Skip to main content

The Atlantic Ocean at the Last Glacial Maximum: 2. Reconstructing the Current Systems with a Global Ocean Model

  • Chapter
The South Atlantic in the Late Quaternary

Abstract

We use a global ocean general circulation model (OGCM) with low vertical diffusion and isopycnal mixing to simulate the circulation in the Atlantic Ocean at present-day and the Last Glacial Maximum (LGM). The OGCM includes δ18O as a passive tracer. Regarding the LGM sea-surface boundary conditions, the temperature is based on the GLAMAP reconstruction, the salinity is estimated from the available δ18O data, and the wind-stress is derived from the output of an atmospheric general circulation model. Our focus is on changes in the upper-ocean hydrology, the large-scale horizontal circulation and the δ18O distribution. In a series of LGM experiments with a step-wise increase of the sea-surface salinity anomaly in the Weddell Sea, the ventilated thermocline was colder than today by 2–3°C in the North Atlantic Ocean and, in the experiment with the largest anomaly (1.0 beyond the global anomaly), by 4–5°C in the South Atlantic Ocean; furthermore it was generally shallower. As the meridional density gradient grew, the Antarctic Circumpolar Current strengthened and its northern boundary approached Cape of Good Hope. At the same time the southward penetration of the Agulhas Current was reduced, and less thermocline-to-intermediate water slipped from the Indian Ocean along the southern rim of the African continent into the South Atlantic Ocean; the ‘Agulhas leakage’ was diminished by up to 60% with respect to its modern value, such that the cold water route became the dominant path for North Atlantic Deep Water (NADW) renewal. It can be speculated that the simulated intensification of the Benguela Current and the enhancement of NADW upwelling in the Southern Ocean might reduce the import of silicate into the Benguela System, which could possibly resolve the ‘Walvis Opal Paradox’. Although δ18Ow was restored to the same surface values and could only reflect changes in advection and diffusion, the resulting δ18Oc distribution came close to reconstructions based on fossil shells of benthic foraminifera.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berger WH, Wefer G (1996) Expeditions into the past: Paleoceanographic studies in the South Atlantic. In: Wefer G, Berger WH, Siedler G, Webb DJ (eds) The South Atlantic: Present and Past Circulation. Springer, Berlin, pp 363–410

    Chapter  Google Scholar 

  • Berger WH, Wefer G (2002) On the reconstruction of upwelling: Namibian upwelling in context. Mar Geol 180: 3–28

    Article  Google Scholar 

  • Biastoch A, Krauss W (1999) The role of mesoscale eddies in the source regions of the Agulhas Current. J Phys Oceanogr 29: 2303–2317

    Article  Google Scholar 

  • Bigg GR, Wadley MR, Stevens DP, Johnson JA (1998) Simulations of two last glacial maximum ocean states. Paleoceanography 13: 340–351

    Article  Google Scholar 

  • Bigg GR, Rohling EJ (2000) An oxygen isotope data set for marine water. J Geophys Res 105: 8527–8535

    Article  Google Scholar 

  • Birchfield GE (1987) Changes in deep-ocean water δ18O and temperature from the last glacial maximum to the present. Paleoceanography 2: 431–442

    Article  Google Scholar 

  • Borowski D, Gerdes R, Olbers D (2002) Thermohaline and wind forcing of a circumpolar channel with blocked geostrophic contours. J Phys Oceanogr 32: 2520–2540

    Article  Google Scholar 

  • Boyle EA (2000) Is the ocean thermohaline circulation linked to abrupt stadial/interstadial transitions? Quat Sci Rev 19: 255–272

    Article  Google Scholar 

  • Bryan K, Lewis LJ (1979) A water mass model of the world ocean circulation. J Geophys Res 84: 2503–2517

    Article  Google Scholar 

  • Clarke PU, Mix AC (2002) Ice sheets and sea level of the Last Glacial Maximum. Quat Sci Rev 21: 1–7

    Article  Google Scholar 

  • CLIMAP Project Members (1981) Seasonal reconstructions of the Earth’s surface at the Last Glacial Maximum. Geological Society of America, Map and Chart Series MC-36, 18 p

    Google Scholar 

  • De Ruijter WPM, Biastoch A, Drijfhout SS, Lutjeharms JRE, Matano RP, Pichevin T, van Leeuwen PJ, Weijer W (1999) Indian-Atlantic interocean exchange: Dynamics, estimation and impact. J Geophys Res C 104: 20,885–20,910

    Article  Google Scholar 

  • Duncan CP, Schladow SG, Williams WG (1982) Surface currents near the Greater and Lesser Antilles. Int Hydrogr Rev 59: 67–78

    Google Scholar 

  • Duplessy JC, Labeyrie L, Juillet-Leclerc A, Maitre F, Duprat J, Sarnthein M (1991) Surface salinity reconstruction of the North Atlantic Ocean during the last glacial maximum. Oceanol Acta 14: 311–324

    Google Scholar 

  • Duplessy J-C, Labeyrie L, Paterne M, Hovine S, Fichefet T, Duprat J, Labracherie M (1996) High latitude deep water sources during the Last Glacial Maximum and the intensity of the global oceanic circulation. In: Wefer G, Berger WH, Siedler G, Webb DJ (eds) The South Atlantic: Present and Past Circulation. Springer, Berlin, pp 445–460

    Chapter  Google Scholar 

  • England MH, Garçon V (1994) South Atlantic circulation in a world ocean model. Ann Geophys 12: 812–825

    Article  Google Scholar 

  • Epstein S, Buchsbaum R, Lowenstam HA, Urey HC (1953) Revised carbonate-water isotopic temperature scale. Geol Soc Am Bull 64: 1315–1325

    Article  Google Scholar 

  • Fieg K, Gerdes R (2001) Sensitivity of the thermohaline circulation to modern and glacial surface boundary conditions. J Geophys Res 106: 6853–6867

    Article  Google Scholar 

  • Ganopolski A, Rahmstorf S, Petoukhov V, Claussen M (1998) Simulation of modern and glacial climates with a coupled model of intermediate complexity. Nature 391: 351–356

    Article  Google Scholar 

  • Gent PR, McWilliams JC (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20: 150–155

    Article  Google Scholar 

  • Gordon A (1986) Interocean exchange of thermohaline water. J Geophys Res 91: 5037–5046

    Article  Google Scholar 

  • Hall MM, Bryden HL (1982) Direct estimates and mechanisms of ocean heat transport. Deep-Sea Res 29: 339–359

    Article  Google Scholar 

  • Harms S, Fahrbach E, Strass VH (2001) Sea ice transports in the Weddell Sea. J Geophys Res C 106: 9057–9073

    Article  Google Scholar 

  • Hewitt CD, Broccoli AJ, Mitchell JFB, Stouffer RJ (2001) A coupled model study of the last glacial maximum: Was part of the North Atlantic relatively warm? Geophys Res Lett 28: 1571–1574

    Article  Google Scholar 

  • Huang RX, Qiu B (1994) Three-dimensional structure of the wind-driven circulation in the subtropical North Pacific. J Phys Oceanogr 24: 1608–1622

    Article  Google Scholar 

  • Kalnay E et al. (1996) The NCEP/NCAR reanalysis project. Bull Am Met Soc 77: 437–471

    Article  Google Scholar 

  • Kitoh A, Murakami S, Koide H (2001) A simulation of the Last Glacial Maximum with a coupled ocean-atmosphere GCM. Geohys Res Lett 28: 2221–2224

    Article  Google Scholar 

  • Klein B, Molinari R, Siedler G, Müller TJ (1995) A transatlantic section at 14.5°N: Meridional volume and heat fluxes. J Mar Res 53: 929–957

    Article  Google Scholar 

  • Krauss W (1986) The North Atlantic Current. J Geophys Res 89: 3407–3415

    Article  Google Scholar 

  • Lautenschlager M, Herterich K (1990) Atmospheric response to ice age conditions: Climatology near the Earth’s surface. J Geophys Res D 95: 22,547–22,557

    Article  Google Scholar 

  • Large WG, Danabasoglu G, Doney SC, McWilliams JC (1997) Sensitivity to surface forcing and boundary layer mixing in a global ocean model: Annual-mean climatology. J Phys Oceanogr 27: 2418–2447

    Article  Google Scholar 

  • Ledwell JR, Watson AJ, Law CS (1993) Evidence for slow mixing across the pycnocline from an open-ocean tracer release experiment. Nature 364: 701–703

    Article  Google Scholar 

  • Levitus S (1982) Climatological atlas of the World Ocean. NOAA Prof. Paper No. 13, 173 p

    Google Scholar 

  • Matsumoto K, Lynch-Stieglitz J (1999) Similar glacial and Holocene deep water circulation inferred from southeast pacific benthic foraminiferal carbon isotope composition. Paleoceanography 14: 149–163

    Article  Google Scholar 

  • Matsumoto K, Lynch-Stieglitz J (2001) Similar glacial and Holocene Southern Ocean hydrography. Paleoceanography 16: 445–454

    Article  Google Scholar 

  • Melles M (1991) Late Quaternary paleoglaciology and paleoceanography at the continental margin of the southern Weddell Sea, Antarctica. Ber Polarforsch, Bremerhaven, Germany, 81, 190 p

    Google Scholar 

  • Michel E, Labeyrie LD, Duplessy JC, Gorfti N, Labracherie M, Turon JL (1995) Could deep Subantarctic convection feed the world deep basins during the last glacial maximum? Paleoceanography 10: 927–942

    Article  Google Scholar 

  • Mix AC, Bard E, Schneider R (2001) Environmental processes of the ice age: Land, oceans, glaciers (EPILOG) Quat Sci Rev 20: 627–658

    Article  Google Scholar 

  • NCAR Data Support Section (1986). NGDC ETOPO5 global ocean depth & land elevation, 5-min. Data Set 759.1, National Center for Atmospheric Research, Boulder, Colorado

    Google Scholar 

  • Pacanowski RCE (1996) MOM 2. Documentation, User’s Guide and Reference Manual. Technical Report 3.2, GFDL Ocean Group, GFDL, Princeton, New Jersey

    Google Scholar 

  • Peterson RG, Stramma L (1991) Upper-level circulation in the South Atlantic Ocean. Prog Oceanogr 26:1–73

    Article  Google Scholar 

  • Paul A, Mulitza S, Pätzold J, Wolff T (1999) Simulation of oxygen isotopes in a global ocean model. In: Fischer G, Wefer G (eds) Use of Proxies in Paleoceanography: Examples from the South Atlantic. Springer, Berlin, pp 655–686

    Chapter  Google Scholar 

  • Paul A, Schäfer-Neth C (2003) Modeling the water masses of the Atlantic Ocean at the Last Glacial Maximum. Paleoceanography 18: doi: 10.1029/ 2002PA 000783

    Google Scholar 

  • Peltier WR (1994). Ice age paleotopography. Science 265: 195–201

    Article  Google Scholar 

  • Pether J (1994) Molluscan evidence for enhanced deglacial advection of Agulhas water in the Benguela Current off southwestern Africa. Palaeogeogr Palaeoclimatol Palaeoecol 111: 99–117

    Article  Google Scholar 

  • PMIP (1993) Paleoclimate modelling intercomparison project, http://www-pcmdi.llnl.gov/pmip/newsletters/ newsletter02.html.

    Google Scholar 

  • Rintoul SR (1991) South Atlantic interbasin exchange. J Geophys Res 96: 2675–2692

    Article  Google Scholar 

  • Sarnthein M, Gersonde R, Niebler S, Pflaumann U, Spielhagen R, Thiede J, Wefer G, Weinelt M (2003) Preface: Glacial atlantic ocean mapping (GLAMAP-2000). Paleoceanography 18: doi: 10.1029/2002PA 00769

    Google Scholar 

  • Schäfer-Neth C (1998) Changes in the seawater-oxygen isotope relation between last glacial and present: Sediment core data and OGCM modelling. Paleoclimates 2: 101–131

    Google Scholar 

  • Schäfer-Neth C, Paul A (2001) Circulation of the glacial Atlantic: A synthesis of global and regional modeling. In: Schafer P, Ritzrau W, Schliiter M, Thiede J (eds) The northern North Atlantic: A changing environment. Springer, Berlin, pp 441–462

    Chapter  Google Scholar 

  • Schmid C, Siedler G, Zenk W (2000) Dynamics of intermediate water circulation in the subtropical South Atlantic. J Phys Oceanogr 30: 3191–3211

    Article  Google Scholar 

  • Schmidt GA, Bigg GR, Rohling EJ (1999) Global seawater oxygen-18 database. http://www.giss.nasa.gov/data/o18data, Goddard Institute for Space Studies, New York

    Google Scholar 

  • Schulz M, Paul A (2003) Sensitivity of the ocean-atmosphere carbon cycle to ice-covered and ice-free conditions in the Nordic Seas during the Last Glacial Maximum. Palaeogeogr Palaeoclimatol Palaeoecol, in press

    Google Scholar 

  • Seidov D, Sarnthein M, Stattegger K, Prien R, Weinelt M (1996) North Atlantic ocean circulation during the Last Glacial Maximum and a subsequent meltwater event: A numerical model. J Geophys Res C 101: 16,305–16,332

    Article  Google Scholar 

  • Shannon LV, Nelson G (1996) The Benguela: Large scale features and processes and system variability. In: Wefer G, Berger WH, Siedler G, Webb DJ (eds) The South Atlantic: Present and Past Circulation. Springer, Berlin, pp 163–210

    Chapter  Google Scholar 

  • Shin S-I, Liu Z, Otto-Bliesner B, Brady EC, Kutzbach JE, Harrison SP (2003) A simulation of the Last Glacial Maximum climate using the NCAR-CCSM. Clim Dyn 20: 127–151

    Google Scholar 

  • Slowey NC, Curry WB (1995) Glacial-interglacial differences in circulation and carbon cycling within the upper western North Atlantic. Paleoceanography 10: 715–732

    Article  Google Scholar 

  • Sloyan BM, Rintoul SR (2001) The Southern Ocean limb of the global deep overturning circulation. J Phys Oceanogr 31: 143–173

    Article  Google Scholar 

  • Sprintall J, Tomczak M (1992) Evidence of the barrier layer in the surface layer of the Tropics. J Geophys Res C 97: 7305–7316

    Article  Google Scholar 

  • Takahashi T, Feely RA, Weiss RF, Wanninkhof RH, Chipman DW, Sutherland SC, Takahashi TT (1997) Global air-sea flux of CO2: An estimate based on measurements of sea-air pCO2 difference. Proceedings of the National Academy of Sciences 94: 8292–8299

    Article  Google Scholar 

  • Thompson SR, Stevens DP, Döös K (1997) The importance of interocean exchange south of Africa in a numerical model. J Geophys Res 102: 3303–3315

    Article  Google Scholar 

  • Timmermann R, Beckmann A, Hellmer HH (2001). The role of sea ice in the fresh water budget of the Weddell Sea. Ann Glaciol 33: 419–424

    Article  Google Scholar 

  • Toggweiler JR, Samuels B (1995a) Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Res 42: 477–500

    Article  Google Scholar 

  • Toggweiler JR, Samuels B (1995b). Effect of sea ice on the salinity of Antarctic bottom waters. J Phys Oceanogr 25: 1980–1997

    Article  Google Scholar 

  • Tomczak M, Godfrey JS (1994) Regional Oceanography: An Introduction. Pergamon, Oxford, England

    Google Scholar 

  • Tsuchiya M (1989) Circulation of the Antarctic Intermediate Water in the North Atlantic Ocean. J Mar Res 47: 747–755

    Article  Google Scholar 

  • Tsuchiya M, Talley LD, McCartney MS (1994) A western Atlantic section from South Georgia Island (54°S) northward across the equator. J Mar Res 52: 55–81

    Article  Google Scholar 

  • Weaver AJ, Eby M, Fanning AF, Wiebe EC (1998) The climate of the last glacial maximum in a coupled atmosphere-ocean model. Nature 394: 847–853

    Article  Google Scholar 

  • Weinelt M, Sarnthein M, Pflaumann U, Schulz H, Jung S, Erlenkeuser H (1996) Ice-free Nordic Seas during the Last Glacial Maximum? Potential sites of deepwater formation. Paleoclimates 1: 283–309

    Google Scholar 

  • Whitworth III. T, Peterson RG (1985) Volume transport of the Antarctic Circumpolar Current from bottom pressure measurements. J Phys Oceanogr 15: 810–816

    Article  Google Scholar 

  • Williams RG, Spall MA, Marshall JC (1995) Does Stommel’s mixed layer “demon” work? J Phys Oceanogr 25: 3089–3102

    Article  Google Scholar 

  • Winguth AME, Archer D, Duplessy JC, Maier-Reimer E, Mikolajewicz, U (1999) Sensitivity of paleonutrient tracer distributions and deep-sea circulation to glacial boundary conditions. Paleoceanography 14: 304–323

    Article  Google Scholar 

  • Winter A, Martin K (1990) Late Quarternary history of the Agulhas Current. Paleoceanography 5:479–486

    Article  Google Scholar 

  • WOA (1998) World ocean atlas 1998, http://www.nodc.noaa.gov/oc5/woa98.html. National Oceanographic Data Center, Silver Spring, Maryland

    Google Scholar 

  • Wolff T, Mulitza S, Rühlemann C, Wefer G (1999) Response of the tropical Atlantic thermocline to late Quaternary trade wind changes. Paleoceanography 14: 374–383

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Paul, A., Schäfer-Neth, C. (2003). The Atlantic Ocean at the Last Glacial Maximum: 2. Reconstructing the Current Systems with a Global Ocean Model. In: Wefer, G., Mulitza, S., Ratmeyer, V. (eds) The South Atlantic in the Late Quaternary. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18917-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18917-3_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62354-7

  • Online ISBN: 978-3-642-18917-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics