Skip to main content

Last Glacial δ13C Distribution and Deep-Sea Circulation in the Atlantic Ocean: A Model - Data Comparison

  • Chapter
The South Atlantic in the Late Quaternary

Abstract

We used a carbon cycle model (HAMOCC2) coupled to a general ocean circulation model (LSG) to explore the δ13C distribution in the glacial Atlantic Ocean. We compared the simulated δ13C pattern with a new data set of benthic carbon isotopes of the Western and Eastern Atlantic from the Last Glacial Maximum (18,000 to 20,000 14C years or 21,000 – 23,500 calendar years before present). The model output fits the δ13C distribution derived from sediment samples, when the glacial export of NADW to the Southern Ocean was reduced by 50% and the inflow of glacial AABW was held constant. In most cases, the modeled δ13C pattern matched the paleodata within a range of ±0.2%. Furthermore, the asymmetry between the glacial NADW distribution in the South Atlantic basins was reproduced by the coupled ocean circulation and carbon cycle models. No additional increase of the nutrient inventory in the deep ocean was necessary to reproduce the paleodata. Hence we conclude that a significant increase in biological pumping during glacials may not be necessary to explain the reconstructed δ13C distribution in this region. The results are discussed with respect to other scenarios for the decrease of global atmospheric pCO2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson LA, Sarmiento JL (1994) Redfield ratios of remineralization determined by nutrient data analysis. Glob Biogeochem Cycl 8: 65–80

    Article  Google Scholar 

  • Arakawa A, Lamb VR (1977) Computational design of basic dynamical process of the UCLA general circulation model. Meth Comput Phys 16: 173–283

    Google Scholar 

  • Archer D, Winguth A, Lea D, Mahowald N (2000a) What Caused the Glacial/interglacial Atmospheric pCO2 Cycles? Rev Geophys 38: 159–189

    Article  Google Scholar 

  • Archer DE, Eshel G, Winguth A, Broecker WS, Pierrehumbert R, Tobis M, Jacob R (2000b) Atmospheric pCO2 sensitivity to the biological pump in the ocean. Glob Biogeochem Cycl 14: 1219–1230

    Article  Google Scholar 

  • Bacastow R, Maier-Reimer E (1990) Ocean-circulation model of the carbon cycle. Clim Dyn 4:95–125

    Article  Google Scholar 

  • Barnola JM, Raynaud D, Korotkevich YS, Lorius C (1987) Vostok ice core provides 160,000-year record of atmospheric CO2. Nature 329: 408–414

    Article  Google Scholar 

  • Bickert T, Wefer G (1999) South Atlantic and benthic foraminifer δ13C-deviations: Implications for reconstructing the Late Quaternary deep-water circulation. Deep-Sea Res 46: 437–452

    Article  Google Scholar 

  • Broecker WS, Maier-Reimer E (1992) The influence of air and sea exchange on the carbon isotope distribution in the sea. Glob Biogeochem Cycl 6: 315–320

    Article  Google Scholar 

  • Broecker WS, Henderson GM (1998) The sequence of events surrounding Termination II and their implications for the cause of glacial-interglacial CO2 changes. Paleoceanography 13: 352–364

    Article  Google Scholar 

  • Curry WB, Duplessy JC, Labeyrie LD, Shackleton PNJ (1988) Changes in the distribution of δ13C of Deep Water CO22 between the Last Glaciation and the Holocene. Paleoceanography 3: 317–341

    Article  Google Scholar 

  • Duplessy JC, Shackleton NJ, Fairbanks RG, Labeyrie L, Oppo D, Kallel N (1988) Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation. Paleoceanography 3: 343–360

    Article  Google Scholar 

  • Elderfield H, Rickaby REM (2000) Oceanic Cd/P ratio and nutrient utilization in the glacial Southern Ocean. Nature 405: 305–310

    Article  Google Scholar 

  • François R, Altabet MA, Yu EF, Sigman DM, Bacon MP, Frank M, Bohrmann G, Bareille G, Labeyrie LD (1997) Contribution of Southern Ocean surfacewater stratification to low atmospheric CO2 concentrations during the last glacial period. Nature 389: 929–935

    Article  Google Scholar 

  • Friedli H, Lötscher H, Oeschger H, Siegenthaler U, Stauffer B (1986) Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature 324: 237–238

    Article  Google Scholar 

  • Gates WL, Boyle JS, Covey CC, Dease CG, Doutriaux CM, Drach RS, Fiorino M, Gleckler PJ, Hnilo JJ, Marlais SM, Phillips TJ, Potter GL, Santer BD, Sperber KR, Taylor KE, Williams DN (1998) An Overview of the Results of the Atmospheric Model Intercomparison Project (AMIP). Report 45, The Program for Climate Model Diagnosis and Inter-comparison, Livermore, http://wwwpcmdi. llnl.gov/pcmdi/pubs/ab45.html

    Google Scholar 

  • Heinze C, Maier-Reimer E, Winn K (1991) Glacial pCO2 reduction by the world ocean: Experiments with the Hamburg Carbon Cycle Model. Paleoceanography 6: 395–430

    Article  Google Scholar 

  • Heinze C, Maier-Reimer E, Winguth AME, Archer D (1999) A global oceanic sediment model for long-term climate studies. Glob Biogeochem Cycl 13:221–250

    Article  Google Scholar 

  • Johns TC, Carnell RE, Crossley JF, Gregory JM, Mitchell JFB, Senior CA, Tett SFB, Wood RA (1997) The second Hadley Centre coupled oceanatmosphere GCM: Model description, spinup and validation. Clim Dyn 13: 103–134

    Article  Google Scholar 

  • Keeling RF, Stephens BB (2001) Antarctic sea ice and the control of Pleistocene climate instability. Paleoceanography 16: 112–131 and (corrections) 330–334

    Article  Google Scholar 

  • Knies J, Stein R (1998) New aspects of organic carbon deposition and its paleoceanographic implications along the northern Barents Sea margin during the last 30,000 years. Paleoceanography 13: 384–394

    Article  Google Scholar 

  • Kroopnick PM (1985) The distribution of 13C of CO2 in the world oceans. Deep-Sea Res 32: 57–84

    Article  Google Scholar 

  • Kumar N, Anderson RF, Mortlock RA, Froelich PN, Kubik P, Dittrich-Nannen B, Suter M (1995) Increased biological productivity and export production in the glacial Southern Ocean. Nature 378: 675–680

    Article  Google Scholar 

  • Leonard BP (1979) A stable and accurate convective modeling procedure based on quadratic upstream interpolation. Comp Meth Appl Mech Eng 19: 59–98

    Article  Google Scholar 

  • Levitus S, Russell B, Boyer TP (1994) World Ocean Atlas 1994. Volume 3: Salinity. Technical report, National Oceanic and Atmospheric Administration, Washington DC

    Google Scholar 

  • Lorenz S, Grieger B, Helbig P, Herterich K (1996) Investigating the sensitivity of the atmospheric general circulation model ECHAM 3 to paleoclimatic boundary conditions. Geol Rundsch 85: 513–524

    Article  Google Scholar 

  • Lyle MW, Prahl FG, Sparrow MA (1992) Upwelling and productivity changes inferred from a temperature record in the central equatorial Pacific. Nature 355:812–815

    Article  Google Scholar 

  • Lynch-Stieglitz J, Stocker T, Broecker WS, Fairbanks RG (1995) The influence of air-sea exchange on the isotopic composition of oceanic carbon: Observations and modeling. Glob Biogeochem Cyc 9: 653–665

    Article  Google Scholar 

  • Mackensen A, Hubberten HW, Bickert T, Fischer G, Fiitterer DK (1993) The δ13C in benthic foraminiferal tests of Fontbotia Wuellerstorfi (Schwager) relativ to the δ13C of dissolved inorganic carbon in Southern Ocean Deep Water: Implications for glacial ocean circulation models. Paleoceanography 8: 587–610

    Article  Google Scholar 

  • Mackensen A, Hubberten HW, Scheele N, Schlitzer R (1996) Decoupling of δ13CTCO2 and phosphate in Recent Weddel Sea deep and bottom water: Implications for glacial Southern Ocean paleoceanography. Paleoceanography 11: 203–215

    Article  Google Scholar 

  • Maier-Reimer E, Hasselmann K (1987) Transport and storage of CO2 in the ocean-an inorganic oceancirculation carbon cycle model. Clim Dyn 2: 63–90

    Article  Google Scholar 

  • Maier-Reimer E, Mikolajewicz U, Hasselmann K (1993) Mean circulation of the Hamburg LSG OGCM and Its Sensitivity to the Thermohaline Surface Forcing. J Phys Oceanogr 23: 731–757

    Article  Google Scholar 

  • Marchal O, Stocker TF, Joos F (1998) Impact of oceanic reorganizations on the ocean carbon cycle and atmospheric carbon dioxide content. Paleoceanography 13: 225–244

    Article  Google Scholar 

  • Mix AC (1989) Influence of productivity variations on long-term atmospheric CO2. Nature 337: 541–544

    Article  Google Scholar 

  • Murnane RJ, Sarmiento JL, Le Quéré C (1999) Spatial distribution of air-sea CO2 fluxes and the interhemispheric transport of carbon by the oceans. Glob Biogeochem Cycl 13: 287–305

    Article  Google Scholar 

  • Nürnberg CC, Bohrmann G, Schlüter M, Frank M (1997) Barium accumulation in the Atlantic sector of the Southern Ocean: Results from 190,000-year records. Paleoceanography 12: 594–603

    Article  Google Scholar 

  • Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pépin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399: 429–436

    Article  Google Scholar 

  • Rau GH, Takahashi T, Des Marais DJ, Sullivan CW (1991) Particulate organic matter δ13C variations across the Drake Passage. J Geophys Res 96: 15131–15135

    Article  Google Scholar 

  • Rau GH, Riebesell U, Wolf-Gladrow D (1997) CO2aq-dependent photosynthetic 13C fractionation in the ocean: A model versus measurements. Glob Biogeochem Cycl 11: 267–278

    Article  Google Scholar 

  • Sanyal A, Hemming NG, Hanson GN, Broecker WS (1995) Evidence for a higher ph in the glacial ocean from boron isotopes in foraminifera. Nature 373: 234–236

    Article  Google Scholar 

  • Sarnthein M, Winn K, Duplessy JC, Fontugne MR (1988) Global variations of surface ocean productivity in low and mid latitudes: Influence on CO2 reservoirs of the deep ocean and atmosphere during the last 21,000 years. Paleoceanography 3: 361–399

    Article  Google Scholar 

  • Sarnthein M, Winn K, Jung SJA, Duplessy JC, Labeyrie L, Erlenkeuser H, Ganssen G (1994) Changes in east Atlantic deepwater circulation over the last 30,000 years: Eight time slice reconstructions. Paleoceanography 9: 209–267

    Article  Google Scholar 

  • Schäfer-Neth C, Paul A (2001) Circulation of the Glacial Atlantic: A Synthesis of Global and Regional Modeling. In: Schäfer P, Ritzrau W, Schlüter M, Thiede J (eds) The Northern North Atlantic: A Changing Enviroment. Springer, Berlin, pp 441–462

    Chapter  Google Scholar 

  • Schlitzer R (2002) Carbon export fluxes in the Southern! Ocean: Results from inverse modelling and compaison with satellite-based eastimates. Deep-Sea Res 49: 1623–1644

    Google Scholar 

  • Schmitz WJ (1995) On the Interbasin-Scale Thermohaline Circulation. Rev Geophys 33:151–173

    Article  Google Scholar 

  • Schneider RR, Müller PJ, Ruhland G, Meinecke G, Schmidt H, Wefer G (1996) Late quaternary surface temperatures and productivity in the east-equatorial south atlantic: Response to changes in trademonsoon wind forcing and surface water advection. In: Wefer G, Berger W, Siedler G, Webb DJ (eds) The South Atlantic: Present and Past Circulation. Springer, Berlin, pp 527–551

    Google Scholar 

  • Schubert CJ, Stein R (1996) Deposition of organic carbon in Arctic Ocean sediments: Terrigenous supply versus marine productivity. Org Geochem 24: 421–436

    Article  Google Scholar 

  • Shea DJ, Trenberth KE, Reynolds RW (1990) A global monthly sea surface temperature climatology. NCAR Technical Note NCAR/TN 345, NCAR, Boulder, Colorado

    Google Scholar 

  • Sigman DM, Boyle EA (2000) Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407: 859–869

    Article  Google Scholar 

  • Stephens BB, Keeling RF (2000) The influence of Antarctic sea ice on glacial-interglacial CO2 variations. Nature 404: 171–174

    Article  Google Scholar 

  • Suess E (1980) Particulate organic carbon flux in the oceans-surface productivity and oxygen utilization. Nature 288: 260–263

    Article  Google Scholar 

  • Takahashi T, Feely RA, Weiss R, Wanninkhof R, Chipman DW, Sutherland SC, Takahashi TT (1997) Global air-sea flux of CO2: An estimate based on measurements of air-sea p CO2 difference. Proc Natl Acad Sci 94: 8292–8299

    Article  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106: 7183–7192

    Article  Google Scholar 

  • Toggweiler JR (1999) Variation of atmospheric CO2 by ventilation of the ocean’s deepest water. Paleoceanography 14: 571–588

    Article  Google Scholar 

  • Weinelt M, Sarnthein M, Pflaumann U, Schulz H, Jung S, Erlenkeuser H (1996) Ice-free Nordic Seas during the Last Glacial Maximum? Potential sites of deepwater formation. Paleoclimatology 1: 283–309

    Google Scholar 

  • Winguth AME, Archer D, Duplessy JC, Maier-Reimer E, Mikolajewicz U (1999) Sensitivity of paleonutrient tracer distributions and deep-sea circulation to glacial boundary conditions. Paleoceanography 14: 304–323

    Article  Google Scholar 

  • Yamanaka Y, Tajika E (1996) The role of the vertical fluxes of particulate organic matter and calcite in the oceanic carbon cycle: Studies using an ocean biogeochemical general circulation model. Glob Biogeochem Cycl 10: 361–382

    Article  Google Scholar 

  • Yamanaka Y, Tajika E (1997) Role of dissolved organic matter in the marine biogeochemical cycle: Studies using an ocean biogeochemical general circulation model. Glob Biogeochem Cycl 11: 599–612

    Article  Google Scholar 

  • Yu EF, Francis R, Bacon MP (1996) Similar rates of modem and last-glacial ocean thermohaline circulation inferred from radiochemical data. Nature 379: 689–694

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Matthies, M., Bickert, T., Paul, A. (2003). Last Glacial δ13C Distribution and Deep-Sea Circulation in the Atlantic Ocean: A Model - Data Comparison. In: Wefer, G., Mulitza, S., Ratmeyer, V. (eds) The South Atlantic in the Late Quaternary. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18917-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18917-3_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62354-7

  • Online ISBN: 978-3-642-18917-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics