Advertisement

Electronic Theory for Superconductivity in High-Tc Cuprates and Sr2RuO4

  • D. Manske
  • I. Eremin
  • K. H. Bennemann
Chapter

Abstract

Superconductivity remains one of the most interesting problems in Solid State Physics. During the last years in particular high-transition temperature superconductivity in the cuprates with non-s-wave pairing symmetry and unconventional superconductivity in the isostructural strontiumruthenate (Sr2RuO4) also with a non-s-wave symmetry of the superconducting order parameter and triplet Cooper-pairing have been studied. Cuprates and ruthenates have an oxide layered structure with CuO2-and RuO2-planes, respectively. These seem to play an important role regarding superconductivity and magnetic activity. For an illustration we show in Fig. 9.1 the crystal structures (in Sr2RuO4 the basic element is a RuO2-plane and the superconducting transition temperature for triplet pairing is T c =1.5K). Undoped La2CuO4 is an antiferromagnetic insulator. Superconductivity occurs only upon doping (Ba instead of La) and reaches a maximum for hole doping x = 0.15 with a transition temperature T c ≈ 40K [1]. The different behavior of Sr2RuO4 and La2−x Ba x CuO4 is definitely related to the electronic structure of RuO2 and CuO2-planes.
Fig. 9.1

(a) Cuprate singlet superconductor La2−x Ba x CuO4. (b) Layered perovskite structure of the triplet superconductor Sr2RuO4

Keywords

Fermi Surface Elementary Excitation Spin Fluctuation Phase Fluctuation Spin Susceptibility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.G. Bednorz and K.A. Müller, Z. Phys. B 64, 189 (1986).ADSCrossRefGoogle Scholar
  2. 2.
    A.W. Hewat, In: Materials and Crystallographic Aspects of High-T c Superconductivity, edited by E. Kaldis, NATO ASI Series, Vol. 263 (Kluwer-Dordrecht 1994), p. 17.Google Scholar
  3. 3.
    Y. Kitaoka, K. Ishida, F. Fujiwara, T. Kondo, K. Asayama, M. Horvatic, Y. Berthier, P. Butaud, P. Segransan, C Berthier, H. Katayana-Yoshida, Y. Okabe, and T. Takahashi, In: Strong Correlations and Superconductivity, Springer series in Solid-State Sciences 89, edited by H. Fukuyama, S. Maekawa, and A.P. Malozemoff, (Springer, Berlin 1989) p. 262.CrossRefGoogle Scholar
  4. 4.
    D. A. Wollmann, D. J. van Harlingen, W. C. Lee, D. M. Ginsberg, and A. J. Leggett, Phys. Rev. Lett. 71, 2134 (1993).ADSCrossRefGoogle Scholar
  5. 5.
    J.R. Kirtley, C.C. Tsuei, J.Z. Sun, C.C. Chi, L.S. Yu-Jahnes, A. Gupta, M. Rupp, and M.B. Ketchen, Nature (London) 373, 225 (1995).ADSCrossRefGoogle Scholar
  6. 6.
    C.C. Tsuei, J.R. Kirtley, M. Rupp, J.Z. Sun, A. Gupta, and M.B. Ketchen, Science 272, 329 (1996).ADSCrossRefGoogle Scholar
  7. 7.
    C. C. Tsuei, J. R. Kirtley, Rev. of Mod. Phys. 72, 969 (2000).ADSCrossRefGoogle Scholar
  8. 8.
    W. N. Hardy, D. A. Bonn, D. C. Morgan, R. Liang, and K. Zhang, Phys. Rev. Lett. 70, 3999 (1994).ADSCrossRefGoogle Scholar
  9. 9.
    S. Kamal, Ruixing Liang, A. Hosseini, D. A. Bonn, and W. N. Hardy, Phys. Rev. B 58, R8933 (1998); S, Kamal, D. A. Bonn, Nigel Goldenfeld, P. J. Hirschfeld, Ruixing Liang, and W. N. Hardy, Phys. Rev. Lett. 73, 1845 (1994).ADSCrossRefGoogle Scholar
  10. 10.
    Z. X. Shen et al., Phys. Rev. Lett. 70, 1553 (1993).ADSCrossRefGoogle Scholar
  11. 11.
    M. C. Krantz and M. Cardona, J. Low Temp. Phys. 99 205 (1995).ADSCrossRefGoogle Scholar
  12. 12.
    D. Einzel and R. Hackl, J. Raman Spectroscopy 27, 307 (1996).ADSCrossRefGoogle Scholar
  13. 13.
    T. P. Devereaux and D. Einzel, Phys. Rev. B 51, 16336 (1995); 54, 15547 (1996).ADSCrossRefGoogle Scholar
  14. 14.
    D. Manske, C. T. Rieck, R. Das Sharma, A. Bock, and D. Fay, Phys. Rev. B 56, R2940 (1997).ADSCrossRefGoogle Scholar
  15. 15.
    Y.J. Uemura et al., Phys. Rev. Lett. 62, 2317 (1989).ADSCrossRefGoogle Scholar
  16. 16.
    For a review, see C. P. Slichter in Strongly Correlated Electronic Systems, edited by K. S. Bedell et al. (Addison Wesley, Reading, MA, 1994)Google Scholar
  17. 17.
    L.P. Regnault, P. Bourges, P. Burlet, J.Y. Henry, J. Rossat-Mignod, Y. Sidis, C. Vettier, Physica B 213–214, 48 (1995).CrossRefGoogle Scholar
  18. 18.
    D.S. Marshall, D.S. Dessau, A.G. Loeser, C-H. Park, A.Y. Matsuura, J.N. Eckstein, I. Bozovic, P. Fournier, A. Kapitulnik, W.E. Spicer, and Z.-X. Shen, Phys. Rev. Lett. 76, 4841 (1996).ADSCrossRefGoogle Scholar
  19. 19.
    J.M. Harris, Z.-X. Shen, P.J. White, D.S. Marshall, M.C. Schabel, J.N. Eckstein, and I. Bozovic, Phys. Rev. B 54, R15655 (1996).ADSCrossRefGoogle Scholar
  20. 20.
    Ch. Renner, B. Revaz, J.-Y. Genoud, K. Kadowaki, and Ø. Fischer, Phys. Rev. Lett. 80, 149 (1998).ADSCrossRefGoogle Scholar
  21. 21.
    J.W. Loram, K.A. Mirza, J.R. Cooper, and W.Y. Liang, Phys. Rev. Lett. 71, 1740 (1993); J. W. Loram et al., J. Superconductivity 7, 234 (1994).ADSCrossRefGoogle Scholar
  22. 22.
    B. Batlogg, H. Y. Hwang, H. Takagi, R. J. Cava, H. L. Kao, and J. Kwo, Physica C 235–240, 130 (1994).CrossRefGoogle Scholar
  23. 23.
    R. Nemetschek, M. Opel, C. Hoffmann, P.F. Mueller, R. Hackl, H. Berger, L. Forro, A. Erb, and E. Walker, Phys. Rev. Lett. 78, 4837 (1997); G. Blumberg, M. Kang, M.V. Klein, K. Kadowaki, and C. Kendziora, Science 278, 1427 (1997).ADSCrossRefGoogle Scholar
  24. 24.
    Ch. Renner, B. Revaz, J.-Y. Genoud, K. Kadowaki, and Ø. Fischer, Phys. Rev. Lett. 80, 149 (1998).ADSCrossRefGoogle Scholar
  25. 25.
    A. K. Gupta and K.-W. Ng, Phys. Rev. B 58, R8901 (1998).ADSCrossRefGoogle Scholar
  26. 26.
    C. M. Varma, Phys. Rev. Lett. 63, 1996 (1989).ADSCrossRefGoogle Scholar
  27. 27.
    A. Virosztek and J. Ruvalds, Phys. Rev. B 42, 4064 (1990).ADSCrossRefGoogle Scholar
  28. 28.
    J. Ruvalds, C. T. Rieck, J. Zhang and A. Virosztek, Science 256, 1664 (1992).ADSCrossRefGoogle Scholar
  29. 29.
    A. J. Millis, H. Monien, and D. Pines, Phys. Rev. B 42, 167 (1990).ADSCrossRefGoogle Scholar
  30. 30.
    G.M. Luke, L.P. Le, B.J. Sternlieb, Y.J. Uemura, J.H. Brewer, R. Kadono, R.F. Kiefl, S.R. Kreitzman, T.M. Riseman, C.E. Stronach, M.R. Davis, S. Uchida, H. Takagi, Y. Tokura, Y. Hidaka, T. Murakami, J. Gopalakrishnan, A.W. Sleight, M.A. Subramanian, E.A. Early, J.T. Markert, M.B. Maple, and C.L. Seaman, Phys. Rev. B 42, 7981 (1990).ADSCrossRefGoogle Scholar
  31. 31.
    Y. Tokura, H. Takagi, and S. Uchida, Nature 337, 345 (1989).ADSCrossRefGoogle Scholar
  32. 32.
    T. Timusk and B. Statt, Rep. Prog. Phys. 62, 61 (1999).ADSCrossRefGoogle Scholar
  33. 33.
    H. Takagi, B. Batlogg, H.L. Kao, J. Kwo, R.J. Cava, J.J. Krajewski, and W.F. Peck, Phys. Rev. Lett. 69, 2975 (1992).ADSCrossRefGoogle Scholar
  34. 34.
    C.C. Tsuei, A. Gupta, and G. Koren, Physica C 161, 415 (1989).ADSCrossRefGoogle Scholar
  35. 35.
    D.S. Dessau, Z.-X. Shen, D.M. King, D.S. Marshall, L.W. Lombardo, P.H. Dickinson, A.G. Loeser, J. DiCarlo, C.-H Park, A. Kapitulnik, and W.E. Spicer, Phys. Rev. Lett. 71, 2781 (1993); A.A. Abrikosov, J.C. Campuzano, and K. Gofron, Physica C 214, 73 (1993).ADSCrossRefGoogle Scholar
  36. 36.
    D.M. King, Z.-X. Shen, D.S. Dessau, B.O. Wells, W.E. Spicer, A.J. Arko, D.S. Marshall, J. DiCarlo, A.G. Loeser, C.H. Park, E.R. Ratner, J.L. Peng, Z.Y. Li, and R.L. Greene, Phys. Rev. Lett. 70, 3159 (1993).ADSCrossRefGoogle Scholar
  37. 37.
    S.M. Anlage, D.-H. Wu, J. Mao, S.N. Mao, X.X. Xi, T. Venkatesan, J.L. Peng, and R.L. Greene, Phys. Rev. B 50, 523 (1994); D.H. Wu, J. Mao, S.N. Mao, J.L. Peng, X.X. Xi, T. Venkatesan, R.L. Greene, and S.M. Anlage, Phys. Rev. Lett. 70, 85 (1993).ADSCrossRefGoogle Scholar
  38. 38.
    W.N. Hardy, D.A. Bonn, D.C. Morgan, R. Liang, and K. Zhang, Phys. Rev. Lett. 70, 3999 (1993); D.A. Bonn, S. Kamal, K. Zhang, R. Liang, D.J. Baar, E. Klein, and W.N. Hardy, Phys. Rev. B 50, 4051 (1994).ADSCrossRefGoogle Scholar
  39. 39.
    B. Stadlober, G. Krug, R. Nemetschek, and R. Hackl, Phys. Rev. Lett. 74, 4911 (1995).ADSCrossRefGoogle Scholar
  40. 40.
    G. Blumberg, A. Koitzsch, A. Gozar, B.S. Dennis, C.A. Kendziora, P. Fournier, and R.L. Greene, Phys. Rev. Lett. 88, 107002 (2002).ADSCrossRefGoogle Scholar
  41. 41.
    R. Prozorov, R.W. Gianetta, P. Furnier, and R.L. Greene, Phys. Rev. Lett. 85, 3700 (2000).ADSCrossRefGoogle Scholar
  42. 42.
    J.D. Kokales, P. Furnier, L.V. Mercaldo, V.V. Talanov, R.L. Greene, and S.M. Anlage, Phys. Rev. Lett. 85, 3696 (2000).ADSCrossRefGoogle Scholar
  43. 43.
    C.C. Tsuei and J.R. Kirtley, Phys. Rev. Lett. 85, 182 (2000).ADSCrossRefGoogle Scholar
  44. 44.
    J.A. Skinta, M.-S. Kim, T.R. Lemberger, T. Greibe, and M. Naito, Phys. Rev. Lett. 88, 207005 (2002).ADSCrossRefGoogle Scholar
  45. 45.
    P. Bourges, in Gap Symmetry and Fluctuatios in High-T c Superconductors, eds. J. Bok, G. Deutscher, D. Pavuna and S. Wolf (Plenum Press, NY, 1998).Google Scholar
  46. 46.
    J. Rossat-Mignod, L.P. Regnault, C. Vettier, P. Bourges, P. Burlet, J. Bossy, J.Y. Henry, L. Lapertot, Physica C 185–189, 86 (1991).CrossRefGoogle Scholar
  47. 47.
    H. He, Y. Sidis, P. Bourges, G.D. Gu, A. Ivanov, N. Koshizuka, B. Liang, C.T. Lin, L.P. Regnault, E. Schoenherr, and B. Keimer, Phys. Rev. Lett. 86, 1610 (2001).ADSCrossRefGoogle Scholar
  48. 48.
    H.F. Fong, P. Bourges, Y. Sildis, L.P. Regnault, A. Ivanov, G.D. Gu, N. Koshizuka, and B. Keimer, Nature 398, 588 (1999); P. Dai, H.A. Mook, S.M. Hay den, G. Aeppli, T.G. Perring, R.D. Hunt, and F. Dogan, Science 284, 1344 (1999).ADSCrossRefGoogle Scholar
  49. 49.
    H. He, P. Bourges, Y. Sidis, C. Ulrich, L.P. Regnault, S. Pailhes, N. Berzigiarova, N.N. Kolesnikov, and B. Keimer, Science 295, 1045 (2002).ADSCrossRefGoogle Scholar
  50. 50.
    T.M. Rice and T.M. Sigrist, J. Phys.: Condens. Matter 7, L643 (1995).ADSCrossRefGoogle Scholar
  51. 51.
    I. Eremin, D. Manske, and K.H. Bennemann, Europhys. Lett. 58, 871 (2002).ADSCrossRefGoogle Scholar
  52. 52.
    P. Monthoux, Phys. Rev. B 55, 15261 (1997); A. Chubukov, P. Monthoux, and D.K. Morr, Phys. Rev. B 56, 7789 (1997).ADSCrossRefGoogle Scholar
  53. 54.
    J.R. Schrieffer, J. Low Temp. Phys. 99, 397 (1995).ADSCrossRefGoogle Scholar
  54. 55.
    N.E. Bickers and D.J. Scalapino, cond-mat/0010480 (unpublished).Google Scholar
  55. 56.
    A. Lanzara, P.V. Bogdanov, X.J. Zhou, S.A. Kellar, D.L. Feng, E.D. Lu, T. Yoshida, H. Eisaki, A. Fujimori, K. Kishio, J.-I. Shimoyama, T. Nodall, S. Uchida, Z. Hussain, Z.-X. Shen, Nature (London) 412, 510 (2001).ADSCrossRefGoogle Scholar
  56. 58.
    R. J. McQueeney, Y. Petrov, T. Egami, M. Yethiraj, G. Shirane, and Y. Endoh, Phys. Rev. Lett. 82, 628 (1999).ADSCrossRefGoogle Scholar
  57. 59.
    Z.-X. Shen, A. Lanzara, S. Ishihara, N. Nagaosa, cond-mat/0108381 (unpublished).Google Scholar
  58. 60.
    J.A. Skinta, T.R. Lemberger, T. Greibe, and M. Naito, Phys. Rev. Lett. 88, 207003 (2002); J.A. Skinta, M.-S. Kim, T. Greibe, and M. Naito, ibid, 207005 (2002).ADSCrossRefGoogle Scholar
  59. 61.
    J.R. Schrieffer, D.J. Scalapino, and J.W. Wilkins, Phys. Rev. Lett. 10, 336 (1963).ADSCrossRefGoogle Scholar
  60. 62.
    J.F. Zasadzinski, L. Ozyuzer, M. Miyakawa, D.G. Hinks, and K.E. Gray, Physica C 341-348, 867 (2000).CrossRefGoogle Scholar
  61. 63.
    M. Sigrist, D. Agterberg, A. Furusaki, C. Honerkamp, K.K. Ng, T.M. Rice, and M.E. Zhitomirsky, Physica C 317-318, 134 (1999).ADSCrossRefGoogle Scholar
  62. 64.
    P. Bourges, in Gap Symmetry and Fluctuatios in High-T c Superconductors, eds. J. Bok, G. Deutscher, D. Pavuna and S. Wolf, Plenum Press, NY, 1998.Google Scholar
  63. 65.
    Y. Sidis, M. Braden, P. Bourges, B. Hennion, S. Nishizaki, Y. Maeno, and Y. Mori, Phys. Rev. Lett. 83, 3320 (1999).ADSCrossRefGoogle Scholar
  64. 66.
    K. Ishida, H. Mukuda, Y. Kitaoka, Z.Q. Mao, H. Fukuzawa, and Y. Maeno, Phys. Rev. B 63, 060507 (2001).ADSCrossRefGoogle Scholar
  65. 67.
    Although the decisive and unambiguous evidence for spin-triplet Cooper-pairing from in-plane 17O and 99Ru Knight shift data, it is important to note that Hc2 (parallel to the c-axis) is too small for NMR measurements. Therefore, strictly speaking the present Knight shift data do not fully reinforce Sr2RuU4 to be a triplet superconductor. In order to complete the picture, further studies, for example tunneling experiments along the c-axis, are necessary.Google Scholar
  66. 70.
    W.E. Pickett, Rev. Mod. Phys. 61, 433 (1989).ADSCrossRefGoogle Scholar
  67. 72.
    We assume that the Cu-spins are part of the p-d hybridized states.Google Scholar
  68. 73.
    V.J. Emery, Phys. Rev. Lett. 58, 2794 (1987).ADSCrossRefGoogle Scholar
  69. 74.
    J. Zaanen, G.A. Sawatzky, and J.W. Allen, Phys. Rev. Lett. 55, 418 (1985).ADSCrossRefGoogle Scholar
  70. 75.
    F.C. Zhang and T.M. Rice, Phys. Rev. B 37, 3759 (1988).ADSCrossRefGoogle Scholar
  71. 76.
    G. Baumgärtel, J. Schmalian, and K.H. Bennemann, Phys. Rev. B 48, 3983 (1993).ADSCrossRefGoogle Scholar
  72. 78.
    G. Kotliar, and A.E. Ruckenstein, Phys. Rev. Lett. 57, 1362 (1986).MathSciNetADSCrossRefGoogle Scholar
  73. 79.
    P. Monthoux and D. Pines, Phys. Rev. B 47, 6069 (1993).ADSCrossRefGoogle Scholar
  74. 80.
    N. E. Bickers, D. J. Scalapino, and S. R. White, Phys. Rev. Lett. 62, 961 (1989); N. E. Bickers and D. J. Scalapino, Ann. Phys. (N.Y.) 193, 206 (1989).ADSCrossRefGoogle Scholar
  75. 81.
    C.-H. Pao and N. E. Bickers, Phys. Rev. Lett. 72, 1870 (1994); Phys. Rev. B 51, 16310 (1995).ADSCrossRefGoogle Scholar
  76. 82.
    D. J. Scalapino, Phys. Rep. 250, 329 (1995).ADSCrossRefGoogle Scholar
  77. 83.
    P. Monthoux and D. J. Scalapino, Phys. Rev. Lett. 72, 1874 (1994).ADSCrossRefGoogle Scholar
  78. 84.
    T. Dahm and L. Tewordt, Phys. Rev. Lett. 74, 793 (1995).ADSCrossRefGoogle Scholar
  79. 85.
    M. Langer, J. Schmalian, S. Grabowski, and K.H. Bennemann, Phys. Rev. Lett. 75, 4508 (1995).ADSCrossRefGoogle Scholar
  80. 86.
    H.-B. Schüttler and C.-H. Pao, Phys. Rev. Lett. 75, 4504 (1995).ADSCrossRefGoogle Scholar
  81. 87.
    J. Schmalian, S. Grabowski, and K. H. Bennemann, Phys. Rev. B 56, R509 (1997).ADSCrossRefGoogle Scholar
  82. 88.
    L. Tewordt, J. Low Temp. Phys. 15, 349 (1974).ADSCrossRefGoogle Scholar
  83. 89.
    Y. Nambu, Phys. Rev. 117, 648 (1960).MathSciNetADSCrossRefGoogle Scholar
  84. 91.
    N. F Berk and J. R Schrieffer, Phys. Rev. Lett. 17, 433 (1966).ADSCrossRefGoogle Scholar
  85. 92.
    A. B. Migdal, Zh. Eksp. Teor. Fiz 34, 1438 (Soviet Phys.-JETP 34, 996 (1958)).Google Scholar
  86. 93.
    G. Grimvall, The Electron-Phonon Interaction in Metals, North Holland, Amsterdam (1981).Google Scholar
  87. 94.
    J.R Schrieffer, Theory of Superconductivity (Addison-Wesley, Redwood City, 1964)zbMATHGoogle Scholar
  88. 96.
    G. D. Mahan Many-Particle Physics (Plenum Press, New York, 1981)Google Scholar
  89. 97.
    S. Wermbter and L. Tewordt, Physica C 211, 132 (1993).ADSCrossRefGoogle Scholar
  90. 100.
    Y. M. Vilk and A.-M. S. Tremblay, J. Phys. I France 7, 1309 (1997).CrossRefGoogle Scholar
  91. 101.
    F. London and H. London, Proc. Roy. Soc. (London) A149, 71 (1935).ADSGoogle Scholar
  92. 103.
    B. Giovannini, and C. Berthod, Phys. Rev. B 63, 144516 (2001).ADSCrossRefGoogle Scholar
  93. 104.
    In analogy to ferrpmagnetism like in Ni we expect n s0/n s = 〈▽Φ(r, t)▽Φ(0)〉. Note, it is straightforward to map our electronic theory on a lattice (Wannier type representation) and then to derive from the product of the anomalous Green’s functions, {F · F*}, a contribution to the free energy of the form n s cos Θ ij as used by Chakraverty et al. [107]. Here, Θ ij is the angle between the phase of neighboring Cooper-pairs. Approximately, one has n s = n s0 ̄Θ ij, with ̄Θ ij = 1 for T < T c and ̄Θ ij = 0 for T > T c CrossRefGoogle Scholar
  94. 105.
    R. Manzke, R. Müller, C. Janowitz, M. Schneider, A. Krapf, and H. Dwelk, Phys. Rev. B 63, 100504 (2001).ADSCrossRefGoogle Scholar
  95. 107.
    B.K. Chakraverty, A. Taraphder, and M. Avignon, Physica C 235–240, 2323 (1994); B.K. Chakraverty, and T.V. Ramakrishnan, ibid, 282–287, 290 (1997).CrossRefGoogle Scholar
  96. 108.
    V.J. Emery and S.A. Kivelson, Nature (London) 374, 434 (1995).ADSCrossRefGoogle Scholar
  97. 109.
    M. V. FeigePmann, Zh. Eksp. Teo. Fiz. 76, 784 [Sov. Phys. JETP 49, 395 (1989)].Google Scholar
  98. 110.
    G. Blatter, M. V. Feigel’mann, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).ADSCrossRefGoogle Scholar
  99. 111.
    V. L. Berezinskii, Zh. Eksp. Teo. Fiz. 61, 1144 (1971) [Sov. Phys. JETP 34, 610 (1972)]; J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973); J. M. Kosterlitz, ibid 7, 1046 (1974).Google Scholar
  100. 112.
    M. R. Beasley, J.E. Mooij, and T. P. Orlando, Phys. Rev. Lett. 42, 1165 (1979); S. Doniach and B. A. Hubermann, Phys. Rev. Lett. 42, 1169 (1979); B. I. Halperin and D. R. Nelson, J. Low Temp. Phys. 36, 599 (1979); L. A. Turkevich, J. Phys. C 12, L385 (1979).ADSCrossRefGoogle Scholar
  101. 113.
    P. Minnhagen, Rev. Mod. Phys. 59, 1001 (1987).ADSCrossRefGoogle Scholar
  102. 114.
    A. Kovner and B. Rosenstein, Phys. Rev. B 42, 4748 (1990).ADSCrossRefGoogle Scholar
  103. 116.
    C. Timm, D. Manske, and K. H. Bennemann, Phys. Rev. B 66, 094515 (2002).ADSCrossRefGoogle Scholar
  104. 118.
    D. Manske and K. H. Bennemann, Physica C 341–348, 83–86 (2000); D. Manske, T. Dahm, and K.H. Bennemann, Phys. Rev. B 64, 144520 (2001).CrossRefGoogle Scholar
  105. 119.
    J. Bardeen and M. J. Stephen, Phys. Rev. 140, 1197A (1965).ADSCrossRefGoogle Scholar
  106. 120.
    J. Schmalian, S. Grabowski, and K.H. Bennemann, Phys. Rev. B 56, R509 (1997).ADSCrossRefGoogle Scholar
  107. 121.
    F. Schäfer, C. Timm, D. Manske, and K. H. Bennemann, J. Low Temp. Phys. 117, 223 (1999).CrossRefGoogle Scholar
  108. 122.
    J.C. Swihart, D.J. Scalapino, and Y. Wada, Phys. Rev. Lett. 14, 106 (1965).ADSCrossRefGoogle Scholar
  109. 123.
    M.R. Norman, M. Randeria, B. Janko, and J.C. Campuzano, Phys. Rev. B 61, 14742 (2000).ADSCrossRefGoogle Scholar
  110. 124.
    R. Haslinger and A.V. Chubukov, cond-mat/0303140 (unpublished).Google Scholar
  111. 125.
    J.L. Talion and J.W. Loram, Physica C 349, 53 (2001).ADSCrossRefGoogle Scholar
  112. 126.
    W. W. Warren, R.E. Walstedt, G.F. Brennert, R.J. Cava, R. Tycko, R.F. Bell, and G. Dabbagh, Phys. Rev. Lett. 62, 1193 (1989).ADSCrossRefGoogle Scholar
  113. 127.
    H. J. Tao, F. Lu, and E. J. Wolf, Physica C 282–287, 1507 (1997).CrossRefGoogle Scholar
  114. 128.
    Ch. Renner, B. Revaz, J.-Y. Genoud, K. Kadowaki, and Ø. Fischer, Phys. Rev. Lett. 80, 149 (1998).ADSCrossRefGoogle Scholar
  115. 129.
    H. Takagi et al, Phys. Rev. Lett. 69, 2975 (1992).ADSCrossRefGoogle Scholar
  116. 130.
    D. Matthey, S. Gariglio, B. Giovannini, and J. M. Triscone, Phys. Rev. B 64, 024513 (2001).ADSCrossRefGoogle Scholar
  117. 131.
    N. Miyakawa, J.F. Zasadzinski, L. Ozyuzer, P. Guptasarma, D.G. Hinks, C. Kendziora, and K.E. Gray, Phys. Rev. Lett. 83, 1018 (1999).ADSCrossRefGoogle Scholar
  118. 132.
    P. C. E. Stamp, L. Forro, and C. Ayache Phys. Rev. B 38, 2847 (1988).ADSCrossRefGoogle Scholar
  119. 133.
    S. N. Artemenko, I. G. Gorlova, and Y. I. Latyshev, Phys. Lett. A 138, 428 (1989).ADSCrossRefGoogle Scholar
  120. 134.
    S. Martin, A.T. Fiory, R.M. Fleming, G.P. Espinosa, and A.S. Cooper, Phys. Rev. Lett. 62, 677 (1989).ADSCrossRefGoogle Scholar
  121. 135.
    N. C. Yeh and C. C. Tsuei, Phys. Rev. B 39, 9708 (1989).ADSCrossRefGoogle Scholar
  122. 136.
    T. Freltoft, H. J. Hensen, and P. Minnhagen, Solid State Comm. 78, 635 (1991).ADSCrossRefGoogle Scholar
  123. 137.
    A. K. Pradhan, S.J. Hazell, J.W. Hodby, C. Chen, Y. Hu, and B.M. Wanklyn, Phys. Rev. B 47, 11374 (1993).ADSCrossRefGoogle Scholar
  124. 138.
    Z. A. Xu, N. P. Ong, Y. Wang, T. Kakeshita, S. Uchida, Nature 406, 486 (2000)ADSCrossRefGoogle Scholar
  125. 139.
    Y. Wang, Z. A. Xu, T. Kekeshita, S. Uchida, S. Ono, Y. Ando, and N. P. Ong, cond-mat/0108242.Google Scholar
  126. 140.
    J. Adler, C. Holm, and W. Janke, Physica A 201, 581 (1993).ADSCrossRefGoogle Scholar
  127. 141.
    P. Olsson and P. Minnhagen, Physica Scripta 43, 203 (1991).ADSCrossRefGoogle Scholar
  128. 142.
    C. Meingast, V. Pasler, P. Nagel, A. Gykov, S. Tajima, and P. Olsson, Phys. Rev. Lett. 86, 1606 (2001).ADSCrossRefGoogle Scholar
  129. 143.
    F. Schäfer, D. Manske, and K.H. Bennemann, unpublished.Google Scholar
  130. 144.
    G. Baym and L. P. Kadanoff, Phys. Rev. 124, 287 (1961).MathSciNetADSzbMATHCrossRefGoogle Scholar
  131. 145.
    G. Baym, Phys. Rev. 127, 1391 (1962).MathSciNetADSzbMATHCrossRefGoogle Scholar
  132. 146.
    M. Sigrist and T.M. Rice, Z. Phys.B: Condensed Matter 68, 9 (1987).ADSCrossRefGoogle Scholar
  133. 147.
    H.-J. Kwon and A. T. Dorsey, Phys. Rev. B 59, 6438 (1999).ADSCrossRefGoogle Scholar
  134. 148.
    T. M. Rice, Phys. Rev. 140, A1889 (1965).MathSciNetADSCrossRefGoogle Scholar
  135. 149.
    T. Dahm, D. Manske, and L. Tewordt, Phys. Rev. B 54, 6640 (1996).ADSCrossRefGoogle Scholar
  136. 150.
    S. Grabowski, J. Schmalian, M. Langer, and K.H. Bennemann, Phys. Rev. B 55, 2784 (1997).ADSCrossRefGoogle Scholar
  137. 151.
    G. Hildebrand, E. Arrigoni, J. Schmalian, and W. Hanke, Eur. Phys. J. B 8, 195 (1999).ADSCrossRefGoogle Scholar
  138. 152.
    M.H. Cohen, L.M. Falicov, and J.C. Phillips, Phys. Rev. Lett. 8, 316 (1962).ADSzbMATHCrossRefGoogle Scholar
  139. 153.
    L. AlfF, Y. Krockenberger, B. Welter, R. Gross, D. Manske, and M. Naito, Nature 422, 698 (2003).ADSCrossRefGoogle Scholar
  140. 155.
    A. Damascelli et al, Phys. Rev. Lett. 85, 5194 (2000).ADSCrossRefGoogle Scholar
  141. 156.
    A. Liebsch, and A. Lichtenstein, Phys. Rev. Lett. 84, 1591 (2000)ADSCrossRefGoogle Scholar
  142. 157.
    I.I. Mazin and D.J. Singh, Phys. Rev. Lett. 82, 4324 (1999).ADSCrossRefGoogle Scholar
  143. 158.
    K.K. Ng, and M. Sigrist, Europhys. Lett. 49, 473 (2000).ADSCrossRefGoogle Scholar
  144. 160.
    D. K. Morr, P. F. Trautmann, and M. J. Graf, Phys. Rev. Lett. 86, 5978 (2001).ADSCrossRefGoogle Scholar
  145. 161.
    K. Ishida, H. Mukuda, Y. Minami, Y. Kitaoka, Z.Q. Mao, H. Fukazawa, and Y. Maeno, Phys. Rev. B 64, 100501(R) (2001).ADSGoogle Scholar
  146. 162.
    T. Mizokawa, L.H. Tjeng, G.A. Sawatzky, G. Ghiringhelli, O. Tjernberg, N.B. Brookes, H. Fukazawa, S. Nakatsuji, and Y. Maeno, Phys. Rev. Lett. 87, 077202 (2001).ADSCrossRefGoogle Scholar
  147. 163.
    H. Kontani, and K. Ueda, Phys. Rev. Lett. 80, 5619 (1998).ADSCrossRefGoogle Scholar
  148. 164.
    K. Kuroki, M. Ogata, R. Arita, and H. Aoki, Phys. Rev. B 63, 060506(R) (2001).ADSGoogle Scholar
  149. 165.
    Z.Q. Mao, Y. Maeno, Y. Mori, S. Sakita, S. Nimori, and M. Udagawa, Phys. Rev. B 63, 144514 (2001).ADSCrossRefGoogle Scholar
  150. 166.
    D. M. King, Z.-X. Shen, D.S. Dessau, B.O. Wells, W.E. Spicer, A.J. Arko, D.S. Marshall, J. DiCarlo, A.G. Loeser, C.H. Park, E.R. Ratner, J.L. Peng, Z.Y. Li, and R.L. Greene, Phys. Rev. Lett. 70, 3159 (1993).ADSCrossRefGoogle Scholar
  151. 167.
    G. Baumgärtel, J. Schmalian, and K.H. Bennemann, Phys. Rev. B 48, 3983 (1993).ADSCrossRefGoogle Scholar
  152. 168.
    C. Timm and K.H. Bennemann, Phys. Rev. Lett. 84, 4994 (2000).ADSCrossRefGoogle Scholar
  153. 169.
    T. Valla, A.V. Fedorov, P.D. Johnson, and S.L. Hulbert, Phys. Rev. Lett. 82, 2179 (1999).ADSCrossRefGoogle Scholar
  154. 170.
    J. Ruvalds, CT. Rieck, S. Tewari, J. Thoma, and A. Virosztek, Phys. Rev. B 51, 3797 (1995).ADSCrossRefGoogle Scholar
  155. 171.
    Z. X. Shen, A. Lanzara, and N. Nagaosa, preprint cond-mat/0102244 (unpublished).Google Scholar
  156. 172.
    J.L. Talion, C. Bernhard, H. Shaked, R.L. Hittermann, and J.D. Jorgensen, Phys. Rev. B 51, 12911 (1995).ADSCrossRefGoogle Scholar
  157. 173.
    C. Bernhard, J.L. Talion, Th. Blasisus, A. Golnik, and Ch. Niedermeyer, Phys. Rev. Lett. 86, 1614 (2001).ADSCrossRefGoogle Scholar
  158. 174.
    T. Nomura and K. Yamada, J. Phys. Soc. Jpn. 69, 1856 (2000); ibid, condmat/0203453 (unpublished).ADSCrossRefGoogle Scholar
  159. 175.
    K. Kuroki, M. Ogata, R. Arita, and H. Aoki, Phys. Rev. B 63, 060506 (2001).ADSCrossRefGoogle Scholar
  160. 176.
    T. Imai et al., Phys. Rev. Lett. 81, 3006 (1998).ADSCrossRefGoogle Scholar
  161. 177.
    M. Braden, Y. Sidis, P. Bourges, P. Pfeuty, J. Kulda, Z. Mao, and Y. Maeno, cond-mat/0206304 (unpublished).Google Scholar
  162. 178.
    J.R. Schrieffer, Theory of superconductivity (Addison-Wesley, 1988).Google Scholar
  163. 179.
    T.E. Mason, A. Schröder, G. Aeppli, H.A. Mook, and S.M. Hayden, Phys. Rev. Lett. 77, 1604 (1996).ADSCrossRefGoogle Scholar
  164. 180.
    B. Lake, G. Aeppli, T.E. Mason, A. Schroder, D.F McMorrow, K. Lefmann, M. Isshiki, M. NO’Hara, H. Takagi, and S.M. Haydon, Nature (London) 400, 43 (1999).ADSCrossRefGoogle Scholar
  165. 181.
    D. Manske, I. Eremin, and K.H. Bennemann, Phys. Rev. B 63, 054517 (2001).ADSCrossRefGoogle Scholar
  166. 182.
    A.V. Chubukov, D. Pines, and J. Schmalian, in The Physics of Superconductors Voll (Edts. K.H. Bennemann, J.B. Ketterson, Springer 2002).Google Scholar
  167. 183.
    A. Ino, C. Kim, M. Nakamura, T. Yoshida, T. Mizokawa, A. Fujimori, Z.-X. Shen, T. Kakeshita, H. Eisaki, and S. Uchida, Phys. Rev. B 65, 094504 (2002).ADSCrossRefGoogle Scholar
  168. 184.
    Ch. Renner, B. Revaz, J.-Y. Genoud, K. Kadowaki, and O. Fischer, Phys. Rev. Lett. 80, 149 (1998).ADSCrossRefGoogle Scholar
  169. 185.
    G.V.M. Williams, J.L. Talion, and J.W. Loram, Phys. Rev. B 58, 15053 (1998).ADSCrossRefGoogle Scholar
  170. 186.
    G. Baumgärtel, J. Schmalian, and K.H. Bennemann, Phys. Rev. B 48, 3983 (1993).ADSCrossRefGoogle Scholar
  171. 187.
    D. Manske, I. Eremin, and K.H. Bennemann, Phys. Rev. B 62, 13922 (2000).ADSCrossRefGoogle Scholar
  172. 188.
    T.S. Nunner, J. Schmalian, and K.H. Bennemann, Phys. Rev. B 59, 8859 (1999).ADSCrossRefGoogle Scholar
  173. 189.
    S.V. Borisenko, A.A. Kordyuk, T.K. Kim, A. Koitzsch, M. Knupfer, M.S. Golden, J. Fink, M. Eschrig, H. Berger, and R. Follath, Phys. Rev. Lett. 90, 207001 (2003).ADSCrossRefGoogle Scholar
  174. 190.
    Z.M. Yusof, B.O. Wells, T. Valla, A.V. Fedorov, P.D. Johnson, Q. Li, C. Kendziora, S. Jian, and D. G. Hinks, Phys. Rev. Lett. 88, 167006 (2002).ADSCrossRefGoogle Scholar
  175. 191.
    A.V. Puchkov, D.N. Basov, and T. Timusk, J. Phys. Condens. Matter 8, 10049 (1996).ADSCrossRefGoogle Scholar
  176. 192.
    E.F. Paulus et al., Solid State Commun. 73, 791 (1990).ADSCrossRefGoogle Scholar
  177. 193.
    H. Takagi, S. Uchida, and Y. Tokura, Phys. Rev. Lett. 62, 1197 (1989).ADSCrossRefGoogle Scholar
  178. 194.
    G. Liang, J. Chen, M. Croft, K.V. Ramanujachary, M. Greenblatt, and M. Hegde, Phys. Rev. B 40, 2646 (1989).ADSCrossRefGoogle Scholar
  179. 195.
    V.J. Emery and S.A. Kivelson, Nature 374, 434 (1995).ADSCrossRefGoogle Scholar
  180. 196.
    S. Doniach and M. Inui, Phys. Rev. B 41, 6668 (1990).ADSCrossRefGoogle Scholar
  181. 197.
    G.D. Mahan, Many-Particle Physics (Plenum Press, New-York and London, 1990).CrossRefGoogle Scholar
  182. 198.
    A.J. Layzer and D. Fay, Proc. Int. Low Temp. Conf, St. Andrews (LT-11), Academic Press, London, (1968); P.W. Anderson and W.F. Brinkmann, in “The physics of liquid and solid Helium”, eds. K.H. Bennemann and J.B. Ketterson (V. 2, Wiley-Interscience, 1978).Google Scholar
  183. 199.
    N.F. Berk and J.R. Schrieffer, Phys. Rev. Lett. 17, 433 (1966); D.J. Scalapino, Phys. Rep. 250, 329 (1995).ADSCrossRefGoogle Scholar
  184. 201.
    Y. Hasegawa, K. Machida, and M. Ozaki, J. Phys. Soc. Jpn. 69, 336 (2000).ADSCrossRefGoogle Scholar
  185. 202.
    M.E. Zhitomirsky, and T.M. Rice, Phys. Rev. Lett. 87, 057001 (2001).ADSCrossRefGoogle Scholar
  186. 203.
    J.F. Annett, G. Litak, B.L. Gyorffy, and K.I. Wysokinski, cond-mat/0109023 (unpublished).Google Scholar
  187. 204.
    G.M. Luke, Y. Fudamoto, K.M. Kojima, M.I. Larkin, J. Merrin, B. Nachumi, Y.J. Uemura, Y. Maeno, Z.Q. Mao, Y. Mori, H. Nakamura, and M. Sigrist, Nature 394, 558 (1998).ADSCrossRefGoogle Scholar
  188. 205.
    K. Ishida, H. Mukuda, Y. Kitaoka, A. Asayama, Z.Q. Mao, Y. Mori, and Y. Maeno, Nature 396, 658 (1998).ADSCrossRefGoogle Scholar
  189. 206.
    K.K. Ng and M. Sigrist, Europhys. Lett. 49, 473 (2000).ADSCrossRefGoogle Scholar
  190. 207.
    K.G. Sandeman, G.G. Lonzarich, A.J. Schofield, cond-mat/0210552 (unpublished).Google Scholar
  191. 208.
    K. Izawa, H. Takahashi, H. Yamaguchi, Y. Matsuda, M. Suzuki, T. Sasaki, T. Fukase, Y. Yoshida, R. Settai, and Y. Onuki, Phys. Rev. Lett. 86, 2653 (2001).ADSCrossRefGoogle Scholar
  192. 209.
    For more detailed discussion on the behavior of the spin susceptibility see D, Vollhardt and P. Woelfle, in “The superfluid phases of Helium 3” (Taylor and Francis, London, 1990).Google Scholar
  193. 210.
    M.A. Tanatar, M. Suzuki, S. Nagai, Z.Q. Mao, Y. Maeno, and T. Ishiguro, Phys. Rev. Lett. 86, 2649 (2001).ADSCrossRefGoogle Scholar
  194. 211.
    Y. Maeno, T.M. Rice, and M. Sigrist, Phys. Today 54, 42 (2001).ADSCrossRefGoogle Scholar
  195. 212.
    K. Yoshida, Y. Maeno, S. Nishizaki, and T. Fujita, Physica C 263, 519 (1996).ADSCrossRefGoogle Scholar
  196. 213.
    D.F. Agterberg, Phys. Rev. Lett. 80, 5184 (1998).ADSCrossRefGoogle Scholar
  197. 214.
    T.M. Riseman et al, Nature 396, 242 (1998).ADSCrossRefGoogle Scholar
  198. 215.
    Z.Q. Mao, Y. Maeno, S. Nishizaki, T. Akima, and T. Oshigiro, Phys. Rev. Lett. 84, 991 (2000).ADSCrossRefGoogle Scholar
  199. 216.
    D.F. Agterberg, Phys. Rev. B 64, 052502 (2001).ADSCrossRefGoogle Scholar
  200. 217.
    M. Sigrist, J. Phys. Soc. Jpn. 69, 1290 (2000).ADSCrossRefGoogle Scholar
  201. 218.
    S. Nakatsuji, and Y. Maeno, Phys. Rev. Lett. 84, 2666 (2000).ADSCrossRefGoogle Scholar
  202. 219.
    Z. Fang and K. Terakura, Phys. Rev. B 64, 020509(R) (2001).ADSCrossRefGoogle Scholar
  203. 220.
    J.F. Zasadzinski, this book, Vol.1.Google Scholar
  204. 221.
    D. Mandrus, L. Forro, and D. Koller, and L. Mihaly, Nature 351, 460 (1991).ADSCrossRefGoogle Scholar
  205. 222.
    J.F. Zasadzinski, Bull. Am. Phys. Soc. 37, 668 (1992).Google Scholar
  206. 223.
    S. Grabowski, Ph.D. thesis, Berlin (1996).Google Scholar
  207. 224.
    A.V. Chubukov, D. Pines, and J. Schmalian, this book, Vol.1, p. 495.Google Scholar
  208. 225.
    Finally, we would like to note also that recently it was argued S.V. Borisenko, T.K. Kim, K. Nenkov, M. Knupfer, M.S. Golden, J. Fink, H. Berger, R. Follath [227]} that in many cases the “dip feature’ seen in bilayer cuprates can be produced by the effects of bilayer splitting. However, recent studies of the one-layer Tlbased cuprates [228] confirm the presence of the ‘dip’ feature indicating its intrinsic relation to the ‘resonance’ peak. In order to identify the ‘dip’ position seen in bilayer cuprates and its relation to the ‘resonance’ peak further studies are necessary.Google Scholar
  209. 226.
    J.F. Zasadzinski, L. Qzyuzer, N. Miyakawa, K.E. Gray, D.G. Hinks, and C. Kendziora, Phys. Rev. Lett. 87, 067005 (2001).ADSCrossRefGoogle Scholar
  210. 227.
    A.A. Kordyuk, S.V. Borisenko, T.K. Kim, K. Nenkov, M. Knupfer, M.S. Golden, J. Fink, H. Berger, R. Follath, cond-mat/0110379.Google Scholar
  211. 228.
    J.F. Zasadzinski, L. Ozyuzer, N. Miyakawa, D.G. Hinks, and K. E. Gray, Physica C 341–348, 867 (2000).CrossRefGoogle Scholar
  212. 229.
    A.A. Kordyuk, S.V. Borisenko, M.S. Golden, S. Legner, K.A. Nenkov, M. Knupfer, J. Fink, H. Berger, L. Forro, and R. Follath, Phys. Rev. B 66, 014502 (2002).ADSCrossRefGoogle Scholar
  213. 230.
    Y.-D. Chuang, A.D. Gromko, A. Fedorov, Y. Aiura, K. Oka, Y. Ando, H. Eisaki, S.I. Uchida, and D.S. Dessau, Phys. Rev. Lett. 87, 117002 (2001).ADSCrossRefGoogle Scholar
  214. 231.
    D. L. Feng et al, Phys. Rev. Lett. 86, 5550 (2001).ADSCrossRefGoogle Scholar
  215. 232.
    N. Bulut and D.J. Scalapino, Phys. Rev. B 53, 5149 (1996).ADSCrossRefGoogle Scholar
  216. 233.
    J.M. Kosterlitz and D.J. Thouless, J. Phys. C 6, 1181 (1973).ADSCrossRefGoogle Scholar
  217. 234.
    P. Minnhagen, Phys. Rev. B 23, 5745 (1981).ADSCrossRefGoogle Scholar
  218. 235.
    D. R. Nelson and J. M. Kosterlitz, Phys. Rev. Lett. 39, 1201 (1977).ADSCrossRefGoogle Scholar
  219. 236.
    V. Ambegaokar, B. I. Halperin, D. R. Nelson, and E. D. Siggia, Phys. Rev. Lett. 40, 783 (1978); V. Ambegaokar and D. Seitel, Phys. Rev. B 19, 1667 (1979); V. Ambegaokar, Halperin, D. R. Nelson, and E. D. Siggia, Phys. Rev. Lett. 21, 1806 (1980).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • D. Manske
    • 1
  • I. Eremin
    • 1
  • K. H. Bennemann
    • 1
  1. 1.Institut für Theoretische PhysikFreie Universität BerlinGermany

Personalised recommendations