Skip to main content

Late Quaternary Terrigenous Sedimentation in the Western Equatorial Atlantic South American versus African Provenance Discriminated by Magnetic Mineral Analysis

  • Chapter
The South Atlantic in the Late Quaternary

Abstract

Magnetic mineral accumulation at the Ceará Rise has been studied with the aim to discriminate and reconstruct fluvial South American and eolian African terrigenous fluxes to the late Quaternary western Equatorial Atlantic. Seven sediment series recovered along two bathymetric transects were investigated with standard environmental magnetic techniques. Climatically controlled fluctuations in continental detrital discharge and marine biogenic carbonate fluxes strongly modulate the susceptibility records. Their coherent precessional and higher-frequent signal components could be used to establish a high-resolution age framework for these sediments. According to a partial susceptibility analysis, on average 79 % of the susceptibility signal originates from magnetite of different grain size, 13 % from hematite and 8 % from paramagnetic matrix compounds. In terms of absolute concentrations this implies that hematite is almost twenty times more abundant than magnetite, because of its orders of magnitude lower intrinsic susceptibility. The longitudinal gradients of their respective accumulation rates document a delivery from two major sources characterized by largely different magnetite to hematite ratios (about 1:12 versus 1:50). A mixing model of this scenario provided detailed insight into the past variability of the separate magnetic mineral fluxes and their most probable provenance. Overall about 56 % of hematite and 84 % of magnetite were transported in the Amazon fluvial load. Their accumulation is closely related to sea level changes, reaching highest (lowest) rates, when most South American shelf areas fell dry (were flooded) before and after Termination I and II. Hematite and magnetite of African provenance, 44 and 16 %, respectively, follow a distinctly different accumulation pattern with prominent maxima during cold intervals of glacial periods. By statistically linking these trace minerals to total lithogenic fluxes, we find that during the last 200 kyr, on average 79 % of total terrigenous material in the Ceará Rise area originates from South American sources in the Amazon River catchment, while African dust sources contributed 21 %.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Balsam WL, Deaton BC (1991) Sediment dispersal in the Atlantic Ocean: evaluation by visible light spectra. Rev Aqua Sci 4: 411–447

    Google Scholar 

  • Bleil U, Petersen N (1982) Magnetic properties of natural minerals. In: Angenheister G (ed) Numerical Data and Functional Relationships in Science and Tech-nology. Springer, Berlin, Landolt-Börnstein V/ 1b: pp 308–365

    Google Scholar 

  • Bleil U, von Dobeneck T (1999) Geomagnetic events and relative paleointensity records — clues to high-reso-lution paleomagnetic chronostratigraphies of late Quaternary marine sediments? In: Fischer G, Wefer G (eds) Use of Proxies in Paleoceanography, Exam-ples from the South Atlantic. Springer, Berlin, pp 635–654

    Chapter  Google Scholar 

  • Bloemendal J, deMenocal P (1989) Evidence for a change in the periodicity of tropical climate cycles at 2.4 Myr from whole-core magnetic susceptibility measure-ments. Nature 342: 897–900

    Article  Google Scholar 

  • Bloemendal J, King JW, Hall FR, Doh S-J (1992) Rock magnetism of late Neogene and Pleistocene deep-sea sediments: relationship to sediment source, diagenetic processes, and sediment lithology. J Geophys Res 97: 4361–4375

    Article  Google Scholar 

  • Bond G, Broecker W, Johnsen S, McManus J, Labeyrie L, Jouzel J, Bonati G (1993) Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365: 143–145

    Article  Google Scholar 

  • Channell JET, Stoner JS, Hodell DA, Charles CD (2000) Geomagnetic paleointensity for the last 100 kyr from the sub-Antarctic South Atalantic: Atool for interhemispheric correlation. Earth Planet Sci Lett 175: 145–160

    Article  Google Scholar 

  • Collinson DW (1983) Methods in Rock Magnetism and Palaeomagnetism, Techniques and Instrumentation. Chapman Hall, London

    Google Scholar 

  • Curry WB, Cullen JL (1997) Carbonate production and dissolution in the western equatorial Atlantic during the last 1 my. In: Shackleton NJ, Curry WB, Richter C, Bralower TJ (eds) Proceedings of the Ocean Drilling Program. Scientific Results 154: 189–199

    Google Scholar 

  • Damuth JE (1977) Late Quaternary sedimentation in the western equatorial Atlantic. Geol Soc Am Bull 88: 695–710

    Article  Google Scholar 

  • Dansgaard W, Johnsen SJ, Clausen HB, Dahl-Jensen D, Gundestrup NS, Hammer CU, Hvidberg CS Steffensen JP, Sveinbjornsdottir AE, Bond G (1993) Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364: 218–220

    Article  Google Scholar 

  • Dobson DM, Dickens GR, Rea DK (1997) Terrigenous sedimentation at the Ceará Rise. In: Shackleton NJ, Curry WB, Richter C, Bralower TJ (eds) Proceedings of the Ocean Drilling Program. Scientific Results 154: 465–473

    Google Scholar 

  • Dobson DM, Dickens GR, Rea DK (2001) Terrigenous sedimentation on Ceará Rise: A Cenozoic record of South American orogeny and erosion. Palaeogeogr Palaeoclim Palaeoecol 165: 215–229

    Article  Google Scholar 

  • Dunlop DJ, Özdemir Ö (1997) Rock Magnetism, Fundamentals and Frontiers. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Frederichs T, Bleil U, Däumler K, von Dobeneck T, Schmidt A (1999) The magnetic view on the marine paleoenvironment: parameters, techniques, and potentials of rock magnetic studies as a key to paleoclimatic and paleoceanographic changes. In: Fischer G, Wefer G (eds) Use of Proxies in Paleoceanography, Examples from the South Atlantic. Springer, Berlin, pp 575–599

    Chapter  Google Scholar 

  • Francois R, Bacon MP (1991) Variations in terrigenous input into the deep equatorial Atlantic during the past 24,000 years. Science 251: 1473–1475

    Article  Google Scholar 

  • Grousset FF, Labeyrie L, Sinko JA, Cremer M, Bond G, Duprat J, Cortijo E, Huon S (1993) Patterns of ice-rafted detritus in the glacial North Atlantic (40–55 °N). Paleoceanography 8: 175–192

    Article  Google Scholar 

  • Harris SE, Mix AC (1999) Pleistocene precipitation balance in the Amazon Basin recorded in deep-sea sediments. Quat Res 51: 14–26

    Article  Google Scholar 

  • Heider F, Zitzelsberger A, Fabian K (1996) Magnetic susceptibility and remanent coercive force in grown magnetite crystals from 0.1 μm to 6 mm. Phys Earth Planet Int 93: 239–256

    Article  Google Scholar 

  • Imbrie J, Hays JD, Martinson DG, McIntyre A, Mix AC, Morley JJ, Pisias NG, Prell WL, Shackleton NJ (1984) The orbital theory of Pleistocene climats: support from a revised chronology of the marine δ18O record. In: Berger AL et al. (eds) Milankovitch and Climate Part I. Reidel, Dordrecht, pp 269–305

    Google Scholar 

  • Johns WE, Schott FA, Zantopp RJ, Evans RH (1990) The North Brazil Current retroflection: Seasonal structure and eddy variability. J Geophys Res 95: 22103–22120

    Article  Google Scholar 

  • Kletetschka G, Wasilewski PJ (2002) Grain size limit for SD hematite. Phys Earth Planet Int 129: 173–179

    Article  Google Scholar 

  • Kotz L, Kaiser G, Tschöpel P, Tölg G (1972) Aufschluß biologischer Matricen für die Bestimmung sehr nied-riger Spurenelementgehalte bei begrenzter Einwaage mit Salpertersäure unter Druck in einem Teflongefäß. Z anal Chem 260: 207–209

    Article  Google Scholar 

  • Kumar N, Embley RW (1977) Evolution and origin of Ceará Rise: An aseismic rise in the western equatorial Atlantic. Geol Soc Am Bull 88: 683–694

    Article  Google Scholar 

  • Laj C, Kissel C, Mazaud A, Channell JET, Beer J (2000) North Atlantic paleointensity stack since 75 ka (NAPIS) and the duration of the Laschamp event. Phil Trans R Soc London A358: 1009–1025

    Google Scholar 

  • Langereis CG, Dekkers MJ (1999) Magnetic cyclostratigraphy: High-resolution dating in and beyond the Quaternary and analysis of periodic changes in diagenesis and sedimentary magnetism. In: Maher BA, Thompson R (eds) Quaternary Climates, Environments and Magnetism. Cambridge University Press, Cambridge, pp 352–382

    Chapter  Google Scholar 

  • Martin WR, Sayles FL (1996) CaCO3 dissolution in sediments of the Ceará Rise, western equatorial Atlantic. Geochim Cosmochim Acta 60: 243–263

    Article  Google Scholar 

  • Maslin M, Mikkelsen N (1997) Amazon Fan masstransport deposits and underlying interglacial deposits: age estimates and fan dynamics. In: Flood RD, Piper DJW, Claus A, Peterson LC (eds) Proceedings Of the Ocean Drilling Program. Sci Res 155: 353–365

    Google Scholar 

  • Matthewson AP, Shimmield GB, Kroon D, Fallick AE (1995) A 300 kyr high-resolution aridity record of the North African continent. Paleoceanography 10: 677–692

    Article  Google Scholar 

  • Meade RH (1994) Suspended sediments of the modem Amazon and Orinoco rivers. Quat Intern 21: 29–39

    Article  Google Scholar 

  • Milliman JD, Meade RH (1983) World-wide delivery of river sediment to the oceans. J Geol 91: 1–21

    Article  Google Scholar 

  • Milliman JD, Summerhayes CP, Barretto HT (1975) Quaternary sedimentation on the Amazon continental margin: A model. Geol Soc Amer Bull 88: 610–614

    Article  Google Scholar 

  • Muller-Karger FE, McClain CR, Richardson PL (1988) The dispersal of the Amazon’s water. Nature 333: 56–59

    Article  Google Scholar 

  • Mulitza S (1994) Spätquartäre Variationen der oberflächennahen Hydrographie im westlichen äquatorialen Atlantik. Ber Fachber Geowiss, Univ Bremen 57, 97 p

    Google Scholar 

  • Petermann H (1994) Magnetotaktische Bakterien und ihre Magnetosome in Oberflächensedimenten des Südatlantiks. Ber Fachber Geowiss, Univ Bremen 56, 134 P

    Google Scholar 

  • Petermann H, Bleil U (1993) Detection of live magnetotactic bacteria in South Atlantic deep-sea sediments. Earth Planet Sci Lett 117: 223–228

    Article  Google Scholar 

  • Petschick R, Kuhn G., Gingele F (1996) Clay mineral distribution in surface sediments of the South Atlantic: sources, transport, and relation to oceanography. Mar Geology 130: 203–229

    Article  Google Scholar 

  • Pokras EM, Mix AC (1985) Eolian evidence for spatial variability of Late Quaternary climates in tropical Africa. Quat Res 24: 137–139

    Article  Google Scholar 

  • Prell WL, Imbrie J, Martinson DG, Morley JJ, Pisias NG, Shackleton NJ, Streeter HF (1986) Graphic correlation of oxygen isotope stratigraphy: Application to the late Quaternary. Paleoceanography 1: 137–162

    Article  Google Scholar 

  • Prospero JM, Glaccum RA, Nees RT (1981) Atmospheric transport of soil dust from Africa to South America. Nature 289: 570–572

    Article  Google Scholar 

  • Richter C, Valet J-P, Solheid PA (1997) Rock magnetic properties of sediments from Ceará Rise (Site 929): implications for the origin of the magnetic susceptibility signal. In: Shackleton NJ, Curry WB, Richter C, Bralower TJ (eds) Proceedings of the Ocean Drilling Program. Scientific Results 154: 169–179

    Google Scholar 

  • Robinson SG, Maslin MA, McCave IN (1995) Magnetic susceptibility variations in Upper Pleistocene deep-sea sediments of the NE Atiantic: Implications for ice rafting and paleocirculation at the last glacial maximum. Paleoceanography 10: 221–250

    Article  Google Scholar 

  • Ruddiman WF (1997) Tropical Atlantic terrigenous fluxes since 25,000 yrs BP. Mar Geol 136: 189–207

    Article  Google Scholar 

  • Rühlemann C, Frank M, Hale W, Mangini A, Mulitza S, Müller PJ, Wefer G (1996) Late Quaternary productivity changes in the western equatorial Atlantic: evidence from 230Th-normalized carbonate and organic carbon accumulation. Mar Geol 135: 127–152

    Article  Google Scholar 

  • Sarnthein M, Tetzlaff G, Koopmann B, Wolter K, Pflaumann U (1981) Glacial and interglacial wind regimes over the eastern subtropical Atlantic and north-west Africa. Nature 293: 193–196

    Article  Google Scholar 

  • Schulz HD, Cruise Participants (1991) Bericht und erste Ergebnisse über die Meteor-Fahrt M 16/2. Ber Fachber Geowiss, Univ Bremen, 149 p

    Google Scholar 

  • Schmieder F, von Dobeneck T, Bleil U (2000) The mid-Pleistocene climate transition as documented in the deep South Atlantic Ocean: Initiation, interim state and terminal event. Earth Planet Sci Lett 179: 539–549

    Article  Google Scholar 

  • Shackleton NJ, Curry WB, Richter C, Bralower TJ (1997) Proceedings of the Ocean Drilling Program. Scientific Results 154: 552

    Google Scholar 

  • Shackleton NJ, Crowhurst S (1997) Sediment fluxes based on an orbitally tuned time scale 5 Ma to 14 Ma, Site 926. In: Shackleton NJ, Curry WB, Richter C, Bralower TJ (eds) Proceedings of the Ocean Drilling Program. Scientific Results 154: 69–82

    Google Scholar 

  • Solheid PA, Banerjee SK, Richter C, Valet J-P (1997) High-resolution rock-magnetic study of Ceará Rise sedi-ments at Site 529. In: Shackleton NJ, Curry WB, Richter C, Bralower TJ (eds) Proceedings of the Ocean Drilling Program. Scientific Results 154: 181–186

    Google Scholar 

  • Swap R, Garstang M, Greco S, Talbot R, Kallberg P (1992) Saharan dust in the Amazon Basin. Tellus 44B: 133–149

    Google Scholar 

  • Tiedemann R, Sarnthein M, Stein R (1989) Climate chan-ges in the western Sahara: Aeolo-marine sediment record of the last 8 million years (Sites 657–661). In: Ruddiman W, Sarnthein M, Baldauf J et al. (eds) Pro-ceedings of the Ocean Drilling Program. Scientific Results 108: 241–277

    Google Scholar 

  • Thompson R, Oldfield F (1986). Environmental Magnetism. Allen Unwin, London

    Book  Google Scholar 

  • von Dobeneck T (1998) The concept of ‘partial susceptibilities’. Geol Carpath 49: 228–229

    Google Scholar 

  • von Dobeneck T, Schmieder F (1999) Using rock magnetic proxy records for orbital tuning and extended time series analyses into the super-and sub-Milankovitch bands. In: Fischer G, Wefer G (eds) Use of Proxies in Paleoceanography, Examples from the South Atlantic. Springer, Berlin, pp 601–633

    Chapter  Google Scholar 

  • Zabel M, Bickert T, Dittert L, Haese RR (1999) Significance of the sedimentary Al:Ti ratio as an indicator for variations in the circulation patterns of the equatorial North Atlantic. Paleoceanography 14: 789–799

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bleil, U., von Dobeneck, T. (2003). Late Quaternary Terrigenous Sedimentation in the Western Equatorial Atlantic South American versus African Provenance Discriminated by Magnetic Mineral Analysis. In: Wefer, G., Mulitza, S., Ratmeyer, V. (eds) The South Atlantic in the Late Quaternary. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18917-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18917-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62354-7

  • Online ISBN: 978-3-642-18917-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics