209–218

    Article  Google Scholar 

  • Bainbridge AE (1981) GEOSECS Atlantic Expedition, Hydrographic Data, 1972–1973. National Science Foundation, US Government Printing Office, Washington DC, pp 1–121

    Google Scholar 

  • Barnola JM, Raynaud D, Korotkevich YS, Lorius C (1987) Vostok ice core provides 160 000-year record of atmospheric CO2. Nature 329: 408–414

    Article  Google Scholar 

  • Baumann K-H, Lackschewitz KS, Erlenkeuser H, Henrich R, Jünger B (1993) Late Quaternary calcium carbonate sedimentation and terrigenous input along the east Greenland continental margin. Mar Geol 114: 13–36

    Article  Google Scholar 

  • Baumann K-H, Sprengel C (2000) Morphological variations ofvarious coccolith species in a sediment trap north of the Canary Islands. J Nannoplankt Res 22: 185–193

    Article  Google Scholar 

  • Baumann K-H, Andruleit H, Samtleben C (2000) Cocco-lithophores in the Nordic Seas: Comparison of living communities with surface sediment assemblages. Deep-Sea Res II 47: 1743–1772

    Article  Google Scholar 

  • Bé AWH, Tolderlund DS (1971) Distribution and ecology of living planktonic foraminifera in the surface sediments of the Atlantic and Indian Oceans. In: Funnell B, Riedel WR (eds) Micropaleontology of the Oceans. Cambridge University Press, London, pp 105–149

    Google Scholar 

  • Berger WH (1976) Biogenous deep-sea sediments: Production, preservation and interpretation. In: Riley JP, Chester R (eds) Chemical Oceanography. Academic Press, London, New York, San Francisco pp 265–389

    Google Scholar 

  • Berger WH (1978) Deep-sea carbonate: Pteropod distribution and the aragonite compensation depth. Deep-Sea Res I 25: 447–452

    Article  Google Scholar 

  • Berger WH (1985) CO2 increase and climate prediction: Clues from deep-sea carbonates. Episodes 8: 163–168

    Google Scholar 

  • Berger WH (1989) Global maps of ocean productivity. In: Berger WH, Smetacek VS, Wefer G (eds) Productivity of the Oceans: Present and Past. J Wiley & Sons, Chichester, pp 455–486

    Google Scholar 

  • Berger WH, Fischer K, Lai C, Wu G (1987) Ocean productivity and organic carbon flux. Part I. Overview and maps of primary production and export production. University of California, San Diego, SIO Reference 87-30, pp 1–67

    Google Scholar 

  • Berger WH, Smetacek VS, Wefer G (1989) Ocean productivity and paleoproductivity: An overview. In: Berger WH, Smetacek VS, Wefer G. (eds) Productivity of the Ocean: Present and past. J Wiley & Sons, Chichester, pp 1–34

    Google Scholar 

  • Berner RA, Honjo S (1981) Pelagic sedimentation of aragonite: Its geochemical significance. Science 211: 940–942

    Article  Google Scholar 

  • Betzer PR, Byrbe RH, Acker JG, Lewis CS, Jolley RR, Feely RA (1984) The oceanic carbonate system: A reassessment of biogenic controls. Science 226: 1074–1077

    Article  Google Scholar 

  • Brummer GJA, van Eijden AJM (1992) “Blue ocean” paleoproductivity estimates from pelagic carbonate mass accumulation rates. Mar Micropaleontol 19: 99–117

    Article  Google Scholar 

  • Broecker WS, Peng T-H (1989) The cause of the glacial to interglacial atmosheric CO2 change: A polar alkalinity hypothesis. Glob Biogeochem Cycl 3: 215–239

    Article  Google Scholar 

  • Broerse ATC, Ziveri P, van Hinte JE, Honjo S (2000) Coccolithophore exportproduction, species composition, and coccolith-CaCO3, fluxes in the NEA tlantic (34°N 21°w and 48°N 21°W). Deep-Sea Res II 47: 1877–1905

    Article  Google Scholar 

  • Dittert N, Baumann K-H, Bickert T, Henrich R, Huber R, Kinkel H, Meggers H (1999) Carbonate dissolution in the deep-sea: Methods, quantification, and paleoceanographic application. In: Fischer G, Wefer G (eds) Use of Proxiesin Paleoceanography: Examples from the South Atlantic. Springer, Berlin, pp 255–284

    Chapter  Google Scholar 

  • Fabry VJ (1990) Shell growth rates of pteropod and heteropod mollusks and aragonite production in the open ocean: Implications for the marine caronate system. J Mar Res 48: 209–222

    Article  Google Scholar 

  • Fabry VJ, Deuser WG (1991) Aragonite and magnesian calcite fluxes to the deep Sargasso Sea. Deep-Sea Res 38: 713–728

    Article  Google Scholar 

  • Fabry VJ, Deuser WG(1992) Seasonal changes in the isotopic compositions and sinking fluxes of euthecosomatous pteropod shells in the Sargasso Sea. Paleoceanography 7 (2): 195–213

    Article  Google Scholar 

  • Fischer G, Wefer G (1996) Long-term observations of particle fluxes in the eastern Atlantic: Seasonality, changes off lux with depth and comparison with the sediment record. In: Wefer G, Berger WH, Siedler G, Webb DJ (eds) The South Atlantic: Present and Past Circulation. Springer, Berlin, pp 325–344

    Chapter  Google Scholar 

  • Fischer G, Ratmeyer V, Wefer G (2000) Organic carbon fluxes in the Atlantic and the Southern Ocean: Relationship to primary production compiled from satellite radiometer data. Deep-Sea Res II 47: 1961–1997

    Article  Google Scholar 

  • Gerhardt S, Henrich R (200I) Shell preservation of Limacina inflate (Pteropoda) in surface sediments from the Central and South Atlantic Ocean: A new proxy to determine the aragonite saturation state of water masses. Deep-Sea Res I 48: 2051–2071

    Google Scholar 

  • Giraudeau J, Bailey GW (1995) Spatial dynamics of coccolithophore communities during an upwelling event in the southern Benguela system. Cont Shelf Res 15: 1825–1852

    Article  Google Scholar 

  • Giraudeau J, Bailey GW, Pujol C (2000) A high-resolution time-series analses of particle fluxes in the northern Benguela coastal upwelling system: Carbonate record of changes in production and particle transfer processes. Deep-Sea Res II 47: 1999–2028

    Article  Google Scholar 

  • Hales B, Emerson S (1997) Calcite dissolution in sediments of the Ceara Rise: In situ measurements of porewater O2, pH, and CO2(aq). Geochim Cosmochim Acta 61: 501–514

    Article  Google Scholar 

  • Hales B, Emerson S, Archer D (1994) Respiration and dissolution in the sediments of the western North Atlantic: Estimates from models of in situ microelec-trode measurements of porewateroxygen and pH. Deep-Sea Res I 41: 695–719

    Article  Google Scholar 

  • Hebbeln D, Henrich R, Baumann K-H (1998) Paleoceanography of the las tinterglacial/glacial cycle in the Polar North Atlantic. Quat Sci Rev 17: 125–153

    Article  Google Scholar 

  • Henrich R (1998) Dynamics of Atlantic water advection to the Norwegian-Greenland Sea-A time-slice record of carbonate distribution in the last 300 ky. Mar Geol 145: 95–131

    Article  Google Scholar 

  • Hodell DA, Charles CD, Sierro FJ (2001) Late Pleistocene evolution of the earth’s carbonate system. Earth Planet Sci Lett 192: 109–124

    Article  Google Scholar 

  • Howard WR, Prell WL (1994) Late Quaternary CaCO3 production and preservation in the Southern Ocean: Implications for oceanic and atmosheric carbon cycling. Paleoceanography 9: 453–482

    Article  Google Scholar 

  • Huber R, Meggers H, Baumann K-H, Henrich R (2000) Recent and Pleistocene carbonate dissolution in sediments of the Norwegian-Greenland Sea. Mar Geol 165: 123–136

    Article  Google Scholar 

  • Jouzel J, Barkov NI, Bamola JM, Bender M, Chappelaz J, Genthon C, Kotlyakov VM, Lipenkov V Lorius C, Petit J R, Raynaud D, Raisbeck G, Ritz C, Sowers T, Stievenard M, Yiou F, Yiou P (1993) Extending the Vostok ice-core record palaeoclimate to the penultimate glacial record. Nature 364: 407–412

    Article  Google Scholar 

  • Kalberer M, Fischer G, Pätzold J, Donner B, Segl M, Wefer G (1993) Seasonal sedimentation and stable isotope records of pteropods off Cap Blanc. Mar Geol 113: 305–320

    Article  Google Scholar 

  • Kellogg T.B (1976) Paleoclimatology and paleoceanography of the Norwegian and Greenland Seas: The last 450,000 years. Mar Micropaleontol 2: 235–249

    Article  Google Scholar 

  • Kleijne A, Kroon D, Zevenboom W (1989) Phytoplankton and foraminiferal frequencies in northern Indian Ocean and Red Sea surface waters. Netherlands J Sea Res 24: 531–539

    Article  Google Scholar 

  • Krefeld van SA, Knappertsbusch M, Ottens J, Ganssen GM, van Hinte JE (1996) Biogenic carbonate and ice-rafted debris (Heinrich layers) accumulation in deep-sea sediments from a northeast Atlantic piston core. Mar Geol 131: 21–46

    Article  Google Scholar 

  • Macdonald AM, Wunsch C (1996) An estimate of global ocean circulation and heat fluxes. Nature 382: 436–439

    Article  Google Scholar 

  • McIntyre A, Bé AWH (1967) Modern coccolithophoraceae of the Atlantic Ocean-I. Placoliths and Cyrtoliths. Deep-Sea Res 114: 561–597

    Google Scholar 

  • Meggers H, Freudenthal T, Nave S, Tragona J, Abranzes F, Helmke P (2002) Assessment of geochemical and micropaleontological sedimentary parameters as proxies of surface water properties in the Canary Islands region. Deep-Sea Res II 49: 3631–3654

    Article  Google Scholar 

  • Milliman JD (1974) Marine Carbonates. Springer, New York, pp 1–363

    Google Scholar 

  • Milliman JD (1993) Production and accumulation of calcium carbonate in the ocean: Budget of a non steady state. Glob Biogeochem Cycl 7: 927–957

    Article  Google Scholar 

  • Milliman JD, Troy PJ, Balch WM, Adams, AK, Li YH, Mackenzie FT (1999) Biologically mediated dissolution of calcium carbonate above the chemical lysocline? Deep-Sea Res 146: 1653–1669

    Google Scholar 

  • Monger B, McClain C, Murtugudde R (1997) Seasonal phytoplankton dynamics in the eastern tropical Atlantic. J Geophys Res 102: 12,389–12,411

    Article  Google Scholar 

  • Morse JW, Mucci A, Millero FJ (1980) The solubility of calcite and aragonite in seawater at various salinities, temperatures and I atmosphere total pressure. Geochim Cosmochim Acta 44: 85–94

    Article  Google Scholar 

  • Müller PJ, Suess E (1979) Productivity, sedimentation rate, and sedimentary organic matter in the oceans I. Organic carbon preservation. Deep-Sea Res I 26: 1347–1362

    Article  Google Scholar 

  • Peterson RG, Strarnma L (1991) Upper-level circulation in the South Atlantic Ocean. Progr Oceanogr 26: 1–73

    Article  Google Scholar 

  • Romero O, Böckel B, Donner B, Lavik G, Fischer G, Wefer G (2002) Seasonal productivity dynamics in the pelagic central Benguela System inferred from the flux of carbonate and silicate organisms. J Mar Systems 37: 259–278

    Article  Google Scholar 

  • Ruddiman WF (1997) Tropical terrigenous fluxes since 25,000 yrs BP. Mar Geol 136: 189–207

    Article  Google Scholar 

  • Rühlemann C, Frank M, Hale W, Mangini A, Mulitza S, Müller PJ, Wefer G (1996 ) Late Quaternary productivity changes in the western equatorial Atlantic Evidence from 230Th-normalized carbonate and organic accumulation rates. Mar Geol 135: 127–152

    Article  Google Scholar 

  • Rühlemann C, Müller PJ, Schneider RR (1999) Organic carbon and carbonate as paleoproductivity proxies: Examples from high and low productivity areas of the tropical Atlantic. In: Fischer G., Wefer G. (eds) Use of Proxies in Paleoceanography: Examples from the South Atlantic. Springer, Berlin, pp 315–344

    Chapter  Google Scholar 

  • Samtleben C, Schröder A (1992) Living coccolithophore communities in the Norwegian-Greenland Sea and their records in sediments. Mar Micropaleontol 19: 333–354

    Article  Google Scholar 

  • Samtleben C, Schäfer P, Andruleit H, Baumann A, Baumann K-H, Kohly A, Matthiessen J, Schröder-Ritzrau A (1995) Plankton in the Norwegian-Greenland Sea: From living communities to sediment assemblages-an actualistic approach. Geol Rundsch 84: 108–136

    Article  Google Scholar 

  • Samthein M, Pflaumann U, Ross R, Tiedemann R, Winn K (1992) Transfer functions to reconstruct ocean paleoproductivity: A comparison. In: Summerhayes CP, Prell WL, Emeis K-C (eds) Upwelling systems. Evolution since the early Miocene. Geol Soc Spec Publ 64: 411–427

    Google Scholar 

  • Schneider RR, Müller PJ, Wefer G (1994) Late Quaternary paleoproductivity changes off the Congo deduced from stable carbon isotopes of planktonic foraminifera. Palaeogeogr Palaeoclimatol Palaeoecol 110: 255–274

    Article  Google Scholar 

  • Schneider RR, Price B, Müller PJ, Kroon D, Alexander I (1997) Monsoon related variations in Zaire (Congo) sediment load and influence of fluvial silicate supply on marine productivity in the east equatoial Atlantic during the last 200,000 years. Paleoceano-graphy 12: 463–481

    Article  Google Scholar 

  • Sprengel C, Baumann K-H, Neuer S (2000) Seasonal and interannual variation of coccolithophore fluxes and species composition in sediment traps north of Gran Canaria (29°N 15°W). Mar Micropaleontol 39: 157–178

    Article  Google Scholar 

  • Sprengel C, Baumann K-H, Hendericks J, Henrich R, Neuer S (2002) Modern coccolithophore and carbonate sedimentation along a productivity gradient in the Canary Islands region: Seasonal export production and surface accumulation rates. Deep-Sea Res II 49: 3577–3598

    Article  Google Scholar 

  • Tiedemann R, Sarnthein M, Stein R (1989) Climatic changes in the western Sahara: Aeolo-marine sediment record of the last 8 million years (sites 657–661). Proc ODP Sci Res 108: 241–277

    Google Scholar 

  • Volbers ANA, Henrich R (2002) Present water mass calcium carbonate corrosiveness in the eastern South Atlantic inferred from ultrastructural breakdown of Globigerina bulloides in surface sediments. Mar GeoI 186:471–486

    Article  Google Scholar 

  • Wefer G, Fischer G (1993) Seasonal patterns of vertical particle flux in equatorial and coastal upwelling areas of the eastern Atlantic. Deep-Sea Res 40: 1613–1645

    Article  Google Scholar 

  • Wefer G, Berger WH, Siedler G, Webb DJ (1996) The South Atlantic: Present and Past Circulation. Springer, Berlin, 644 p

    Book  Google Scholar 

  • Young JR, Ziveri P (2000) Calculation of coccolith volume and its use in calbration of carbonate flux estimates. Deep-Sea Res II 47: 1679–1700

    Article  Google Scholar 

  • Ziveri P, Thunnell RC (2000) Coccolithophore export production in Guayamas Basin, Gulf of California: response to climate forcing. Deep-Sea Res II 47: 2073–2100

    Article  Google Scholar 

  • Zonneveld KAF, Versteegh GJM, de Lange GJ (2001) Palaeoproductivity and post-depositional aerobic organic matter decay reflected by dinoflagellate cyst assemblages of the eastern Mediterranean S 1 sapropel. Mar Geol 172: 181–195

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baumann, K.H. et al. (2003). Contribution of Calcareous Plankton Groups to the Carbonate Budget of South Atlantic Surface Sediments. In: Wefer, G., Mulitza, S., Ratmeyer, V. (eds) The South Atlantic in the Late Quaternary. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18917-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18917-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62354-7

  • Online ISBN: 978-3-642-18917-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics