Skip to main content

Processes and Signals of Nonsteady-State Diagenesis in Deep-Sea Sediments and their Pore Waters

  • Chapter
The South Atlantic in the Late Quaternary

Abstract

Nonsteady-state conditions — induced by changes in the fluxes of electron donors and acceptors and environmental conditions — are shown to have been and to be still widespread in sediments of the equatorial and South Atlantic Ocean. Typical diagenetic phenomena initiated under such nonsteady-state conditions comprise the fixation and downward progression of redox boundaries and reaction fronts. Intervals most severely altered by diagenetic overprint often occur cyclically within the sedimentary record and are mostly associated with full glacial/interglacial transitions. The extent of post-depositional oxidation of organic carbon as well as the dissolution and reprecipitation of minerals across these glacial terminations was shown to depend on the overall sedimentation rate and the magnitude of change encountered in the various depositional and geochemical factors. A sedimentation rate of about 2 cm/kyr was confirmed to be the critical value below which no significant amounts of non-refractory organic carbon are preserved. The influence of climatically induced variations in environmental conditions is not restricted to the geochemical boundaries in the vicinity of the sediment surface (e.g. oxic/post-oxic and Fe redox boundary) but well extends into much deeper sediment sections — namely into the zone of anaerobic oxidation of methane (AOM). In this way, processes within the zone of AOM can produce a further profound diagenetic alteration of the sediment composition up to hundreds of thousands of years after initial deposition and thus a significantly delayed chemical log-in. The long-term utility of all primary and secondary signals — also those formed and initially preserved across the oxic/post-oxic and Fe redox boundaries — is ultimately controlled by the geochemical processes within and below the sulfate/methane transition (SMT). While dissolution of authigenic and productivity-related barite takes place in sulfate-depleted sediment sections, iron sulfides as well as sulfurized organic matter and associated trace elements have a high potential to survive burial below the SMT. Nonsteady-state diagenesis can be triggered not only by changes in conditions at the sediment/water interface like TOC input, sedimentation rate or O2 content of bottom water but also by processes in the underlying sediment — namely the formation and/or liberation of methane. Apart from the distinct alteration of the solid-phase composition, variations in the upward flux of methane also have a considerable impact on the shape of sulfate pore water profiles. Modelling the effects of such variations in methane flux on sulfate profiles has illustrated that considering possible nonsteady-state situations in the sediment/pore water system is of utmost importance for the interpretation of pore water data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler M, Hensen C, Kasten S, Schulz HD (2000) Computer simulation of deep sulfate reduction in sediments of the Amazon Fan. Int J Earth Sci 88: 641–654

    Article  Google Scholar 

  • Adler M, Hensen C, Wenzhöfer F, Pfeifer K, Schulz HD (2001) Modeling of calcite dissolution by oxic respiration in supralysoclinal deep-sea sediments. Mar Geol 177: 167–189

    Article  Google Scholar 

  • Berner RA (1969) Migration of iron and sulfur within anaerobic sediments during early diagenesis. Am J Sci 267: 19–42

    Article  Google Scholar 

  • Berner RA (1981) A new geochemical classification of sedimentary environments. J Sediment Petrol 51: 259–365

    Google Scholar 

  • Berner RA (1984) Sedimentary pyrite formation: An update. Geochim Cosmochim Acta 48: 605–615

    Article  Google Scholar 

  • Bernstein RE, Byrne RH, Betzer PR, Greco AM (1992) Morphologies and transformations of celestite in seawater: The role of acantharians in strontium and barium geochemistry. Geochim Cosmochim Acta 56: 3273–3279

    Article  Google Scholar 

  • Bishop JKB (1988) The barite-opal-organic carbon association in oceanic particulate matter. Nature 332: 341–343

    Article  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407: 623–626

    Article  Google Scholar 

  • Bohrmann G, Greinert J, Suess E, Torres M (1998) Authigenic carbonates from the Cascadia subduction zone and their relation to gas hydrate stability. Geology 26: 647–650

    Article  Google Scholar 

  • Borowski WS, Paull CK, Ussier III W (1999) Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: Sensitivity to underlying methane and gas hydrate. Mar Geol 159: 131–154

    Article  Google Scholar 

  • Brumsack HJ (1986) The inorganic geochemistry of Cretaceous black shales (DSDP Leg 41) in comparison to modern upwelling sediments from the Gulf of California. In: Summerhayes CP, Shackleton NJ (eds) North Atlantic Palaeoceanography. Vol. 21, Blackwell Scientific Publications, Oxford, pp 447–462

    Google Scholar 

  • Canfield DE, Thamdrup B, Hansen JW (1993) The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulfate reduction. Geochim Cosmochim Acta 57: 3867–3883

    Article  Google Scholar 

  • Colley S, Thomson J, Wilson TRS, Higgs NC (1984) Post-depositional migration of elements during diagenesis in brown clay and turbidite sequences in the North East Atlantic. Geochim Cosmochim Acta 48: 1223–1235

    Article  Google Scholar 

  • Crusius J, Thomson J (2000) Comparative behavior of authigenic Re, U, and Mo during reoxidation and subsequent long-term burial in marine sediments. Geochim Cosmochim Acta 64: 2233–2242

    Article  Google Scholar 

  • Crusius J, Thomson J (2003) Mobility of authigenic rhenium, silver, and selenium during postdepositional oxidation in marine sediments. Geochim Cosmochim Acta 67: 265–273

    Article  Google Scholar 

  • Dehairs F, Chesselet R, Jedwab J (1980) Discrete suspended particles of barite and the barium cycle in the open ocean. Earth Planet Sci Lett 49: 528–550

    Article  Google Scholar 

  • De Lange GJ (1983) Geochemical evidence of a massive slide in the southern Norwegian Sea. Nature 305:420–422

    Article  Google Scholar 

  • De Lange GJ, Van Os B, Pruysers PA, Middelburg JJ, Castradori D, Van Santvoort P, Muller PJ, Eggenkamp H, Prahl FG (1994) Possible early diagenetic alteration of palaeo proxies. In: Zahn R, Pedersen TF, Kaminski MA, Labeyrie L (eds) Carbon Cycling in the Glacial Ocean: Constraints on the Ocean’s Role in Global Change. NATO ASI Series, pp 225–258

    Google Scholar 

  • Dickens GR (2001) Sulfate profiles and barium fronts in sediment on the Blake Ridge: Present and past methane fluxes through a large gas hydrate reservoir. Geochim Cosmochim Acta 65: 529–543

    Article  Google Scholar 

  • Dickens GR, O’Neil JR, Rea DK, Owen RM (1995) Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10: 965–971

    Article  Google Scholar 

  • Dymond J, Suess E, Lyle M (1992) Barium in deep-sea sediment: A geochemical proxy for paleoproductivity. Paleoceanography 7: 163–181

    Article  Google Scholar 

  • Ferdelman TG, Fossing H, Neumann K, Schulz HD (1999) Sulfate reduction in surface sediments of the south-east Atlantic continental margin between 15°38’S and 27°57’S (Angola and Namibia). Limnol Oceanogr 44: 650–661

    Article  Google Scholar 

  • Finney BP, Lyle MW, Heath GR (1988) Sedimentation at Manop site H (eastern Equatorial Pacific) over the past 400,000 years: Climatically induced redox variations and their effects on transition metal cycling. Paleoceanography 3: 169–189

    Article  Google Scholar 

  • Flood RD, Piper DJW, Klaus A and cruise participants (1995) Proc. ODP, Init Repts 155, College Station, TX (Ocean Drilling Program).

    Book  Google Scholar 

  • Fossing H, Jørgensen BB (1989) Measurement of bacterial sulfate reduction in sediments: Evaluation of a single-step chromium reduction method. Biogeochemistry 8: 205–222

    Article  Google Scholar 

  • Fossing H, Ferdelman TG, Berg P (2000) Sulfate reduction and methane oxidation in continental margin sediments influenced by irrigation (South-East Atlantic off Namibia). Geochim Cosmochim Acta 64: 897–910

    Article  Google Scholar 

  • Freudenthal T, Meggers H, Henderiks J, Kuhlmann H, Moreno A, Wefer G (2002) Upwelling intensity and filament activity off Morocco during the last 250,000 years. Deep-Sea Res II 49: 3655–3674

    Article  Google Scholar 

  • Francois R, Honjo S, Manganini SJ, Ravizza GE (1995) Biogenic barium fluxes to the deep-sea: Implications for paleoproductivity reconstruction. Glob Bio-geochem Cycl 9:289–303

    Article  Google Scholar 

  • Froelich PN, Klinkhammer GP, Bender ML, Luedtke NA, Heath GR, Cullen D, Dauphin P, Hammond D, Hartman B, Maynard V (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis. Geochim Cosmochim Acta 43: 1075–1090

    Article  Google Scholar 

  • Gingele FX, Dahmke A (1994) Discrete barite particles and barium as tracers of paleoproductivity in South Atlantic sediments. Paleoceanography 9: 151–168

    Article  Google Scholar 

  • Gingele FX, Zabel M, Kasten S, Bonn WJ, Nürnberg CC (1999) Biogenic barium as a proxy for paleoproduc-tivity: Methods and limitations of application. In: Fischer G, Wefer G (eds) Use of Proxies in Paleoceanography: Examples from the South Atlantic. Springer, Berlin, pp 345–364

    Chapter  Google Scholar 

  • Goldberg ED, Arrhenius GOS (1958) Chemistry of Pacific pelagic sediments. Geochim Cosmochim Acta 13:153–212

    Article  Google Scholar 

  • Haese RR, Wallmann K, Dahmke A, Kretzmann U, Muller PJ, Schulz HD (1997) Iron species determination to investigate early diagenetic reactivity in marine sediments. Geochim Cosmochim Acta 61: 63–72

    Article  Google Scholar 

  • Hensen C, Zabel M, Pfeifer K, Schwenk T, Kasten S, Riedinger N, Schulz HD, Boetius A (2003) Control of sulfate pore-water profiles by sedimentary events and the significance of anaerobic oxidation of methane for the burial of sulfur in marine sediments. Geochim Cosmochim Acta 67: 2631–2647

    Article  Google Scholar 

  • Heuer V, Kasten S, Hensen C, Schulz HD (2003a) Early diagenesis at the sulphate/methane transition: (re)distribution of barium and other trace elements in sediments on the continental slope off Namibia, Southeast Atlantic. Mar Geol, submitted

    Google Scholar 

  • Heuer V, Kasten S, Schulz HD (2003b) Does sulphuriza-tion create an early diagenetic link between trace elements and organic matter? — Evidence from the upwelling region off Namibia, Southeast Atlantic. Geochim Cosmochim Acta, submitted

    Google Scholar 

  • Heuer V, Kasten S, Schulz HD (2003c) Trace elements reflecting primary production, degradation and preservation of organic matter in sediments from the Niger deep-sea fan, equatorial Atlantic. Earth Panet Sci Lett, submitted

    Google Scholar 

  • Higgs NC, Thomson J, Wilson TRS, Croudace IW (1994) Modification and complete removal of eastern Mediterranean sapropels by postdepositional oxidation. Geology 22: 423–426

    Article  Google Scholar 

  • Hoefs MJL, Versteegh GJM, Rijpstra WIC, De Leeuw JW, Sinninghe Damsté JS (1998) Postdepositional oxic degradation of alkenones: Implications from the measurement of palaeo sea surface temperatures. Palaeoceanography 13: 42–49

    Article  Google Scholar 

  • Hoefs MJL, Rijpstra WIC, Sinninghe Damsté JS (2002) The influence of oxic degradation on the sedimentary biomarker record I: Evidence from Madeira Abyssal Plain turbidites. Geochim Cosmochim Acta 66: 2719–2735

    Article  Google Scholar 

  • Huerta-Diaz MA, Morse JW (1992) Pyritization of trace metals in anoxic marine sediments. Geochim Cosmochim Acta 56: 2681–2702

    Article  Google Scholar 

  • Jakobsen R, Postma D (1999) Redox zoning, rates of sulfate reduction and interactions with Fe-reduction and methanogenesis in a shallow sandy aquifer, Rømø, Denmark. Geochim Cosmochim Acta 63: 137–151

    Article  Google Scholar 

  • Jørgensen BB (2000) Bacteria and marine biogeochemistry. In: Schulz HD, Zabel M (eds) Marine Geochemistry. Springer, Berlin, pp 173–208

    Google Scholar 

  • Jung M, Ilmberger J, Mangini A, Emeis K-C (1997) Why some Mediterranean sapropels survived burn-down (and others did not). Mar Geol 141: 51–60

    Article  Google Scholar 

  • Kasten S, Freudenthal T, Gingele FX, Schulz HD (1998) Simultaneous formation of iron-rich layers at different redox boundaries in sediments of the Amazon deep-sea fan. Geochim Cosmochim Acta 62: 2253–2264

    Article  Google Scholar 

  • Kasten S, Jørgensen BB (2000) Sulfate reduction in marine sediments. In: Schulz HD, Zabel M (eds) Marine Geochemistry. Springer, Berlin, pp 263–282

    Google Scholar 

  • Kasten S, Haese RR, Zabel M, Rühlemann C, Schulz HD (2001) Barium peaks at glacial terminations in sediments of the equatorial Atlantic Ocean — relicts of deglacial productivity pulses? Chem Geol 175: 635–651

    Article  Google Scholar 

  • Matthewson AP, Shimmield GB, Kroon D (1995) A300 kyr high-resolution aridity record of the North African continent. Paleoceanography 10:677–692

    Article  Google Scholar 

  • Mercone D, Thomson J, Croudace W, Troelstra SR (1999) A coupled natural immobilisation mechanism for mercury and selenium in deep-sea sediments. Geochim Cosmochim Acta 63: 1481–1488

    Article  Google Scholar 

  • Mienert J, Posewang J, Baumann M (1998) Gas hydrates along the northeastern Atlantic margin: Possible hydrate-bound margin instabilities and possible release of methane. In: Henriet JP, Mienert J (eds) Gas Hydrates: Relevance to World Margin Stability and Climate Change. Geol Soc London Spec Publ 137, pp 275–291

    Google Scholar 

  • Moreno A, Nave S, Kuhlmann H, Canals M, Targarona J, Freudenthal T, Abrantes F (2002) Productivity response in the North Canary Basin to climate changes during the last 250,000 yr: A multi-proxy approach. Earth Planet Sci Lett 196: 147–159

    Article  Google Scholar 

  • Morse JW, Arakaki T (1993) Adsorption and coprecipitation of divalent metals with mackinawite (FeS). Geochim Cosmochim Acta 57: 3635–3640

    Article  Google Scholar 

  • Mossmann JR, Aplin AC, Curtis CD, Coleman ML (1991) Geochemistry of inorganic and organic sulphur in organic-rich sediments from the Peru Margin. Geochim Cosmochim Acta 55: 3581–3595

    Article  Google Scholar 

  • Niewöhner C, Hensen C, Kasten S, Zabel M, Schulz HD (1998) Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia. Geochim Cosmochim Acta 62: 455–464

    Article  Google Scholar 

  • Norris RD, Röhl U (1999) Carbon cycling and chronology of climate warming during Palaeocene/Eocene transition. Nature 401: 775–778

    Article  Google Scholar 

  • Passier HF, Middelburg JJ, Van Os BJH, De Lange GJ (1996) Diagenetic pyritisation under eastern Mediterranean sapropels caused by downward sulphide diffusion. Geochim Cosmochim Acta 60: 751–763

    Article  Google Scholar 

  • Pfeifer K, Hensen C, Adler M, Wenzhöfer F, Weber B, Schulz HD (2002) Modeling of subsurface calcite dissolution-including the respiration and re-oxidation processes of marine sediments in the region of equatorial upwelling off Gabon. Geochim Cosmochim Acta 66: 4247–4259

    Article  Google Scholar 

  • Postma D, Jakobsen R (1996) Redox zonation: Equilibrium constraints on the Fe(III)/SO4-reduction interface. Geochim Cosmochim Acta 60: 3169–3175

    Article  Google Scholar 

  • Pruysers PA, de Lange GJ, Middelburg JJ (1991) Geochemistry of eastern Mediterranean sediments: Primary sediment composition and diagenetic alterations. Mar Geol 100: 137–154

    Article  Google Scholar 

  • Pruysers PA, de Lange GJ, Middelburg JJ, Hydes DJ (1993) The diagenetic formation of metal-rich layers in sapropel-containing sediments in the eastern Mediterranean. Geochim Cosmochim Acta 57: 579–595

    Article  Google Scholar 

  • Robinson SG, Sahota JTS, Oldfield F (2000) Early diagen-esis in North Atlantic abyssal plain sediments characterized by rock-magnetic and geochemical indices. Mar Geol 163: 77–107

    Article  Google Scholar 

  • Schinzel U, Dahmke A, Schulz HD (1993) Reaktionen von Eisen(III)-Oxidhydraten während der Frühdiagenese in marinen Sedimenten: Experimentelle Untersuchun-gen. Z Dt Geol Ges 144: 224–247

    Google Scholar 

  • Schmitz B (1987) Barium, equatorial high productivity, and the northward wandering of the Indian continent. Paleoceanography 2: 63–77

    Article  Google Scholar 

  • Schouten S, van Driel GB, Sinninghe Damste JS, de Leeuw JW (1994) Natural sulphurization of ketones and aldehydes: A key reaction in the formation of organic sulphur compounds. Geochim Cosmochim Acta 58: 511–5116

    Article  Google Scholar 

  • Schubert CJ, Nürnberg D, Scheele N, Pauer F, Kriews M (1997) 13C isotope depletion in ikaite crystals: Evidence for methane release from the Siberian shelves? Geo-Mar Lett 17: 169–174

    Article  Google Scholar 

  • Schulz HD, Dahmke A, Schinzel U, Wallmann K, Zabel M (1994) Early diagenetic processes, fluxes and reaction rates in sediments of the South Atlantic. Geochim Cosmochim Acta 58: 2041–2060

    Article  Google Scholar 

  • Schulz HD, Bleil U, Henrich R, Segl M (1995) Geo Bremen South Atlantic 1994, Cruise No.29, 17 June–5 September 1994. Meteor-Berichte, Universität Hamburg, 95–2, 323 p

    Google Scholar 

  • Schulz HD (2000) Quantification of Early Diagenesis: Dissolved Constituents in Marine Pore Water. In: Schulz HD, Zabel M (eds) Marine Geochemistry. Springer, Berlin, pp 87–128

    Google Scholar 

  • Schwarz B, Mangini A, Segl M (1996) Geochemistry of a piston core from the Ontong Java Plateau (western equatorial Pacific): Evidence for sediment redistribution and changes in paleoproductivity. Geol Rundsch 85: 536–545

    Article  Google Scholar 

  • Sinninghe Damsté JS, De Leeuw JW (1990) Analysis, structure and geochemical significance of organically-bound sulphur in the geosphere: State of the art and future research. In: Durand B, Behar F (eds) Advances in Organic Geochemistry 1989. Org Geochem 16: 1077–1101

    Google Scholar 

  • Sinninghe Damsté JS, Rijpstra WIC, Reichart G-J (2002) The influence of oxic degradation on the sedimentary biomarker record II: Evidence from Arabian Sea sediments. Geochim Cosmochim Acta 66: 2737–2754

    Article  Google Scholar 

  • Tarduno JA (1994) Temporal trends of magnetic dissolution in the pelagic realm: Gauging paleoproductivity? Earth Planet Sci Lett 123: 39–48

    Article  Google Scholar 

  • Tarduno JA, Wilkison SL (1996) Non-steady state magnetic mineral reduction, chemical lock-in, and delayed remanence acquisition in pelagic sediments. Earth Planet Sci Lett 144: 315–326

    Article  Google Scholar 

  • Thomson J, Wilson TRS, Culkin F, Hydes DJ (1984) Non-steady state diagenetic record in eastern equatorial Atlantic sediments. Earth Planet Sci Lett 71:23–30

    Article  Google Scholar 

  • Thomson J, Wallace HE, Colley S, Toole J (1990) Authigenic uranium in Atlantic sediments of the last glacial stage — a diagenetic phenomenon. Earth Planet Sci Lett 98: 222–232

    Article  Google Scholar 

  • Thomson J, Higgs NC, Croudace IW, Colley S, Hydes DJ (1993) Redox zonation of elements at an oxic/ post-oxic boundary in deep-sea sediments. Geochim Cosmochim Acta 57: 579–595

    Article  Google Scholar 

  • Thomson J, Higgs NC, Wilson TRS, Croudace IW, De Lange GJ, Van Santvoort PJM (1995) Redistribution and geochemical behaviour of redox-sensitive elements around S1, the most recent eastern Mediterranean sapropel. Geochim Cosmochim Acta 59: 3487–3501

    Article  Google Scholar 

  • Thomson J, Higgs NC, Colley S (1996) Diagenetic redistributions of redox-sensitive elements in northeast Atlantic glacial/interglacial transition sediments. Earth Planet Sci Lett 139: 365–377

    Article  Google Scholar 

  • Thomson J, Jarvis I, Green DRH, Green DA, Clayton T (1998) Mobility and immobility of redox-sensitive elements in deep-sea turbidites during shallow burial. Geochim Cosmochim Acta 62: 643–656

    Article  Google Scholar 

  • Thomson J, Nixon S, Summerhayes C, Rohling EJ, Schönfeld J, Zahn R, Grootes P, Abrantes F, Gaspar L, Vaqueiro S (2000) Enhanced productivity on the Iberian margin during glacial/interglacial transitions revealed by barium and diatoms. J Geol Soc London 157: 667–677

    Article  Google Scholar 

  • Torres ME, Brumsack HJ, Bohrmann G, Emeis KC (1996) Barite fronts in continental margin sediments: Anew look at barium remobilization in the zone of sulfate reduction and formation of heavy barites in diagenetic fronts. Chem Geol 127: 125–139

    Article  Google Scholar 

  • Van Santvoort PJM, De Lange GJ, Thomson J, Cussen H, Wilson TRS, Krom MD, Strohle K (1996) Active post-depositional oxidation of the most recent sapropel (S1) in sediments of the eastern Mediterranean Sea. Geochim Cosmochim Acta 60: 4007–4024

    Article  Google Scholar 

  • Van Santvoort PJM, De Lange GJ, Langereis CG, Dekkers MJ, Paterne M (1997) Geochemical and paleomag-netic evidence for the occurrence of “missing” sapropels in eastern Mediterranean sediments. Paleoceanography 12: 773–786

    Article  Google Scholar 

  • Versteegh GJM, Zonneveld KAF (2002) Use of selective degradation to separate preservation from productivity. Geology 30: 615–618

    Article  Google Scholar 

  • Volbers ANA, Henrich R (2002) Present water mass calcium carbonate corrosiveness in the eastern South Atlantic inferred from ultrastructural breakdown of Globigerina bulloides in surface sediments. Mar Geol 186: 471–486

    Article  Google Scholar 

  • Von Breymann MTK, Emeis KC, Suess E (1992) Water depth and diagenetic constraints on the use of barium as a paleoproductivity indicator. In: Summer-hayes CP (ed) Upwelling Systems: Evolution since the Early Miocene. Geol Soc Spec Publ 64: 273–284

    Google Scholar 

  • Wallace HE, Thomson J, Wilson TRS, Weaver PPE, Higgs NC, Hydes DJ (1988) Active diagenetic formation of metal-rich layers in NE Atlantic sediments. Geochim Cosmochim Acta 52: 1557–1569

    Article  Google Scholar 

  • Wefer G and cruise participants (1997) Report and preliminary results of Meteor cruise M 37/1, Lisbon — Las Palmas, 04.12.1996–23.12.1996. Ber Fachber Geowiss, Univ Bremen 90, 79 p

    Google Scholar 

  • Werne JP, Hollander DJ, Behrens A, Schaeffer P, Albrecht P, Sinninghe Damsté JS (2000) Timing of early diagenetic sulfurization of organic matter: A precursor-product relationship in Holocene sediments of the anoxic Cariaco Basin, Venezuela. Geochim Cosmochim Acta 64: 1741–1751

    Article  Google Scholar 

  • Wersin P, Höhener P, Giovanoli R, Stumm W (1991) Early diagenetic influences on iron transformations in a freshwater lake sediment. Chem Geol 90:233–252

    Article  Google Scholar 

  • Wilson TRS, Thomson J (1998) Calcite dissolution accompanying early diagenesis in turbiditic deep ocean sediments. Geochim Cosmochim Acta 62: 2087–2096

    Article  Google Scholar 

  • Wilson TRS, Thomson J, Colley S, Hydes DJ, Higgs NC, Sorensen J (1985) Early organic diagenesis: The significance of progressive subsurface oxidation fronts in pelagic sediments. Geochim Cosmochim Acta 49: 811–822

    Article  Google Scholar 

  • Wilson TRS, Thomson J, Hydes DJ, Colley S, Culkin F, Sørensen J (1986) Oxidation fronts in pelagic sedi-ments: Diagenetic formation of metal-rich layers. Science 232: 972–975

    Article  Google Scholar 

  • Zabel M, Schulz HD (2001) Importance of submarine landslides for non-steady state conditions in pore water systems-lower Zaire (Congo) deep-sea fan. Mar Geol 176: 87–99

    Article  Google Scholar 

  • Zonneveld KAF, Versteegh GJM, De Lange GJ (2001) Palaeoproductivity and post-depositional aerobic organic matter decay reflected by dinoflagellate cyst assemblages of the Eastern Mediterranean S1 sapropel. Mar Geol 172: 181–195

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kasten, S., Zabel, M., Heuer, V., Hensen, C. (2003). Processes and Signals of Nonsteady-State Diagenesis in Deep-Sea Sediments and their Pore Waters. In: Wefer, G., Mulitza, S., Ratmeyer, V. (eds) The South Atlantic in the Late Quaternary. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18917-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18917-3_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62354-7

  • Online ISBN: 978-3-642-18917-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics