Advertisement

Concepts in High Temperature Superconductivity

  • E. W. Carlson
  • S. A. Kivelson
  • D. Orgad
  • V. J. Emery
Chapter

Abstract

It is the purpose of our study to explore the theory of high temperature superconductivity. Much of the motivation for this comes from the study of cuprate high temperature superconductors. However, we do not focus in great detail on the remarkable and exciting physics that has been discovered in these materials. Rather, we focus on the core theoretical issues associated with the mechanism of high temperature superconductivity. Although our discussions of theoretical issues in a strongly correlated superconductor are intended to be self contained and pedagogically complete, our discussions of experiments in the cuprates are, unfortunately, considerably more truncated and impressionistic.

Keywords

High Temperature Superconductivity Hubbard Model Charge Density Wave Charge Order Phase Fluctuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.R. Schrieffer, Theory of Superconductivity, Frontiers in Physics (Addison-Wesley) (1988).Google Scholar
  2. 2.
    J.G. Bednorz and K.A. Muller, “Possible high T c superconductivity in the Ba-La-Cu-O system,” Z. Phys. B, 64, 189–193 (1986).ADSCrossRefGoogle Scholar
  3. 3.
    V.J. Emery and S.A. Kivelson, “Superconductivity in bad metals,” Phys. Rev. Lett., 74, 3253–3256 (1995).ADSCrossRefGoogle Scholar
  4. 4.
    P.W. Anderson, “Experimental constraints on the theory of high-Tc super-conductivity,” Science, 256, 1526–1531 (1992).ADSCrossRefGoogle Scholar
  5. 5.
    P.W. Anderson, “The resonating valence bond state in La2CuO4 and super-conductivity,” Science, 235, 1169–1198 (1987).CrossRefGoogle Scholar
  6. 6.
    V.J. Emery, S.A. Kivelson, and J.M. Tranquada, “Stripe phases in high-temperature superconductors,” Proc. Natl. Acad. Sci., 96, 8814–8817 (1999).ADSCrossRefGoogle Scholar
  7. 7.
    P.A. Lee, “Pseudogaps in underdoped cuprates,” Physica C, 317–318, 194–204 (1999).CrossRefGoogle Scholar
  8. 8.
    L. Taillefer, B. Lussier, R. Gagnon, K. Behnia, and H. Aubin, “Universal heat conduction in YBa2Cu306.9,” Phys. Rev. Lett, 79, 483–486 (1997).ADSCrossRefGoogle Scholar
  9. 9.
    P.J. Turner, R. Harris, S. Kamal, M.E. Hayden, D.M. Broun, D.C. Morgan, A. HosScini, P. Dosanjh, J.S. Preston, R. Liang, D.A. Bonn, and W.N. Hardy, “Broadband microwave spectroscopy of d-wave quasiparticles in oxygen-ordered YBa2Cu3O6.50,” cond-mat/0111353, submitted to PRL (2002).Google Scholar
  10. 10.
    K.A. Moller, D.J. Baar, J.S. Urbach, R. Liang, W.N. Hardy, and A. Kapitulnik, “Magnetic field dependence of the density of states of YBa2Cu3O6.95 as determined from the specific heat,” Phys. Rev. Lett., 73, 2744–2747 (1994).ADSCrossRefGoogle Scholar
  11. 11.
    B. Revaz, J.-Y. Genoud, J.K. Neumaier, A. Erb, and E. Walker, “d-wave scaling relations in the mixed-state specific heat of YBa2Cu3O7,” Phys. Rev. Lett., 80, 3364–3368 (1998).ADSCrossRefGoogle Scholar
  12. 12.
    D.H. Lu, D.L. Feng, N.P. Armitage, K. M. Shen, A. Damascelli, C. Kim, F. Ronning, Z.X. Shen, D.A. Bonn, R. Liang, W.N. Hardy, A.I. Rykov, and S. Tajima, “Superconducting gap and strong in-plane anisotropy in untwinned YBa2Cu3O7−δ,” Phys. Rev. Lett, 86, 4370–4373 (2001).ADSCrossRefGoogle Scholar
  13. 13.
    D. Basov, R. Liang, D.A. Bonn, W.N. Hardy, B. Dabrowski, D.B.T.M. Quijada, J.P. Rice, D.M. Ginsberg, and T. Timusk, “In-plane anisotropy of the penetration depth in YBa2Cus3O7−x and YBa2Cu4O8,” Phys. Rev. Lett, 74, 598–601 (1995).ADSCrossRefGoogle Scholar
  14. 14.
    S. Chakravarty and S. Kivelson, “Electronic mechanism of superconductivity in the cuprates, C60, and polyacenes,” Phys. Rev. B, 64, 064511–064519 (2001).ADSCrossRefGoogle Scholar
  15. 15.
    V.J. Emery and S.A. Kivelson, “Frustrated electronic phase separation and high-temperature superconductors,” Physica C, 209, 597–621 (1993).ADSCrossRefGoogle Scholar
  16. 16.
    S. Caprara, C. Castellani, C. Di Castro, and M. Grilli, “Phase separation and superconductivity in strongly interacting electron systems,” Physica C, 235–240, 2155–2156 (1994).CrossRefGoogle Scholar
  17. 17.
    A. Moreo, S. Yunoki, and E. Dagotto, “Phase separation scenario for manganese oxides and related materials,” Science, 283, 2034–2040 (1999).CrossRefGoogle Scholar
  18. 18.
    P.W. Anderson, “A re-examination of concepts in magnetic metals: the ‘nearly antiferromagnetic Fermi liquid’,” Adv. Phys., 46, 3–11 (1997).ADSCrossRefGoogle Scholar
  19. 19.
    J.E. Hirsch, “Antiferromagnetism, localization, and pairing in a two-dimensional model for CuO2,” Phys. Rev. Lett, 59, 228–231 (1987).ADSCrossRefGoogle Scholar
  20. 20.
    V.J. Emery, S.A. Kivelson, and O. Zachar, “Spin-gap proximity effect mechanism of high-temperature superconductivity,” Phys. Rev. B, 56, 6120–6147 (1997).ADSCrossRefGoogle Scholar
  21. 21.
    S. Chakravarty, A. Sudbo, P.W. Anderson, and S. Strong, “Interlayer tunneling and gap anisotropy in high-temperature superconductors,” Science, 261, 337–340 (1993).ADSCrossRefGoogle Scholar
  22. 22.
    E. Demler and S.-C. Zhang, “Quantitative test of a microscopic mechanism of high-temperature superconductivity,” Nature, 396, 733–737 (1998).ADSCrossRefGoogle Scholar
  23. 23.
    A.H. Castro Neto and F. Guinea, “Superconductivity, Josephson coupling, and order parameter symmetry in striped cuprates,” Phys. Rev. Lett, 80, 4040–4043 (1998).ADSCrossRefGoogle Scholar
  24. 24.
    J.E. Hirsch, “The true colors of cuprates,” Science, 295, 2226–2227 (2002).CrossRefGoogle Scholar
  25. 25.
    V.J. Emery, S.A. Kivelson, and O. Zachar, “Classification and stability of phases of the multicomponent one-dimensional electron gas,” Phys. Rev. B, 59, 15641–15653 (1999).ADSCrossRefGoogle Scholar
  26. 26.
    D.J. Scalapino, “The 2-leg Hubbard ladder: Computational studies of new materials,” cond-mat/0109125 (2001).Google Scholar
  27. 27.
    H.J.A. Molegraaf, C. Presura, D. van der Marel, P.H. Kes, and M. Li, “Superconductivity-induced transfer of in-plane spectral weight in Bi2Sr2CaCu2O8+δ,” Science, 295, 2239–2241 (2002).ADSCrossRefGoogle Scholar
  28. 28.
    A.F. Santander-Syro, R.P.S.M. Lobo, N. Bontemps, Z. Konstantinovic, Z.Z. Li, and H. Raffy, “Pairing in cuprates from high energy electronic states,” cond-mat/0111539 (2001).Google Scholar
  29. 29.
    P. Monthoux, A.V. Balatsky, and D. Pines, “Toward a theory of high-temperature superconductivity in the antiferromagnetically correlated cuprate oxides,” Phys. Rev. Lett, 67, 3448–3451 (1991).ADSCrossRefGoogle Scholar
  30. 30.
    N. Bulut and D.J. Scalapino, “d(x2y 2) symmetry and the pairing mechanism,” Phys. Rev. B, 54, 14971–14973 (1996).ADSCrossRefGoogle Scholar
  31. 31.
    D.J. Scalapino, “Superconductivity and spin fluctuations,” J. Low Temp. Phys., 117, 179–188 (1999), international Conference on Physics and Chemistry of Molecular and Oxide Superconductors. MOS’99, Stockholm, Sweden, 28 July–2 Aug. 1999. Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar
  32. 32.
    R.J. Radtke, S. Ullah, K. Levin, and N.R. Norman, “Constraints on superconducting transition temperatures in the cuprates: antiferromagnetic spin fluctuations,” Phys. Rev. B, 46, 11975–11985 (1992).ADSCrossRefGoogle Scholar
  33. 33.
    CM. Varma, J. Zaanen, and K. Raghavachari, “Superconductivity in the fullerenes,” Science, 254, 989–992 (1991).ADSCrossRefGoogle Scholar
  34. 34.
    M. Schlüter, M. Lannoo, M. Needels, G.A. Baraff, and D. Tomanek, “Electronphonon coupling and superconductivity in alkali-intercalated C60 solid,” Phys. Rev. Lett., 68, 526–529 (1992).ADSCrossRefGoogle Scholar
  35. 35.
    P. Morel and P.W. Anderson, “Calculation of the superconducting state parameters with retarded electron-phonon interaction,” Physical Review, 125, 1263–1271 (1962).ADSCrossRefGoogle Scholar
  36. 36.
    J.R. Schrieffer, D.J. Scalapino, and J.W. Wilkins, “Effective tunneling density of states in superconductors,” Phys. Rev. Lett., 10 (1963).Google Scholar
  37. 37.
    S. Chakravarty, S. Khlebnikov, and S. Kivelson, “Comment on “Electronphonon coupling and superconductivity in alkali-intercalated C60 solid”,” Phys. Rev. Lett., 69, 212 (1992).ADSCrossRefGoogle Scholar
  38. 38.
    R. Shankar, “Renormalization-group approach to interacting fermions,” Rev. Mod. Phys., 66, 129–192 (1994).MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    J. Polchinski, “Renormalization and effective lagrangians,” Nucl. Phys. B, 231, 269–295 (1984).ADSCrossRefGoogle Scholar
  40. 40.
    Z.-X. Shen, D.S. Dessau, B.O. Wells, D.M. King, W.E. Spicer, A.J. Arko, D. Marshal, L.W. Lombardo, A. Kapitulnik, P. Dickinson, S. Doniach, J. Di-Carlo, A.G. Losser, and C.H. Park, “Anomalously large gap anisotropy in the a–b plane of bi2212,” Phys. Rev. Lett, 70, 1553–1556 (1993).ADSCrossRefGoogle Scholar
  41. 41.
    R. Micnas, J. Ranninger, and S. Robaszkiewicz, “Superconductivity in narrow-band systems with local nonretarded attractive interactions,” Rev. Mod. Phys., 62, 113–234 (1990).ADSCrossRefGoogle Scholar
  42. 42.
    T. Holstein, “Studies of polaron motion: I,” Annals of Physics., 8, 325–342 (1959).ADSzbMATHCrossRefGoogle Scholar
  43. 43.
    G. Gruner, Density waves in solids (Perseus Books Group) (2000).Google Scholar
  44. 44.
    G. Bilbro and W.L. McMillan, “Theoretical model of superconductivity and the martensitic transformation in A15 compounds,” Phys. Rev. B, 14, 1887–1892 (1976).ADSCrossRefGoogle Scholar
  45. 45.
    O. Zachar, S.A. Kivelson, and V.J. Emery, “Landau theory of stripe phases in cuprates and nickelates,” Phys. Rev. B, 57, 1422–1426 (1998).ADSCrossRefGoogle Scholar
  46. 46.
    J.M. Tranquada, “Phase separation, charge segregation and superconductivity in layered cuprates,” Neutron Scattering in Layered Copper-Oxide Superconductors, A. Furrer, Editor, 83, 225–260 (1998), kluwer, Dordrecht, The Netherlands.CrossRefGoogle Scholar
  47. 47.
    J.M. Tranquada, “Experimental evidence for topological doping in the cuprates,” AIP-Conference-Proceedings, 483, 336–340 (1999).ADSCrossRefGoogle Scholar
  48. 48.
    J. Zaanen, “High-temperature superconductivity: stripes defeat the Fermi liquid,” Nature, 404, 714 (2000).CrossRefGoogle Scholar
  49. 49.
    S. Sachdev, “Quantum criticality: competing ground states in low dimensions,” Science, 288, 475–480 (2000).ADSCrossRefGoogle Scholar
  50. 50.
    J. Orenstein and A.J. Millis, “Advances in the physics of high-temperature superconductivity,” Science, 288, 468–474 (2000).ADSCrossRefGoogle Scholar
  51. 51.
    G. Baskaran, “Competition between superconductivity and charge stripe order in high-Tc cuprates,” Mod. Phys. Lett. B, 14, 377–384 (2000).ADSCrossRefGoogle Scholar
  52. 52.
    S.A. Kivelson, E. Pradkin, and V.J. Emery, “Electronic liquid-crystal phases of a doped Mott insulator,” Nature, 393, 550–553 (1998).ADSCrossRefGoogle Scholar
  53. 53.
    C.M. Varma, “Non Fermi-liquid states and pairing of a general model of copper-oxide metals,” Phys. Rev. B, 55, 14554–14580 (1997).ADSCrossRefGoogle Scholar
  54. 54.
    S. Chakravarty, R.B. Laughlin, D.K. Morr, and C. Nayak, “Hidden order in the cuprates,” Phys. Rev. B, 63, 094503–094510 (2001).ADSCrossRefGoogle Scholar
  55. 55.
    I. Affleck and J.B. Marston, “Large-n limit of the Heisenberg-Hubbard model: Implications for high-T c superconductors,” Phys. Rev. B, 37, 3774–3777 (1988).ADSCrossRefGoogle Scholar
  56. 56.
    G. Kotliar, “Resonating valence bonds and d-wave superconductivity,” Phys. Rev. B, 37, 3664–3666 (1998).ADSCrossRefGoogle Scholar
  57. 57.
    D.A. Ivanov, P.A. Lee, and X.-G. Wen, “Staggered-vorticity correlations in a lightly doped t-J model: A variational approach,” Phys. Rev. Lett, 34, 3958–3961 (2000).ADSCrossRefGoogle Scholar
  58. 58.
    Q.H. Wang, J.H. Han, and D.H. Lee, “Staggered currents in the mixed state,” Phys. Rev. Lett, 87, 7004–7007 (2001).Google Scholar
  59. 59.
    T. Senthil and M.RA. Fisher, “Fractionalization in the cuprates: Detecting the topological order,” Phys. Rev. Lett, 86, 292–295 (2000).ADSCrossRefGoogle Scholar
  60. 60.
    S.A. Kivelson, G. Aeppli, and V.J. Emery, “Thermodynamics of the interplay between magnetism and high-temperature superconductivity,” Proc. Nat Acad. Sci., 98, 11903–11907 (2001).ADSzbMATHCrossRefGoogle Scholar
  61. 61.
    C. Castellani, C. Di Castro, and M. Grilli, “Singular quasiparticle scattering in the proximity of charge instabilities,” Phys. Rev. Lett, 75, 4650–4653 (1995).ADSCrossRefGoogle Scholar
  62. 62.
    S. Andergassen, S. Caprara, C. Di Castro, and M. Grilli, “Anomalous isotopic effect near the charge-ordering quantum criticality,” Phys. Rev. Lett, 87, 56401–56403 (2001).ADSCrossRefGoogle Scholar
  63. 63.
    A.V. Chubukov, S. Sachdev, and J. Ye, “Theory of two-dimensional quantum Heisenberg antiferromagnets with a nearly critical ground state,” Phys. Rev. B, 49, 11919–11961 (1994).ADSCrossRefGoogle Scholar
  64. 64.
    N.D. Mathur, F.M. Grosche, S.R. Julian, I.R. Walker, D.M. Freye, R.K.W. Haselwimmer, and G.G. Lonzarich, “Magnetically mediated superconductivity in heavy fermion compounds,” Nature, 394, 39–43 (1998).ADSCrossRefGoogle Scholar
  65. 66.
    S.A. Grigera, R.S. Perry, A.J. Schofield, M. Chiao, S.R. Julian, G.G. Lonzarich, S.I. Ikeda, Y. Maeno, A.J. Millis, and A.P. Mackenzie, “Magnetic fieldtuned quantum criticality in the metallic ruthenate Sr3Ru2O7,” Science, 294, 329–332 (2001).ADSCrossRefGoogle Scholar
  66. 67.
    J.R. Schrieffer, “Ward’s identity and the suppression of spin fluctuation superconductivity,” J. Low Temp. Phys., 99, 397–402 (1995).ADSCrossRefGoogle Scholar
  67. 68.
    R.B. Laughlin, “A critique of two metals,” Adv. Phys., 47, 943–958 (1998).ADSCrossRefGoogle Scholar
  68. 69.
    G. Baskaran, Z. Zou, and R.B. Laughlin, “The resonating valence bond state and high-T c superconductivity — a mean field theory,” Solid State Comm., 63, 973–976 (1987).ADSCrossRefGoogle Scholar
  69. 70.
    S.A. Kivelson, D.S. Rokhsar, and J.P. Sethna, “Topology of the resonating valence-bond state: Solitons and high-T c superconductivity,” Phys. Rev. B, 35, 8865–8868 (1987).ADSCrossRefGoogle Scholar
  70. 71.
    D.S. Rokhsar and S.A. Kivelson, “Superconductivity and the quantum hardcore dimer gas,” Phys. Rev. Lett, 61, 2376–2379 (1988).ADSCrossRefGoogle Scholar
  71. 72.
    N. Read and S. Sachdev, “Large-N expansion for frustrated quantum antiferromagnets,” Phys. Rev. Lett, 66, 1773–1776 (1991).ADSCrossRefGoogle Scholar
  72. 73.
    V. Kalmeyer and R.B. Laughlin, “Theory of the spin liquid state of the Heisenberg antiferromagnet,” Phys. Rev. B, 39, 11879–11899 (1989).ADSCrossRefGoogle Scholar
  73. 74.
    X.G. Wen, F. Wilcek, and A. Zee, “Chiral spin states and superconductivity,” Phys. Rev. B, 39, 11413–11423 (1989).ADSCrossRefGoogle Scholar
  74. 75.
    P.B. Wiegmann, “Superconductivity in strongly correlated electronic systems and confinement versus deconfinement phenomenon,” Phys. Rev. Lett, 60, 821–824 (1988).ADSCrossRefGoogle Scholar
  75. 76.
    L. Balents, M.P.A. Fisher, and C. Nayak, “Nodal liquid theory of the pseudogap phase of high-Tc superconductors,” Int. J. Mod. Phys. B, 12, 1033–1068 (1998).ADSCrossRefGoogle Scholar
  76. 77.
    L. Balents, M.P.A. Fisher, and C. Nayak, “Dual order parameter for the nodal liquid,” Phys. Rev. B, 60, 1654–1667 (1999).ADSCrossRefGoogle Scholar
  77. 78.
    T. Senthil and M.P.A. Fisher, “Z2 gauge theory of electron fractionalization in strongly correlated systems,” Phys. Rev. B, 62, 7850–7881 (2000).ADSCrossRefGoogle Scholar
  78. 79.
    X.G. Wen, “Topological orders in rigid states,” Int. J. Mod. Phys. B, 4, 239–271 (1990).ADSCrossRefGoogle Scholar
  79. 80.
    R. Moesner and S.L. Sondhi, “Resonating valence bond phase in the triangular lattice quantum dimer model,” Phys. Rev. Lett, 86, 1881–1884 (2001).ADSCrossRefGoogle Scholar
  80. 81.
    R. Moessner, S.L. Sondhi, and E. Pradkin, “Short-ranged resonating valance bond physics, quantum dimer models, and Ising gauge theories,” Phys. Rev. B, 65, 024504–024516 (2002).ADSCrossRefGoogle Scholar
  81. 82.
    T. Timusk and B. Statt, “The pseudogap in high-temperature superconductors: an experimental survey,” Rep. Prog. Phys., 62, 61–122 (1999).ADSCrossRefGoogle Scholar
  82. 83.
    J.L. Tallon and J.W. Loram, “The doping dependence of T*–what is the real high T c phase diagram?” Physica C, 349, 53–68 (2001).ADSCrossRefGoogle Scholar
  83. 84.
    A. Leggett, “Cuprate Superconductivity: Dependence of T c on the c-Axis Layering Structure,” Phys. Rev. Lett, 83, 392–395 (1999).ADSCrossRefGoogle Scholar
  84. 85.
    P.W. Anderson, The Theory of Superconductivity in the Cuprates (Princeton University Press, Princeton, NJ) (1997).Google Scholar
  85. 86.
    R.B. Laughlin, “Evidence for quasiparticle decay in photoemission from underdoped cuprates,” Phys. Rev. Lett, 79, 1726–1729 (1997).ADSCrossRefGoogle Scholar
  86. 87.
    D. Orgad, S.A. Kivelson, E.W. Carlson, V.J. Emery, X.J. Zhou, and Z. X. Shen, “Evidence of electron fractionalization from photoemission spectra in the high temperature superconductors,” Phys. Rev. Lett, 86, 4362–4365 (2001).ADSCrossRefGoogle Scholar
  87. 88.
    X.J. Zhou, P. Bogdanov, S.A. Kellar, T. Nöda, H. Eisaki, S. Uchida, Z. Hussain, and Z.-X. Shen, “One-dimensional electronic structure and suppression of d-Wave node state in La1.28Nd0.6Sr0.12CuO4,” Science, 286, 268–272 (1999).CrossRefGoogle Scholar
  88. 89.
    T. Valla, A.V. Fedorov, P.D. Johnson, Q. Li, G.D. Gu, and N. Koshizuka, “Temperature dependent scattering rates at the Fermi surface of optimally doped Bi2Sr2CaCu2O8+δ,” Phys. Rev. Lett, 85, 828–831 (2000).ADSCrossRefGoogle Scholar
  89. 90.
    A.V. Fedorov, T. Valla, P.D. Johnson, Q. Li, G.D. Gu, and N. Koshizuka, “Temperature dependent photoemission studies of optimally doped Bi2Sr2CaCu2O8,” Phys. Rev. Lett, 82, 2179–2182 (1999).ADSCrossRefGoogle Scholar
  90. 91.
    D.L. Feng, D.H. Lu, K.M. Shen, S. Oh, A. Andrus, J. O’Donnell, J. N. Eckstein, J. Shimoyama, K. Kishio, and Z. X. Shen, “On the similarity of the spectral weight pattern of Bi2Sr2CaCuO8+δ and La1.48Nd0.4Sr0.12CuO4,” Physica C, 341, 2097–2098 (2000).CrossRefGoogle Scholar
  91. 92.
    A.G. Loeser, Z.-X. Shen, M.C. Schabel, C. Kim, M. Zhang, A. Kapitulnik, and P. Fournier, “Temperature and doping dependence of the Bi-Sr-Ca-Cu-O electronic structure and fluctuation effects,” Phys. Rev. B, 56, 14185–14189 (1997).ADSCrossRefGoogle Scholar
  92. 93.
    C.M. Varma, P.B. Littlewood, S. Schmittrink, E. Abrahams, and A.E. Ruckenstein, “Phenomenology of the normal state of the Cu-O high-temperature superconductors,” Phys. Rev. Lett, 63, 1996–1999 (1989).ADSCrossRefGoogle Scholar
  93. 94.
    C.M. Varma, Z. Nussinov, and W. van Saarloos, “Singular Fermi liquids,” cond-mat/0103393 (2001).Google Scholar
  94. 95.
    E. Abrahams and C.M. Varma, “What angle-resolved photoemission experiments tell us about the microscopic theory for high-temperature superconductors,” Proc. Natl. Accad. Sci. (2000).Google Scholar
  95. 96.
    J.M. Harris, Z.-X. Shen, P.J. White, D.S. Marshall, M.C. Schabel, J.N. Eckstein, and I. Bozovic, “Anomalous superconducting state gap size versus Tc behavior in underdoped Bi2Sr2Ca1−xDyx;Cu2O8,” Phys. Rev. B, 54, R15665–R15668 (1996).ADSCrossRefGoogle Scholar
  96. 97.
    H. Ding, T. Yokoya, J.C. Campuzano, T. Takahashi, M. Randeria, M.R. Norman, and T.M. K.H.J. Giapintzakis, “Spectroscopic evidence for a pseudogap in the normal state of underdoped high-T c superconductors,” Nature, 382, 51–54 (1996).ADSCrossRefGoogle Scholar
  97. 98.
    C. Renner, B. Revaz, J.-Y. Genoud, K. Kadowaki, and O. Fischer, “Pseudogap precursor of the superconducting gap in under-and overdoped Bi2Sr2CaCu2O8+δ,” Phys. Rev. Lett, 80, 149–152 (1998).ADSCrossRefGoogle Scholar
  98. 99.
    Y. Ando, K. Segawa, S. Komiya, and A.N. Lavrov, “Electrical resistivity anisotropy from self-organized one-dimensionality in high-temperature superconductors,” Phys. Rev. Lett, 88, 137005–137008 (2002).ADSCrossRefGoogle Scholar
  99. 100.
    I. Maggio-Aprile, C. Renner, A. Erb, E. Walker, and O. Fischer, “Direct vortex lattice imaging and tunneling spectroscopy of flux lines on YBa2Cu3O7−δ,” Phys. Rev. Lett, 75, 2754–2757 (1995).ADSCrossRefGoogle Scholar
  100. 101.
    C. Howald, P. Fournier, and A. Kapitulnik, “Inherent inhomogeneities in tunneling spectra of Bi2Sr2CaCu2O8−x crystals in the superconducting state,” Phys. Rev. B, 64, 100504–100507 (2001).ADSCrossRefGoogle Scholar
  101. 102.
    S.H. Pan, J.P. O’Neal, R.L. Badzey, C. Chamon, H. Ding, J.R. Engelbrecht, Z. Wang, H. Eisaki, S. Uchida, A.K. Guptak, K.W. Ng, E.W. Hudson, K.M. Lang, and J.C. Davis, “Microscopic electronic inhomogeneity in the high T c superconductor Bi2Sr2CaCu2O8+x,” Nature, 413, 282–285 (2001).ADSCrossRefGoogle Scholar
  102. 103.
    J.E. Sonier, J.H. Brewer, R.F. Kiefl, D.A. Bonn, S.R. Dunsiger, W.N. Hardy, R. Liang, W.A. MacFarlane, R.I. Miller, and T.M. Riseman, “Measurements of the fundamental length scales in the vortex state of YBa2Cu3O6.60,” Phys. Rev. Lett, 79, 2875–2878 (1997).ADSCrossRefGoogle Scholar
  103. 104.
    C.A.R.S. de Melo, M. Randeria, and J.R. Engelbrecht, “Crossover from BCS to Bose superconductivity: Transition temperature and time-dependent Ginzburg-Landau theory,” Phys. Rev. Lett, 71, 3202–3205 (1993).ADSCrossRefGoogle Scholar
  104. 105.
    Q. Chen, I. Kosztin, B. Janko, and K. Levin, “Pairing fluctuation theory of superconducting properties in underdoped to overdoped cuprates,” Phys. Rev. Lett, 81, 4708–4711 (1998).ADSCrossRefGoogle Scholar
  105. 106.
    A.S. Alexandrov and N.F. Mott, “Thermal transport in a charged Bose gas and in high-T c oxides,” Phys. Rev. Lett, 71, 1075–1078 (1993).ADSCrossRefGoogle Scholar
  106. 107.
    A.S. Alexandrov and N.F. Mott, “Bipolarons,” Rep. Prog. Phys., 57, 1197–1288 (1994).ADSCrossRefGoogle Scholar
  107. 108.
    Y.J. Uemura, G.M. Luke, B.J. Sternlieb, J.H. Brewer, J.F. Carolan, W.N. Hardy, R. Kadono, J.R. Kempton, R.F. Kiefl, S.R. Kreitzman, P. Mulhern, T.M. Riseman, D.L. Williams, B.X. Yang, S. Uchida, H. Takagi, J. Gopalakrishnan, A.W. Sleight, M.A. Subramanian, C.L. Chien, M.Z. Cieplak, G. Xiao, V.Y. Lee, B.W. Statt, C.E. Stronach, W.J. Kossler, and X.H. Yu, “Universal correlations between Tc and ns / m* (carrier density over effective mass) in high-T c cuprate superconductors,” Phys. Rev. Lett, 62, 2317–2320 (1989).ADSCrossRefGoogle Scholar
  108. 109.
    E. Dagotto, T. Hotta, and A. Moreo, “Colossal magnetoresistant materials: the key role of phase separation,” Physics Reports, 344, 1–153 (2001).ADSCrossRefGoogle Scholar
  109. 110.
    J.M. Luttinger, “Fermi surface and some simple equilibrium properties of a system of interacting fermions,” Phys. Rev., 119, 1153–1163 (1960).MathSciNetADSzbMATHCrossRefGoogle Scholar
  110. 112.
    V.J. Emery and S.A. Kivelson, “Crossovers and phase coherence in cuprate superconductors,” J. Phys. Chem. Solids, 59, 1705–1710 (1998).ADSCrossRefGoogle Scholar
  111. 113.
    A.N. Kocharian, C. Yang, and Y.L. Chiang, “Self-consistent and exact studies of pairing correlations and crossover in the one-dimensional attractive Hubbard model,” Phys. Rev. B, 59, 7458–7472 (1999).ADSCrossRefGoogle Scholar
  112. 114.
    A.N. Kocharian, C. Yang, and Y.L. Chiang, “Phase diagram and BCS-Bose condensation crossover in ID and 2D Hubbard models,” Physica C, 364–365, 131–133 (2001).CrossRefGoogle Scholar
  113. 115.
    J.W. Allen, CG. Olson, M.B. Maple, J.-S. Kang, L.Z. Liu, J.-H. Park, R.O. Anderson, W.P. Ellis, JT. Market, Y. Dalichaouch, and R. Liu, “Resonant photoemission study of Nd2−xCexCuO4−y: Nature of electronic states near the Fermi level,” Phys. Rev. Lett, 64, 595–598 (1990).ADSCrossRefGoogle Scholar
  114. 116.
    R.O. Anderson, R. Cleassen, J.W. Allen, CG. Olson, C. Janowitz, L.Z. Liu, J.-H. Park, M.B. Maple, Y. Dalichaouch, M.C de Andrade, R.F. Jardim, E.A. Early, S.-J. Ho, and W.P. Ellis, “Luttinger Fermi surface of metallic gap spectral weight in Nd1.85Ce0.15CuO4−y,” Phys. Rev. Lett, 70, 3163–3166 (1993).ADSCrossRefGoogle Scholar
  115. 117.
    T. Watanabe, T. Takahashi, S. Suzuki, S. Sato, and H. Katayama-Yoshida, “Inverse-photoemission study of hole-concentration dependence of the electronic structure in Bi2Sr2Ca1−xYxCu2O8 (x=0.0−0.05),” Phys. Rev. B, 44, 5316–5317 (1991).ADSCrossRefGoogle Scholar
  116. 118.
    A. Ino, C Kim, M. Nakamura, T. Yoshida, T. Mizokawa, Z.-X. Shen, A. Fujimori, T. Kakeshita, H. Eisaki, and S. Uchida, “Electronic structure of La2−xSrxCuO4 in the vicinity of the superconductor-insulator transition,” Phys. Rev. B, 62, 4137–4141 (2000).ADSCrossRefGoogle Scholar
  117. 119.
    G. Rietveld, NY. Chen, and D. van der Marel, “Anomalous temperature dependence of the work function in YBa2Cu3O7−δ,” Phys. Rev. B, 69, 2578–2581 (1992), a rather larger value of the chemical potential shift at T c, but still very small compared to the bandwidth, was obtained from high precision measurements of the work function.ADSCrossRefGoogle Scholar
  118. 120.
    D.J. Scalapino, J.E. Loh, and J.E. Hirsch, “d-wave pairing near a spin density wave instability,” Phys. Rev. B, 34, 8190–8192 (1986).ADSCrossRefGoogle Scholar
  119. 121.
    W. Kohn and J.M. Luttinger, “New mechanism for superconductivity,” Phys. Rev. Lett, 15, 524–526 (1965).MathSciNetADSCrossRefGoogle Scholar
  120. 122.
    V.J. Emery, “Theory of high-T c superconductivity in oxides,” Phys. Rev. Lett, 58, 2794–2797 (1987).ADSCrossRefGoogle Scholar
  121. 123.
    G. Kotliar and J. Liu, “Superexchange mechanism and d-wave superconductivity,” Phys. Rev. B, 38, 5142–5145 (1988).ADSCrossRefGoogle Scholar
  122. 124.
    C. Gros, R. Joynt, and T.M. Rice, “Superconductivity instability in the large-U limit of the two-dimensional Hubbard model,” Z. Phys. B, 68, 425–432 (1987).ADSCrossRefGoogle Scholar
  123. 125.
    D.J. Scalapino, E. Loh, and J.E. Hirsch, “Fermi-surface instabilities and superconducting d-wave pairing,” Phys. Rev. B, 35, 6694–6698 (1987).ADSCrossRefGoogle Scholar
  124. 126.
    M. Grilli, R. Raimondi, C Castellani, C. Di Castro, and G. Kotliar, “Superconductivity, phase separation, and charge-transfer instability in the U=∞ limit of the three-band model of the CuO2 planes,” Phys. Rev. Lett, 67, 259–262 (1991).ADSCrossRefGoogle Scholar
  125. 127.
    A. Perali, C. Castellani, C. Di Castro, and M. Grilli, “d-wave superconductivity near charge instabilities,” Phys. Rev. B, 54, 16216–16225 (1996).ADSCrossRefGoogle Scholar
  126. 128.
    D.A. Wollman, D.J.V. Harlingen, W.C. Lee, D.M. Ginsberg, and A.J. Leggett, “Experimental determination of the superconducting pairing state in YBCO from phase coherence in YBCO-Pb SQUIDs,” Phys. Rev. Lett., 71, 2134–2147 (1993).ADSCrossRefGoogle Scholar
  127. 129.
    C.C. Tsuei, J.R. Kirtley, C.C. Chi, L.S. Yu-Jahnes, A. Gupta, T. Shaw, J.Z. Sun, and M.B. Ketchen, “Pairing symmetry and flux quantization in a tricrystal superconducting ring of YBa2Cu3O7−·,” Phys. Rev. Lett., 73, 593 (1994).ADSCrossRefGoogle Scholar
  128. 130.
    K.A. Kouznetsov, A.G. Sun, B. Chen, A.S. Katz, S.R. Bahcall, J. Clarke, R.C. Dynes, D.A. Gajewski, S.H. Han, M.B. Maple, J. Giapintzakis, J.-T. Kim, and D.M. Ginsberg, “C-axis Josephson tunneling between YBa2Cu3O7−· and Pb: direct evidence for mixed order parameter symmetry in a high-T c superconductor,” Phys. Rev. Lett., 79, 3050–3053 (1997).ADSCrossRefGoogle Scholar
  129. 131.
    R.A. Klemm, G. Arnold, A. Bille, and K. Scharnberg, “Theory of c-axis twist Bi2212 Josephson junctions: Strong evidence for incoherent tunneling and s-wave superconductivity,” Physica C 341, 1663–1664 (2000).ADSCrossRefGoogle Scholar
  130. 132.
    A. Damascelli, D.H. Lu, and Z.-X. Shen, “Prom Mott insulator to overdoped superconductor: Evolution of the electronic structure of cuprates studied by ARPES,” J. Electron Spectr. Relat. Phenom., 165, 117–118 (2001).Google Scholar
  131. 133.
    J.R. Schrieffer, S.C. Zhang, and X.G. Wen, “Spin-bag mechanism of high-temperature superconductivity,” Phys. Rev. Lett, 60, 944–947 (1988).ADSCrossRefGoogle Scholar
  132. 134.
    M. Granath, V. Oganesyan, S.A. Kivelson, E. Pradkin, and V.J. Emery, “Nodal quasiparticles in stripe ordered superconductors,” Phys. Rev. Lett., 87, 167011–167014 (2001).ADSCrossRefGoogle Scholar
  133. 135.
    M. Vojta, Y. Zhang, and S. Sachdev, “Quantum phase transitions in d-wave superconductors,” Phys. Rev. Lett, 85, 4940–4943 (2000).ADSCrossRefGoogle Scholar
  134. 136.
    M. Kugler, O. Fischer, C. Renner, S. Ono, and Y. Ando, “Scanning tunneling spectroscopy of Bi2Sr2CuO6 + δ: new evidence for the common origin of the pseudogap and superconductivity,” Phys. Rev. Lett, 86, 4911 (2001).ADSCrossRefGoogle Scholar
  135. 137.
    N.J. Curro, P.C. Hammel, B.J. Suh, M. Hucker, B. Buchner, U. Ammerahl, and A. Revcolevschi, “Inhomogeneous low frequency spin dynamics in La1.65Eu0.2Sr0.15CuO4,” Phys. Rev. Lett, 85, 642–645 (2000).ADSCrossRefGoogle Scholar
  136. 138.
    H. Takagi, B. Batlogg, H.L. Kao, J. Kwo, R.J. Cava, J.J. Krajewski, and W.F.P. Jr., “Systematic evolution of temperature-dependent resistivity in La2−xSrxCuO4,” Phys. Rev. Lett, 69, 2975–2978 (1992).ADSCrossRefGoogle Scholar
  137. 139.
    B. Bucher, P. Steiner, J. Karpinski, E. Kaldis, and P. Wächter, “Influence of the spin gap on the normal state transport in YBa2Cu4O8,” Phys. Rev. Lett, 70, 2012–2015 (1993).ADSCrossRefGoogle Scholar
  138. 140.
    K. Takenaka, K. Mizuhashi, H. Takagi, and S. Uchida, “Interplane charge transport in YBa2Cu3O7−y: Spin-gap effect on in-plane and out-of-plane resistivity,” Phys. Rev. B, 50, 6534–6537 (1994).ADSCrossRefGoogle Scholar
  139. 141.
    A.N. Lavrov, Y. Ando, and S. Ono, “Two mechanisms of pseudogap formation in Bi-2201: evidence from the c-axis magnetoresistance,” Euro. Phys. Lett, 57, 267–273 (2002).ADSCrossRefGoogle Scholar
  140. 142.
    J.W. Loram, K.A. Mirza, J.R. Cooper, and W.Y. Liang, “Electronic specific heat of YBa2Cu3O6+x from 1.8 to 300 K,” Phys. Rev. Lett, 71, 1740–1743 (1993).ADSCrossRefGoogle Scholar
  141. 143.
    J. Orenstein, G.A. Thomas, A.J. Millis, S.L. Cooper, D.H. Rapkine, T. Timusk, L.F. Schneemeyer, and J.V. Waszczak, “Frequency-and temperature-dependent conductivity in YBa2Cu3O6+x crystals,” Phys. Rev. B, 42, 6342–6362 (1990).ADSCrossRefGoogle Scholar
  142. 144.
    A. Puchkov, D.N. Basov, and T. Timusk, “Pseudogap state in high-T c superconductors: an infrared study,” J.Phys Cond. Matt, 8, 10049 (1996).ADSCrossRefGoogle Scholar
  143. 145.
    C.C. Homes, T. Timusk, R. Liang, D.A. Bonn, and W.N. Hardy, “Optical conductivity of c axis oriented YBa2Cu3O6.70: Evidence for a pseudogap,” Phys. Rev. Lett, 71, 1645–1648 (1993).ADSCrossRefGoogle Scholar
  144. 146.
    D. Basov, H.A. Mook, B. Dabrowski, and T. Timusk, “c-axis response of single-and double-layered cuprates,” Phys. Rev. B, 52, R13141–R13144 (1995).ADSCrossRefGoogle Scholar
  145. 147.
    M. Arai, T. Nishijima, Y. Endoh, T. Egami, S. Tajima, K. Tomimoto, Y. ShiO’Hara, M. Takahashi, A. Garrett, and S.M. Bennington, “Incommensurate spin dynamics of underdoped superconductor YBa2Cu3O6.7,” Phys. Rev. Lett, 83, 608–611 (1999).ADSCrossRefGoogle Scholar
  146. 148.
    P.C. Dai, H.A. Mook, S.M. Hayden, G. Aeppli, T.G. Perring, R.D. Hunt, and F. Dogan, “The magnetic excitation spectrum and thermodynamics of high T c superconductors,” Science, 284, 1344–1347 (1999).ADSCrossRefGoogle Scholar
  147. 149.
    B. Batlogg and V.J. Emery, “Crossovers in cuprates,” Nature, 382, 20 (1996).ADSCrossRefGoogle Scholar
  148. 150.
    X.G. Wen and P.A. Lee, “Theory of underdoped cuprates,” Phys. Rev. Lett, 76, 503–506 (1996).ADSCrossRefGoogle Scholar
  149. 151.
    E.W. Carlson, D. Orgad, S.A. Kivelson, and V.J. Emery, “Dimensional crossover in quasi-one-dimensional and high T c superconductors,” Phys. Rev. B, 62, 3422–3437 (2000).ADSCrossRefGoogle Scholar
  150. 152.
    B.G. Levi, Physics Today, 49, 17 (1996).Google Scholar
  151. 153.
    D.-H. Lee, “Superconductivity in a doped Mott insulator,” Phys. Rev. Lett, 84, 2694–2697 (2000).ADSCrossRefGoogle Scholar
  152. 154.
    S. Sachdev, “Kagome-acute-and triangular-lattice Heisenberg antiferromagnets: Ordering from quantum fluctuations and quantum-disordered ground states with unconfined bosonic spinons,” Phys. Rev. B, 45, 12377–12396 (1992).ADSCrossRefGoogle Scholar
  153. 155.
    M.U. Ubbens and P.A. Lee, “Superconductivity phase diagram in the gaugefield description of the t-J model,” Phys. Rev. B, 49, 6853–6863 (1994).ADSCrossRefGoogle Scholar
  154. 156.
    S.-C. Zhang, “SO(5) quantum nonlinear sigma model theory of the high-T c superconductivity,” Science, 275, 1089–1096 (1997).MathSciNetzbMATHCrossRefGoogle Scholar
  155. 157.
    S.-C. Zhang, J.-P. Hu, E. Arrigoni, W. Hanke, and A. Auerbach, “Projected SO(5) models,” Phys. Rev. B, 60, 13070–13084 (1999).ADSCrossRefGoogle Scholar
  156. 158.
    A. Auerbach and E. Altman, “Projected SO(5) Hamiltonian for cuprates and its applications,” Int. Jour. Mod. Phys. B, 15, 2509–2518 (2001).ADSCrossRefGoogle Scholar
  157. 159.
    J. Ye, “Thermally generated vortices, gauge invariance, and electron spectral function in the pseudogap regime,” Phys. Rev. Lett, 87, 227003–227006 (2001).ADSCrossRefGoogle Scholar
  158. 160.
    A. Abanaov, A.V. Chubukov, and J. Schmalian, “Fingerprints of spin mediated pairing in cuprates,” Journal of Electron Spectroscopy and Related Phenomena, 117–118, 129–151 (2001).CrossRefGoogle Scholar
  159. 161.
    M. Takigawa, A.P. Reyes, P.C. Hammel, J.D. Thompson, R.H. Heffner, Z. Fisk, and K.C. Ott, “Cu and O NMR studies of the magnetic properties of YBa2Cu3O6.63 (T c=62 K),” Phys. Rev. B, 43, 247–257 (1991).ADSCrossRefGoogle Scholar
  160. 162.
    H.A. Mook and F. Dogan, “Charge fluctuations in YBa2Cu3O7−x high-temperature superconductors,” Nature, 401, 145–148 (1999).ADSCrossRefGoogle Scholar
  161. 163.
    P. Dai, H.A. Mook, and F. Dogan, “Incommensurate magnetic fluctuations in YBa2Cu3O6.6,” Phys. Rev. B, 80, 1738–1741 (1998).ADSCrossRefGoogle Scholar
  162. 164.
    J.M. Tranquada, P.M. Gehring, G. Shirane, S. Shamoto, and M. Sato, “Neutron-scattering study of the dynamical spin susceptibility in YBa2Cu3O6.6,” Phys. Rev. B, 46, 5561–5575 (1992).ADSCrossRefGoogle Scholar
  163. 165.
    H.A. Mook, P. Dai, and F. Dogan, “Charge and spin structure in YBa2Cu3O6.35,” Phys. Rev. Lett, 88, 097004–097007 (2002).ADSCrossRefGoogle Scholar
  164. 166.
    S. Wakimoto, R.J. Birgeneau, M.A. Kastner, Y.S. Lee, R. Erwin, P.M. Gehring, S.H. Lee, M. Fujita, K. Yamada, Y. Endoh, K. Hirota, and G. Shirane, “Direct observation of a one-dimensional static spin modulation in insulating La1.95Sr0.05CuO4,” Phys. Rev. B, 61, 3699–3706 (2000).ADSCrossRefGoogle Scholar
  165. 167.
    H. Kimura, H. Matsushita, K. Hirota, Y. Endoh, K. Yamada, G. Shirane, Y.S. Lee, M.A. Kastner, and R.J. Birgeneau, “Incommensurate geometry of the elastic magnetic peaks in superconducting La1.88Sr0.12CuO4,” Phys. Rev. B, 61, 14366–14369 (2000).ADSCrossRefGoogle Scholar
  166. 168.
    B.O. Wells, Y.S. Lee, M.A. Kastner, R.J. Christianson, R.J. Birgeneau, K. Yamada, Y. Endoh, and G. Shirane, “Incommensurate spin fluctuations in high-transition temperature superconductors,” Science, 277, 1067–1071 (1997).Google Scholar
  167. 169.
    M. Matsuda, M. Fujita, K. Yamada, R.J. Birgeneau, Y. Endoh, and G. Shirane, “Electronic phase separation in lightly doped La2−xSrxCuO4,” Phys. Rev. B, 65, 134515 (2002).ADSCrossRefGoogle Scholar
  168. 170.
    P.A. Lee and N. Nagaosa, “Gauge theory of the normal state of high-T c superconductors,” Phys. Rev. B, 46, 5621–39 (1992).ADSCrossRefGoogle Scholar
  169. 171.
    C. Meingast, V. Pasler, P. Nagel, A. Rykov, S. Tajima, and P. Olsson, “Phase fluctuations and the pseudogap in YBa2Cu3O7−δ,” Phys. Rev. Lett, 86, 1606–1609 (2001).ADSCrossRefGoogle Scholar
  170. 172.
    J. Corson, R. Mallozzi, J. Orenstein, J.N. Eckstein, and I. Bozovic, “Vanishing of phase coherence in underdoped Bi2Sr2CaCu2O8+δ,” Nature, 398, 221–223 (1999).ADSCrossRefGoogle Scholar
  171. 173.
    D.A. Bonn, S. Kamal, A. Bonakdarpour, L. Ruixing, W.N. Hardy, C.C. Homes, and D.N.B.T. Timusk, “Surface impedance studies of YBCO,” Czech. J. Phys., 46, 3195–3202 (1996).CrossRefGoogle Scholar
  172. 174.
    V. Pasler, P. Schweiss, C. Meingast, B. Obst, H. Wuhl, A.I. Rykov, and S. Tajima, “3D-XY critical fluctuations of the thermal expansivity in detwinned YBa2Cu3O7−δ single crystals near optimal doping,” Phys. Rev. Lett, 81, 1094–1097 (1998).ADSCrossRefGoogle Scholar
  173. 175.
    C. Varma, “Pseudogap phase and the quantum-critical point in copper-oxide metals,” Phys. Rev. Lett, 83, 3538–3541 (1999).ADSCrossRefGoogle Scholar
  174. 176.
    S. Chakravarty, unpublished.Google Scholar
  175. 177.
    T. Valla, P.D. Johnson, Z. Yusof, B. Wells, Q. Li, S.M. Loureiro, R.J. Cava, M. Mikami, Y. Mori, M. Yoshimura, and T. Sasaki, “Coherence-incoherence and dimensional crossover in layered strongly correlated metals,” submitted to Science (2002).Google Scholar
  176. 178.
    J. Zaanen, “Superconductivity: self-organized one dimensionality,” Science, 286, 251–252 (1999).CrossRefGoogle Scholar
  177. 179.
    Preliminary evidence of the existence of nematic order in La2−xSrxCuO4 and YBa2Cu3O7-δ can be found in [99].Google Scholar
  178. 180.
    J.P. Eisenstein, M.P. Lilly, K.B. Cooper, L.N. Pfeiffer, and K.W. West, “New collective states of 2D electrons in high Landau levels,” Physica E, 9, 1–8 (2001).ADSCrossRefGoogle Scholar
  179. 181.
    M.M. Fogler, “Stripe and bubble phases in quantum Hall systems,” cond-mat/0111001 (2001).Google Scholar
  180. 182.
    M.M. Fogler, “Quantum Hall liquid crystals,” cond-mat/0111049 (2001).Google Scholar
  181. 183.
    V.J. Emery, “Theory of the one-dimensional electron gas,” in “Highly Conducting One-Dimensional Solids,” edited by J.T. Devreese, R.P. Evrard, and V.E. van Dören, 327 (Plenum, New York) (1979).Google Scholar
  182. 184.
    J. Solyom, “The Fermi gas model of one-dimensional conductors,” Adv. Phys., 28, 201–303 (1979).ADSCrossRefGoogle Scholar
  183. 185.
    E. Fradkin, Field Theories of Condensed Matter Systems (Addison-Wesley, Massachusetts) (1991).zbMATHGoogle Scholar
  184. 186.
    J. von Delft and H. Schoeller, “Bosonization for beginners — Refermionization for experts,” Annalen Phys., 7, 225–305 (1998).ADSzbMATHCrossRefGoogle Scholar
  185. 187.
    A.O. Gogolin, A.A. Nersesyan, and A.M. Tsvelik, Bosonization and Strongly Correlated Systems (Cambridge University Press, Cambridge) (1998).Google Scholar
  186. 188.
    H.J. Schulz, G. Guniberti, and P. Pieri, “Fermi liquids and Luttinger liquids,” cond-mat/9807366 (1998).Google Scholar
  187. 189.
    J. Voit, “One-dimensional Fermi liquids,” Rep. Prog. Phys., 58, 977–1116 (1995).ADSCrossRefGoogle Scholar
  188. 190.
    J.M. Kosterlitz and D.J. Thouless, “Ordering, metastability and phase transitions in two-dimensional systems,” J. Phys. C, 6, 1181–1203 (1973).ADSCrossRefGoogle Scholar
  189. 191.
    T. Giamarchi and H.J. Schulz, “Correlation functions of one-dimensional quantum systems,” Phys. Rev. B, 39, 4620–4629 (1989).ADSCrossRefGoogle Scholar
  190. 192.
    A. Luther and V.J. Emery, “Backward scattering in the one-dimensional electron gas,” Phys. Rev. Lett., 33, 589–592 (1974).ADSCrossRefGoogle Scholar
  191. 193.
    N. Kawakami and S.K. Yang, “Luttinger anomaly exponent of momentum distribution in the Hubbard chain,” Phys. Lett. A, 148, 359–362 (1990).ADSCrossRefGoogle Scholar
  192. 194.
    R.M. Noack, N. Bulut, D.J. Scalapino, and M.G. Zacher, “Enhanced {ze434-1} pairing correlations in the two-leg Hubbard ladder,” Phys. Rev. B, 56, 7162–7166 (1997).ADSCrossRefGoogle Scholar
  193. 195.
    T. Valla, A.V. Fedorov, P.D. Johnson, and S.L. Hulber, “Many-body effects in angle-resolved photoemission: Quasiparticle energy and lifetime of a Mo(110) surface state,” Phys. Rev. Lett, 83, 2085–2088 (1999).ADSCrossRefGoogle Scholar
  194. 196.
    A. Luther and I. Peschel, “Single-particle states, Kohn anomaly and pairing fluctuations in one dimension,” Phys. Rev. B, 9, 2911–2919 (1974).ADSCrossRefGoogle Scholar
  195. 197.
    V. Meden and K. Schönhammer, “Spectral functions for the Tomonaga-Luttinger model,” Phys. Rev. B, 46, 15753–15760 (1992).ADSCrossRefGoogle Scholar
  196. 198.
    J. Voit, “Charge-spin separation and the spectral properties of Luttinger liquids,” Phys. Rev. B, 47, 6740–6743 (1993).ADSCrossRefGoogle Scholar
  197. 199.
    D. Orgad, “Spectral functions for the Tomonga-Luttinger and Luther-Emery liquids,” Phil. Mag. B, 81, 377–398 (2001).ADSGoogle Scholar
  198. 200.
    G.-H. Gweon, J.W. Allen, and J.D. Denlinger, “Ubiquitous generalized spectral signatures of electron fractionalization in quasi-low dimensional metals,”Google Scholar
  199. 201.
    F.H.L. Essler and A.M. Tsvelik, “Weakly coupled one-dimensional Mott insulators,” Phys. Rev. B, 65, 115117–115129 (2002).ADSCrossRefGoogle Scholar
  200. 202.
    D.J. Scalapino, Y. Imry, and P. Pincus, “Generalized Ginzburg-Landau theory of pseudo-one-dimensional systems,” Phys. Rev. B, 11, 2042–2048 (1975).ADSCrossRefGoogle Scholar
  201. 203.
    E. Arrigoni, “Crossover to Fermiliquid behavior for weakly coupled Luttinger liquids in the anisotropic large-dimension limit,” Phys. Rev. B, 61, 7909–7929 (2000).ADSCrossRefGoogle Scholar
  202. 204.
    D.L. Feng, D.H. Lu, K.M. Shen, C. Kim, H. Eisaki, A. Damascelli, R. Yoshizaki, J. Shimoyama, K. Kishio, G.D. Gu, S. Oh, A. Andrus, J. O’Donnell, J.N. Eckstein, and Z.X. Shen, “Signature of superfluid density in the single-particle excitation spectrum of Bi2Sr2CaCu2)8+δ,” Science, 289, 277–281 (2000).ADSCrossRefGoogle Scholar
  203. 205.
    H. Ding, J.R. Engelbrecht, Z. Wang, J.C. Campuzano, S.-C. Wang, H.-B. Yang, R. Rogan, T. Takahashi, K. Kadowaki, and D.G. Hinks, “Coherent quasiparticle weight and its connection to high-Tc superconductivity from angle-resolved photoemission,” Phys. Rev. Lett., 87, 227001–227004 (2000).ADSCrossRefGoogle Scholar
  204. 206.
    S. Biermann, A. Georges, A. Lichtenstein, and T. Giamarchi, “Deconfinement transition and Luttinger to Fermi liquid crossover in quasi-one-dimensional systems,” Phys. Rev. Lett., 87, 276405–276408 (2001).ADSCrossRefGoogle Scholar
  205. 207.
    S. Biermann, A. Georges, T. Giamarchi, and A. Lichtenstein, “Quasi-one-dimensional organic conductors: dimensional crossover and some puzzles,” cond-mat/0201542 (2002).Google Scholar
  206. 208.
    L. Yin and S. Chakravarty, “Spectral anomaly and high temperature superconductors,” Int. J. Mod. Phys. B, 7, 805–845 (1996).ADSCrossRefGoogle Scholar
  207. 209.
    V.J. Emery, E. Fradkin, S.A. Kivelson, and T.C. Lubensky, “Quantum theory of the smectic metal state in stripe phases,” Phys. Rev. Lett., 85, 2160–2163 (2000).ADSCrossRefGoogle Scholar
  208. 210.
    A.H. Castro Neto, “Stripes, vibrations, and superconductivity,” Phys. Rev. B, 64, 104509–104535 (2001).ADSCrossRefGoogle Scholar
  209. 211.
    A. Vishwanath and D. Carpentier, “Two-Dimensional anisotropic non-Fermiliquid phase of coupled Luttinger liquids,” Phys. Rev. Lett., 86, 676–679 (2001).ADSCrossRefGoogle Scholar
  210. 212.
    R. Mukhopadhyay, C.L. Kane, and T.C. Lubensky, “Sliding Luttinger liquid phases,” Phys. Rev. B, 64, 045120–045137 (2001).ADSCrossRefGoogle Scholar
  211. 213.
    S.L. Sondhi and K. Yang, “Sliding phases via magnetic fields,” Phys. Rev. B, 63, 054430–054436 (2001).ADSCrossRefGoogle Scholar
  212. 214.
    S.A. Kivelson, “Electron fractionalization,” Synth. Met., 125 (2001).Google Scholar
  213. 215.
    T. Senthil and O. Motrunich, “Microscopic models for fractionalized phases in strongly correlated systems,” cond-mat/0201320 (2002).Google Scholar
  214. 216.
    P. Fazekas and P.W. Anderson, “On the ground state properties of the anisotropic triangular antiferromagnet. (Application of anisotropic Heisenberg model),” Phil. Mag., 30, 423–440 (1974).ADSCrossRefGoogle Scholar
  215. 217.
    R.B. Laughlin, “The relationship between high-temperature superconductivity and the fractional quantum Hall effect,” Science, 242, 525–533 (1988).ADSCrossRefGoogle Scholar
  216. 218.
    N. Read and B. Chakraborty, “Statistics of the excitations of the resonating-valence-bond state,” Phys. Rev. B, 40, 7133–7140 (1989).ADSCrossRefGoogle Scholar
  217. 219.
    V. Kalmeyer and R.B. Laughlin, “Equivalence of the resonating-valence-bond and fractional quantum Hall states,” Phys. Rev. Lett., 59, 2095–2098 (1987).ADSCrossRefGoogle Scholar
  218. 220.
    S.A. Kivelson, “Statistics of holons in the quantum hard-core dimer gas,” Phys. Rev. B, 39, 259–264 (1989).ADSCrossRefGoogle Scholar
  219. 221.
    E. Demier, C. Nayak, H.-Y. Kee, Y.B. Kim, and T. Senthil, “Fractionalization patterns in strongly correlated electron systems: Spin-charge separation and beyond,” cond-mat/0105446 (2001).Google Scholar
  220. 222.
    F.D.M. Haidane, “O(3) nonlinear sigma model and the topological distinction between integer-and half-integer-spin antiferromagnets in two dimensions,” Phys. Rev. Lett., 61, 1029–1032 (1988).MathSciNetADSCrossRefGoogle Scholar
  221. 223.
    S. Chakravarty, B.I. Halperin, and D. Nelson, “Two-dimensional quantum Heisenberg antiferromagnet at low temperatures,” Phys. Rev. B, 39, 2344–2371 (1989).ADSCrossRefGoogle Scholar
  222. 224.
    S. Chakravarty, B.I. Halperin, and D. Nelson, “Low-temperature behavior of two-dimensional quantum antiferromagnets,” Phys. Rev. Lett., 60, 1057–1060 (1988).ADSCrossRefGoogle Scholar
  223. 225.
    R. Coldea, S.M. Hayden, G. Aeppli, T.G. Perring, C.D. Frost, T.E. Mason, S.-W. Cheong, and Z. Fisk, “Spin waves and electronic interactions in La2CuO4,” Phys. Rev. Lett., 86 (2001).Google Scholar
  224. 226.
    R.J. Birgeneau, A. Aharony, N.R. Belk, F.C. Chou, Y. Endoh, M. Greven, S. Hosoya, M.A. Kastner, CH. Lee, Y.S. Lee, G. Shirane, S. Wakimoto, B.O. Wells, and K. Yamada, “Magnetism and magnetic fluctuations in La2−xSrxCuO4 for x=0 (2D antiferromagnet), 0.04 (3D spin glass) and x=0.15 (superconductor),” Jour. Phys. Chem. Solids, 56, 1912–1919 (1995).Google Scholar
  225. 227.
    A. Weidinger, C. Niedermayer, A. Golnik, R. Simon, E. Recknagel, J.I. Budnick, B. Chamberland, and C. Baines, “Observation of magnetic ordering in superconducting La2−xSrxCuO4 by muon spin rotation,” Phys. Rev. Lett., 62 (1989).Google Scholar
  226. 228.
    C. Niedermayer, C. Bernhard, T. Blasius, A. Golnik, A. Moodenbaugh, and J.I. Budnick, “Common phase diagram for antiferromagnetism in La2−xSrxCuO4 and Y1−x;CaxBa2Cu3O6 as seen by muon spin rotation,” Phys. Rev. Lett., 80 (1999).Google Scholar
  227. 229.
    C. Panagopoulos, J.L. Tallon, B.D. Rainford, T. Xiang, J.R. Cooper, and C.A. Scott, “Evidence for a generic novel quantum transition in high-Tc cuprates,” cond-mat/0204106 (2002).Google Scholar
  228. 230.
    P. Azaria, C. Hooley, P. Lecheminant, C. Lhuillier, and A.M. Tsvelik, “Kagome lattice antiferromagnet stripped to its basics,” Phys. Rev. Lett., 81, 1694–1697 (1998).ADSCrossRefGoogle Scholar
  229. 231.
    W. LiMing, G. Misguich, P. Sindzingre, and C. Lhuillier, “From Neel long-range order to spin liquids in the multiple-spin exchange model,” Phys. Rev. B, 62, 6372–6377 (2000).ADSCrossRefGoogle Scholar
  230. 232.
    G. Misguich, B. Bernu, C. Lhuillier, and C. Waldtmann, “Spin liquid in the multiple-spin exchange model on the triangular lattice: 3He on graphite,” Phys. Rev. Lett., 81, 1098–1101 (1998).ADSCrossRefGoogle Scholar
  231. 233.
    C. Lhuillier and G. Misguich, “Frustrated quantum magnets,” cond-mat/0109146 (2001).Google Scholar
  232. 234.
    S. Chakravarty, S.A. Kivelson, C. Nayak,, and K. Volker, “Wigner glass, spin liquids and the metal-insulator transition,” Phil. Mag. B, 79 (1999).Google Scholar
  233. 235.
    A.V. Chubukov, S. Sachdev, and T. Senthil, “Quantum phase transitions in frustrated quantumantiferromagnets,” Nucl. Phys. B, 426, 601–643 (1994).ADSCrossRefGoogle Scholar
  234. 236.
    R. Meservey and B.B. Schwartz, “equilibrium properties: comparison of experimental results with predictions of the BCS theory,” in “Superconductivity,” edited by R.D. Parks, vol. 1 (Marcel Deckker, Inc., New York, NY) (1969).Google Scholar
  235. 237.
    E.A. Lynton, Superconductivity (Methuen, London) (1962).zbMATHGoogle Scholar
  236. 238.
    T.P. Orlando, E.J. McNiff Jr., S. Foner, and M.R. Beasley, “Critical fields, Pauli paramagnetic limiting, and material parameters of Nb3Sn and V3Si,” Phys. Rev. B, 19, 4545–4561 (1979).ADSCrossRefGoogle Scholar
  237. 239.
    Y.G. Naidyuk and I.K. Yanson, “Point-contact spectroscopy of heavy-fermion systems,” J. Phys. Cond. Matt., 10, 8905–8938 (1998).ADSCrossRefGoogle Scholar
  238. 240.
    M.B. Maple, J.W. Chen, S.E. Lambert, Z. Fisk, J.L. Smith, H.R. Ott, J.S. Brooks, and M.J. Naughton, “Upper critical magnetic field of the heavy-fermion superconductor UBe13,” Phys. Rev. Lett., 54, 477–480 (1985).ADSCrossRefGoogle Scholar
  239. 241.
    F. Gross, K. Andres, and S. Chandrasekhar, “Experimental determination of the absolute value of the London penetration depth in the heavy fermion superconductors UBe13 and UPt3,” Physica C, 162–164, 419–420 (1989).CrossRefGoogle Scholar
  240. 242.
    F. Sharifi, A. Pargellis, R.C. Dynes, B. Miller, E.S. Hellman, J. Rosamilia, and E.H.H. Jr., “Electron tunneling in the high-Tc bismuthate superconductors,” Phys. Rev. B, 44, 12521–12524 (1991).ADSCrossRefGoogle Scholar
  241. 243.
    Y.J. Uemura, L.P. Le, G.M. Luke, B.J. Sternlieb, W.D. Wu, J.H. Brewer, T.M. Riseman, C.L. Seaman, M.B. Maple, M. Ishikawa, D.G. Hinks, J.D. Jorgensen, G. Saito, and H. Yamochi, “Basic similarities among cuprate, bismuthate, organic, chevrel-phase, and heavy-fermion superconductors shown by penetration-depth measurements,” Phys. Rev. Lett., 66, 2665–2668 (1991).ADSCrossRefGoogle Scholar
  242. 244.
    O. Gunnarsson, “Superconductivity in fullendes,” Rev. Mod. Phys., 69, 575–606 (1997).ADSCrossRefGoogle Scholar
  243. 245.
    Y.J. Uemura, A. Keren, L.P. Le, G.M. Luke, B.J. Sternlieb, W.D. Wu, J.H. Brewer, R.L. Whetten, S.M. Huang, S. Lin, R.B. Kaner, F. Diederich, S. Donovan, G. Gruner, and K. Holczer, “Magnetic-field penetration depth in K3C60 measured by muon spin relaxation,” Nature, 352, 605–607 (1991).ADSCrossRefGoogle Scholar
  244. 246.
    A.P. Ramirez, Superconductivity Rev., 1, 1–101 (1994).Google Scholar
  245. 247.
    A.S. Alexandrov, “Nonadiabatic polaronic superconductivity in MgB2 and cuprates,” Physica C, 363, 231–236 (2001).ADSCrossRefGoogle Scholar
  246. 248.
    H. Schmidt, J.F. Zasadzinski, K.E. Gray, and D.G. Hinks, “Evidence for two-band superconductivity from break junction tunneling on MgB2,” Phys. Rev. Lett., 88, 127002–127005 (2002).ADSCrossRefGoogle Scholar
  247. 249.
    A.V. Sologubenko, J. Jun, S.M. Kazakov, J. Karpinski, and H.R. Ott, “Temperature dependence and anisotropy of the bulk upper critical field Hc2 of MgB2,” Phys. Rev. B, 65, R180505–R180508 (2002).ADSCrossRefGoogle Scholar
  248. 250.
    T. Arai, K. Ichimura, K. Nomur, S. Takasaki, J. Yamada, S. Nakatsuji, and H. Anzai, “Superconducting and normal-state gaps in κ-(BEDT-TTF)2Cu(NCS)2 studied by STM spectroscopy,” Solid State Commun., 116, 679–682 (2000).ADSCrossRefGoogle Scholar
  249. 251.
    Y.J. Uemura, A. Keren, L.P. Le, G.M. Luke, W.D. Wu, Y. Kubo, T. Manako, Y. Shimakawa, M. Subramanian, J.L. Cobb, and J.T. Markert, “Magnetic-field penetration depth in Tl2Ba2CuO6+δ in the overdoped regime,” Nature, 364, 605–607 (1993).ADSCrossRefGoogle Scholar
  250. 252.
    R. Prozorov, R.W. Giannetta, A. Carrington, P. Fournier, R.L. Greene, P. Guptasarma, D.G. Hinks, and A.R. Banks, “Measurements of the absolute value of the penetration depth in high-T c superconductors using a low-T c superconductive coating,” Appl. Phys. Lett., 77, 4202 (2000).ADSCrossRefGoogle Scholar
  251. 253.
    A. Biswas, P. Fournier, V.N. Smolyaninova, R.C. Budhani, J.S. Higgins, and R.L. Greene, “Gapped tunneling spectra in the normal state of Pr2−xCexCuO4,” Phys. Rev. B, 64, 104519–104526 (2001).ADSCrossRefGoogle Scholar
  252. 254.
    Kajitani, K. Hiraga, S. Hosoya, and T.F.K.O.-I.Y. Syono, “Structural study of oxygen-saturated or quenched Pr2−xCexCuO4 with xi=0.15,” Physica C, 178, 397–404 (1991).ADSCrossRefGoogle Scholar
  253. 255.
    L. Ozyuzer, Z. Yusof, J.F. Zasadzinski, R. Mogilevsky, D.G. Hinks, and K.E. Gray, “Evidence of {ze438-1} symmetry in the tunneling conductance density of states of Tl2Ba2CuO6,” Phys. Rev. B, 57, R3245–R3248 (1998).ADSCrossRefGoogle Scholar
  254. 256.
    C. Niedermayer, C. Bernhard, U. Binninger, H. Glückler, J.L. Tallon, E.J. Ansaldo, and J.I. Budnick, “Muon spin rotation study of the correlation between Tc and ns/m* in overdoped Tl2Ba2CuO6+δ,” Phys. Rev. Lett., 71, 1764 (1993).ADSCrossRefGoogle Scholar
  255. 257.
    M. Kang, G. Blumberg, M.V. Klein, and N.N. Kolesnikov, “Resonance Raman study of the superconducting gap and low energy excitations in Tl2Ba2CuO6+δ superconductors,” Phys. Rev. Lett., 77, 4434 (1996).ADSCrossRefGoogle Scholar
  256. 258.
    N. Miyakawa, P. Guptasarma, J.F. Zasadzinski, D.G. Hinks, and K.E. Gray, “Strong dependence of the superconducting gap on oxygen doping from tunneling measurements on Bi2Sr2CaCu2O8−δ,” Phys. Rev. Lett., 80, 157–160 (1998).ADSCrossRefGoogle Scholar
  257. 259.
    M. Niderost, R. Frassanito, M. Saalfrank, A.C. Mota, G. Blatter, V.N. Zavaritsky, T.W. Li, and P.H. Kes, “Lower critical field Hci and barriers for vortex entry in Bi2Sr2CaCu2O8+δ crystals,” Phys. Rev. Lett., 81, 3231 (1998).ADSCrossRefGoogle Scholar
  258. 260.
    S.L. Lee, P. Zimmermann, H. Keller, M. Warden, I.M. Savic, R. Schauwecker, D. Zech, R. Cubitt, E.M. Forgan, P.H. Kes, T.W. Li, A.A. Menovsky, and Z. Tarnawski, “Evidence for flux-lattice melting and a dimensional crossover in single-crystal Bi2.15Sr1.85CaCu2O8+δ from muon spin rotation studies,” Phys. Rev. Lett., 71, 3862–3865 (1993).ADSCrossRefGoogle Scholar
  259. 261.
    M. Weber, P. Birrer, F.N. Gygax, B. Hitti, E. Lippelt, H. Maletta, and A. Schenck, “Measurements of the London penetration depth in Bi-based high-T c compounds,” Hyp. Int., 63, 93 (1993).ADSCrossRefGoogle Scholar
  260. 262.
    C. Bernhard, J.L. Tallon, T. Blasius, A. Golnik, and C. Neidermayer, “Anomalous peak in the superconducting condensate density of cuprate high-Tc superconductors at a unique doping state,” Phys. Rev. Lett., 86, 1614–1617 (2001).ADSCrossRefGoogle Scholar
  261. 263.
    C. Panagopoulos, J.R. Cooper, and T. Xiang, “Systematic behavior of the inplane penetration depth in d-wave cuprates,” Phys. Rev. B, 57, 13422–13425 (1998).ADSCrossRefGoogle Scholar
  262. 264.
    P. Zimmermann, H. Keller, S.I. Lee, I.M. Savic, M. Warden, D. Zech, R. Cubitt, E.M. Forgan, E. Kaldis, J. Karpinski, and C. Kruger, “Muon-spin-rotation studies of the temperature dependence of the magnetic penetration depth in the YBa2Cu3Ox family and related compounds,” Phys. Rev. B, 52, 541–552 (1995).ADSCrossRefGoogle Scholar
  263. 265.
    J.Y.T. Wei, C.C. Tsuei, P.J.M. van Bentum, Z. Xiong, C.W. Chu, and M.K. Wu, “Quasiparticle tunneling spectra of the high-Tc mercury cuprates: Implications of the d-wave two-dimensional van Hove scenario,” Phys. Rev. B, 57, 3650–3662 (1998).ADSCrossRefGoogle Scholar
  264. 266.
    L. Fäbrega, A. Calleja, A. Sin, S.P. nol, X. Obradors, J. Fontcuberta, and P.J.C. King, “Muon spin relaxation in Resubstituted HgA2Can−1CunO2n+2+x (A = Sr,Ba; n = 2,3) superconductors,” Phys. Rev. B, 60, 7579–7584 (1999).ADSCrossRefGoogle Scholar
  265. 267.
    A. Fujimori, A. Ino, T. Yoshida, T. Mizokawa, M. Nakamura, C. Kim, Z.X. Shen, T. Kakeshita, H. Eisaki, and S. Uchida, “Fermi surface, pseudogap and superconducting gap in La2−xSrxCuO4,” Physica C, 341–348, 2067 (2000).CrossRefGoogle Scholar
  266. 268.
    C. Panagopoulos, B.D. Rainford, J.R. Cooper, W. Lo, J.L. Tallon, J.W. Loram, J. Betouras, Y.S. Wang, and C.W. Chu, “Effects of carrier concentration on the superfluid density of high-Tc cuprates,” Phys. Rev. B, 60, 14617–14620 (1999).ADSCrossRefGoogle Scholar
  267. 269.
    P.G. Radaelli, D.G. Hinks, A.W. Mitchell, B.A. Hunter, J.L. Wagner, B. Dabrowski, K.G. Vandervoort, H.K. Viswanathan, and J.D. Jorgensen, “Structural and superconducting properties of La2−xSrxCuO4 as a function of Sr content,” Phys. Rev. B, 49, 4163–4175 (1994).ADSCrossRefGoogle Scholar
  268. 270.
    V.J. Emery and S.A. Kivelson, “Importance of phase fluctuations in superconductors with small superfluid density,” Nature, 374, 434–437 (1995).ADSCrossRefGoogle Scholar
  269. 271.
    L.M. Merchant, J. Ostrick, R.P.B. Jr., and R.C. Dynes, “Crossover from phase fluctuation to amplitude-dominated superconductivity: A model system,” Phys. Rev. B, 63, 134508–134514 (2001).ADSCrossRefGoogle Scholar
  270. 272.
    A.J. Rimberg, T.R. Ho, C. Kurdak, J. Clarke, K.L. Campman, and A.C. Gossard, “Dissipation-driven superconductor-insulator transition in a two-dimensional Josephson-junction array,” Phys. Rev. Lett., 78, 2632–2635 (1997).ADSCrossRefGoogle Scholar
  271. 273.
    A. Kapitulnik, N. Mason, S.A. Kivelson, and S. Chakravarty, “Effects of dissipation on quantum phase transitions,” Phys. Rev. B, 63, 125322–125333 (2001).ADSCrossRefGoogle Scholar
  272. 274.
    N. Mason and A. Kapitulnik, “True superconductivity in a two-dimensional superconducting-insulating system,” Phys. Rev. B, 64, 60504–60508 (2001).ADSCrossRefGoogle Scholar
  273. 275.
    E.W. Carlson, S.A. Kivelson, V.J. Emery, and E. Manousakis, “Classical phase fluctuations in high temperature superconductors,” Phys. Rev. Lett., 83, 612–615 (2000).ADSCrossRefGoogle Scholar
  274. 276.
    B.I. Spivak and S.A. Kivelson, “Aharonov-Bohm oscillations with period hc/4e and negative magnetoresistance in dirty superconductors,” Phys. Rev. B, 45, 10490–10495 (1992), electron correlations could change this assumption.CrossRefGoogle Scholar
  275. 277.
    P.M. Chaikin and T.C. Lubensky, Principles of condensed matter physics (Cambridge) (1995).Google Scholar
  276. 278.
    E. Roddick and D. Stroud, “Effect of phase fluctuations on the low-temperature penetration depth of high-Tc superconductors,” Phys. Rev. Lett., 74, 1430–1433 (1995).ADSCrossRefGoogle Scholar
  277. 279.
    M.W. Coffey, “Effect of superconductor phase fluctuations upon penetration depth,” Phys. Lett. A, 200, 195–200 (1995).ADSCrossRefGoogle Scholar
  278. 280.
    S. Kamal, D.A. Bonn, N. Goldenfeld, P.J. Hirschfeld, R. Liang, and W.N. Hardy, “Penetration depth measurements of 3D XY critical behavior in YBa2Cu3O6.95 crystals,” Phys. Rev. Lett., 73, 1845–1848 (1994).ADSCrossRefGoogle Scholar
  279. 281.
    S. Chakravarty, G. Ingold, S.A. Kivelson, and A. Luther, “Onset of global phase coherence in Josephson-junction arrays: a dissipative phase transition,” Phys. Rev. Lett., 56 (1986).Google Scholar
  280. 282.
    K.-H. Wagenblast, A.V. Otterlo, G. Schon, and G.T. Zimanyi, “Superconductor-insulator transition in a tunable dissipative environment,” Phys. Rev. Lett., 79 (1997).Google Scholar
  281. 283.
    S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, UK) (1999).Google Scholar
  282. 284.
    M.V. Feigel’man, A.I. Larkin, and M.A. Skvortsov, “Quantum superconductor-metal transition in a proximity array,” Phys. Rev. Lett., 86, 1869–1872 (2001).ADSCrossRefGoogle Scholar
  283. 285.
    B.I. Spivak, A. Zyuzin, and M. Hruska, “Quantum superconductor-metal transition,” Phys. Rev. B, 64, 132502–132505 (2001).ADSCrossRefGoogle Scholar
  284. 286.
    Y. Oreg and E. Demler, “Fermions and bosons in superconducting amorphous wires,” cond-mat/0106645 (2001).Google Scholar
  285. 287.
    L. Ozyuzer, J.F. Zasadzinski, and N. Miyakawa, “Tunneling spectra and superconducting gap in Bi2Sr2CaCu2O8+δ and Tl2Ba2CuO6+δ,” Int. J. Mod. Phys. B, 13, 3721–3724 (1999).ADSCrossRefGoogle Scholar
  286. 288.
    S. Doniach and M. Inui, “Long-range Coulomb interactions and the onset of superconductivity in the high-Tc materials,” Phys. Rev. B, 41, 6668–6678 (1990).ADSCrossRefGoogle Scholar
  287. 289.
    J.M. Harris, P.J. White, Z.-X. Shen, H. Ikeda, R. Yoshizaki, H. Eisaki, S. Uchida, W.D. Si, J.W. Xiong, Z.-X. Zhao, and D.S. Dessau, “Measurement of an anisotropic energy gap in single plane Bi2Sr2−xLaxCuO6+δ,” Phys. Rev. Lett., 79, 143–146 (1997).ADSCrossRefGoogle Scholar
  288. 290.
    T. Schneider and H. Keller, “Extreme type II superconductors. Universal properties and trends,” Physica, 207, 366–380 (1993).Google Scholar
  289. 291.
    F. a recent analysis of the doping dependence of ξ0 see Y. Ando and K. Segawa, “Magnetoresistance of untwinned YBa2Cu3Oy single crystals in a wide range of doping: anomalous hole-doping dependence of the coherence length,” Phys. Rev. Lett., 88, 167005 (2002).ADSCrossRefGoogle Scholar
  290. 292.
    C.P.B. W.N. Hardy, D. A. Bonn, and R. Liang, “Magnetic field dependence of lambda in YBa2Cu3O6.95: results as a function of temperature and field orientation,” Phys. Rev. Lett., 83, 3277–3280 (1999).ADSCrossRefGoogle Scholar
  291. 293.
    X.-G. Wen and P.A. Lee, “Theory of quasiparticles in the underdoped high-Tc superconducting state,” Phys. Rev. Lett., 80, 2193–2196 (1998).ADSCrossRefGoogle Scholar
  292. 294.
    A.J. Millis, S.M. Girvin, L.B. Ioffe, and A.I. Larkin, “Anomalous charge dynamics in the superconducting state of underdoped cuprates,” Jour. Phys. Chem. Solids, 59, 1742–1744 (1998).ADSCrossRefGoogle Scholar
  293. 295.
    L. Benfatto, S. Caprara, C. Castellani, A. Paramekanti, and M. Randeria, “Phase fluctuations, dissipation, and superfluid stiffness in d-wave superconductors,” Phys. Rev. B, 63, 174513–174521 (2001).ADSCrossRefGoogle Scholar
  294. 296.
    G.T. Zimanyi, S.A. Kivelson, and A. Luther, “Superconductivity from predominantly repulsive interactions in quasi one-dimensional systems,” Phys. Rev. Lett., 60, 2089–2092 (1988).ADSCrossRefGoogle Scholar
  295. 297.
    S.A. Kivelson and G.T. Zimanyi, “High temperature superconductors, RVB, and conducting polymers,” Molec. Cryst and Liq. Cryst, 160, 457–481 (1988).Google Scholar
  296. 298.
    A.M. Finkel’stein and S.A. Brazovsky, “Interchain coupling in linear conductors,” J. Phys. C, 14, 847–857 (1981).ADSCrossRefGoogle Scholar
  297. 299.
    S.A. Brazovsky and A.M. Finkel’stein, “The influence of phonons on the optical properties and conductivity of quasi-one-dimensional metals,” Solid State Comm., 38, 745 (1981).ADSCrossRefGoogle Scholar
  298. 300.
    S.A. Kivelson and M.I. Salkola, “Metal-non-metal transition in polyacetylene,” Synth. Met, 44, 281–291 (1991).CrossRefGoogle Scholar
  299. 301.
    G.G. Batrouni, R.T. Scalettar, G.T. Zimanyi, and A.P. Kampf, “Supersolids in the Bose-Hubbard Hamiltonian,” Phys. Rev. Lett., 74, 2527–2530 (1995), see also [502].ADSCrossRefGoogle Scholar
  300. 302.
    M.P.A. Fisher, P.B. Weichman, G. Grinstein, and D.S. Fisher, “Boson localization and the superfluid-insulator transition,” Phys. Rev. B, 40, 546–570 (1989).ADSCrossRefGoogle Scholar
  301. 303.
    C. Nayak and K. Shtengel, “Microscopic models of two-dimensional magnets with fractionalized excitations,” Phys. Rev. B, 64, 064422–064428 (2001).ADSCrossRefGoogle Scholar
  302. 304.
    R. Coldea, D.A. Tennant, A.M. Tsvelik, and Z. Tylczynski, “Experimental realization of a 2D fractional quantum spin liquid,” Phys. Rev. Lett., 86, 1335–1338 (2001).ADSCrossRefGoogle Scholar
  303. 305.
    S. Chakravarty, “Magnetic properties of La2CuO4,” (Addison-Wesley, Redwood City, CA, USA) (1990).Google Scholar
  304. 306.
    A.E. Sikkema, I. Affleck, and S.R. White, “Spin gap in a doped Kondo chain,” Phys. Rev. Lett., 79, 929–932 (1997).ADSCrossRefGoogle Scholar
  305. 307.
    O. Zachar, V.J. Emery, and S.A. Kivelson, “Exact results for a ID Kondo lattice from bosonization,” Phys. Rev. Lett, 77, 1342–1345 (1996).ADSCrossRefGoogle Scholar
  306. 308.
    O. Zachar, “Staggered liquid phases of the one-dimensional Kondo-Heisenberg lattice model,” Phys. Rev. B, 63, 205104–205113 (2001).ADSCrossRefGoogle Scholar
  307. 309.
    D.J. Scalapino and S.R. White, “Numerical results for the Hubbard model: implications for the high-T c pairing mechanism,” Foundations of Physics, 31, 27–39 (2001).CrossRefGoogle Scholar
  308. 310.
    F.D.M. Haldane, “Continuum dynamics of the 1-D Heisenberg antiferromagnet: identification with the 0(3) nonlinear sigma model,” Phys. Lett. A, 93, 464–468 (1983).MathSciNetADSCrossRefGoogle Scholar
  309. 311.
    S. Chakravarty, “Dimensional crossover in quantum antiferromagnets,” Phys. Rev. Lett, 77, 4446–4449 (1996).MathSciNetADSCrossRefGoogle Scholar
  310. 312.
    S.R. White, R.M. Noack, and D.J. Scalapino, “Resonating valence bond theory of coupled Heisenberg chains,” Phys. Rev. Lett, 73, 886–889 (1994).ADSCrossRefGoogle Scholar
  311. 313.
    D.J. Scalapino and S.A. Trugman, “Local antiferromagnetic correlations and {ze441-1} pairing,” Philos. Mag. B, 74, 607–610 (1996).CrossRefGoogle Scholar
  312. 314.
    M. Havilio and A. Auerbach, “Superconductivity and quantum spin disorder in cuprates,” Phys. Rev. Lett, 83, 4848–4851 (1999).ADSCrossRefGoogle Scholar
  313. 315.
    M. Havilio and A. Auerbach, “Correlations in doped antiferromagnets,” Phys. Rev. B, 62, 324–336 (2000).ADSCrossRefGoogle Scholar
  314. 316.
    S.R. White and D.J. Scalapino, “Superconductivity in ladders and coupled planes,” Phys. Rev. B, 45, 5744–5747 (1992).ADSCrossRefGoogle Scholar
  315. 317.
    D. Poilblanc, “Internal structure of the singlet {ze441-1} hole pair in an antiferromagnet,” Phys. Rev. B, 495, 1477–1479 (1993).Google Scholar
  316. 318.
    Y. Fang, A.E. Ruckenstein, E. Dagotto, and S. Schmitt-Rink, “Holes in the infinite-U Hubbard model: instability of the Nagaoka state,” Phys. Rev. B, 40, 7406–7409 (1989), see also [503].ADSCrossRefGoogle Scholar
  317. 319.
    D. Rokhsar, “Quadratic quantum antiferromagnets in the fermionic large-N limit,” Phys. Rev. B, 42, 2526–2531 (1990).MathSciNetADSzbMATHCrossRefGoogle Scholar
  318. 320.
    CM. Varma and A. Zawadowskii, “Scaling in an interacting two-component (valence-fluctuation) electron gas,” Phys. Rev. B, 32, 7399–7407 (1985).ADSCrossRefGoogle Scholar
  319. 321.
    H.-H. Lin, L. Balents, and M.RA. Fisher, “N-chain Hubbard model in weak coupling,” Phys. Rev. B, 56, 6569–6593 (1997).ADSCrossRefGoogle Scholar
  320. 322.
    S.R. White and D.J. Scalapino, “Density matrix renormalization group study of the striped phase in the 2D t-J model,” Phys. Rev. Lett, 80, 1272–1275 (1998).ADSCrossRefGoogle Scholar
  321. 323.
    S.R. White and D.J. Scalapino, “Energetics of domain walls in the 2D t-J model,” Phys. Rev. Lett, 81, 3227–3230 (1998).ADSCrossRefGoogle Scholar
  322. 324.
    S. Hellberg and E. Manousakis, “Phase separation at all interaction strengths in the t-J model,” Phys. Rev. Lett, 78, 4609–4612 (1997).ADSCrossRefGoogle Scholar
  323. 325.
    D. Poilblanc, O. Chiappa, J. Riera, S.R. White, and D.J. Scalapino, “Evolution of the spin gap upon doping a 2-leg ladder,” Phys. Rev. B, 62, R14633–R14636 (2000).ADSCrossRefGoogle Scholar
  324. 326.
    S.R. White and D.J. Scalapino, “Competition between stripes and pairing in a t-t′-J model,” Phys. Rev. B, 60, R753–R756 (1999).ADSCrossRefGoogle Scholar
  325. 327.
    S.C. Hellberg and E. Manousakis, “Stripes and the t-J model,” Phys. Rev. Lett., 83, 132 (1999), see also Refs. 328,329.ADSCrossRefGoogle Scholar
  326. 328.
    S.R. White and D.J. Scalapino, “Comment on “Stripes and the t-J Model”,” Phys. Rev. Lett., 84, 3021 (2000).ADSCrossRefGoogle Scholar
  327. 329.
    S.C. Hellberg and E. Manousakis, “Reply: Hellberg and Manousakis,” Phys. Rev. Lett., 84, 3022 (2000).ADSCrossRefGoogle Scholar
  328. 330.
    E. Arrigoni, A.P. Harju, W. Hanke, B. Brendel, and S.A. Kivelson, “Stripes and superconducting pairing in the t-J model with Coulomb interactions,” Phys. Rev. B, 65, 134503–134507 (2002).ADSCrossRefGoogle Scholar
  329. 331.
    S.R. White and D.J. Scalapino, “Phase separation and stripe formation in the two-dimensional t-J model: A comparison of numerical results,” Phys. Rev. B 61, 6320–6326 (2000).ADSCrossRefGoogle Scholar
  330. 332.
    E. Daggoto, “Correlated electrons in high-temperature superconductors,” Rev. Mod. Phys., 66, 763–840 (1994).ADSCrossRefGoogle Scholar
  331. 333.
    S.C. Hellberg and E. Manousakis, “Green’s-function Monte Carlo for lattice fermions: Application to the t-J model,” Phys. Rev. B, 61, 11787–11806 (2000).ADSCrossRefGoogle Scholar
  332. 334.
    S. Sorella, “Green function Monte Carlo with stochastic reconfiguration,” Phys. Rev. Lett, 80, 4558–4561 (1998).ADSCrossRefGoogle Scholar
  333. 335.
    Y.C. Chen and T.K. Lee, “t-J model studied by the power Lanczos method,” Phys. Rev. B, 51, 6723–6726 (1995).ADSCrossRefGoogle Scholar
  334. 336.
    S.R. White, “Density-matrix algorithms for quantum renormalization groups,” Phys. Rev. B, 48, 10345–10356 (1993).ADSCrossRefGoogle Scholar
  335. 337.
    S.R. White, “Spin gaps in a frustrated Heisenberg model for CaV4O9,” Phys. Rev. Lett, 77, 3633–3636 (1996).ADSCrossRefGoogle Scholar
  336. 338.
    E. Dagotto and T.M. Rice, “Surprises on the way from one-to two-dimensional quantum magnets: the ladder materials,” Science, 271, 618–623 (1996).ADSCrossRefGoogle Scholar
  337. 339.
    E. Dagotto, “Experiments on ladders reveal a complex interplay between a spin-gapped normal state and superconductivity,” Rep. Prog. Phys., 62, 1525–1571 (1999).ADSCrossRefGoogle Scholar
  338. 340.
    E. Lieb and F.Y. Wu, “Absence of Mott transition in an exact solution of the short-range, one-band model in one dimension,” Phys. Rev. Lett, 20, 1445–1448 (1968).ADSCrossRefGoogle Scholar
  339. 341.
    H.J. Schulz, in “Proceedings of the 9th Jerusalem Winter School for Theoretical Physics,” edited by V. J. Emery (World Scientific, New York) (1993).Google Scholar
  340. 342.
    B. Frischmuth, B. Ammon, and M. Troyer, “Susceptibility and low-temperature thermodynamics of spin-1/2 Heisenberg ladders,” Phys. Rev. B, 54, R3714–R3717 (1996).ADSCrossRefGoogle Scholar
  341. 343.
    R.M. Noack, S.R. White, and D.J. Scalapino, “Correlations in a two-chain Hubbard model,” Phys. Rev. Lett, 73, 882–885 (1994).ADSCrossRefGoogle Scholar
  342. 344.
    R.M. Noack, D.J. Scalapino, and S.R. White, “The ground state of the two-leg Hubbard ladder. A density-matrix renormalization group study,” Physica C, 270, 281–296 (1996).ADSCrossRefGoogle Scholar
  343. 345.
    E. Dagotto, J. Riera, and D. Scalapino, “Superconductivity in ladders and coupled planes,” Phys. Rev. B, 45, 5744–5747 (1992).ADSCrossRefGoogle Scholar
  344. 346.
    T. Kimura, K. Kuroki, and H. Aoki, “Pairing correlation in the three-leg Hubbard ladder-renormalization group and quantum Monte Carlo studies,” J. Phys. Soc. Jpn., 67, 1377–1390 (1998).ADSCrossRefGoogle Scholar
  345. 347.
    E. Jeckelmann, D.J. Scalapino, and S.R. White, “Comparison of different ladder models,” Phys. Rev. B, 58, 9492–9497 s (1998).ADSCrossRefGoogle Scholar
  346. 348.
    S. Daul, D.J. Scalapino, and S.R. White, “Pairing correlations on t-U-J ladders,” Phys. Rev. Lett, 84, 4188–4191 (2000).ADSCrossRefGoogle Scholar
  347. 349.
    S.R. White and D.J. Scalapino, “Ground-state properties of the doped three-leg t-J ladder,” Phys. Rev. B, 57, 3031–3037 (1998).ADSCrossRefGoogle Scholar
  348. 350.
    T.M. Rice, S. Haas, M. Sigrist, and F.-C. Zhang, “Lightly doped t-J three-leg ladders: An analog for the underdoped cuprates,” Phys. Rev. B, 56, 14655–14667 (1997).ADSCrossRefGoogle Scholar
  349. 351.
    W.R. White and D.J. Scalapino, “Ground states of the doped four-leg t-J ladder,” Phys. Rev. B, 55, R14701–R14704 (1997).ADSCrossRefGoogle Scholar
  350. 352.
    D.J. Scalapino, private communication.Google Scholar
  351. 353.
    M. Ogata, M.U. Luchini, S. Sorella, and F.F. Assaad, “Phase diagram of the one-dimensional t-J model,” Phys. Rev. Lett, 66, 2388–2391 (1991).ADSCrossRefGoogle Scholar
  352. 354.
    OS. Hellberg and E.J. Meie, “Luttinger-liquid instability in the one-dimensional t-J model,” Phys. Rev. B, 48, 646–649 (1993).ADSCrossRefGoogle Scholar
  353. 355.
    M. Troyer, H. Tsunetsugu, and T.M. Rice, “Properties of lightly doped t-J two-leg ladders,” Phys. Rev. B, 53, 251–267 (1996).ADSCrossRefGoogle Scholar
  354. 356.
    OA. Hayward and D. Poilblanc, “Luttinger-liquid behavior and superconducting correlations in t-J ladders,” Phys. Rev. B, 53, 11721–11728 (1996).ADSCrossRefGoogle Scholar
  355. 357.
    G. Sierra, M.A. Martin-Delgado, J. Dukelsky, S.R. White, and D.J. Scalapino, “Dimer-hole-RVB state of the two-leg t-J ladder: A recurrent variational ansatz,” Phys. Rev. B, 57, 11666–11673 (1998).ADSCrossRefGoogle Scholar
  356. 358.
    S. Rommer, S.R. White, and D.J. Scalapino, “Phase separation in t-J ladders,” Phys. Rev. B, 61, 13424–13430 (2000).ADSCrossRefGoogle Scholar
  357. 359.
    S.R. White, I. Affleck, and D.J. Scalapino, “Priedel oscillations and charge density waves in chains and ladders,” Phys. Rev. B, 65, 165122–165134 (2002).ADSCrossRefGoogle Scholar
  358. 360.
    S.A. Kivelson and V.J. Emery, “Strongly Correlated Electronic Materials: The Los Alamos Symposium 1993,” (Addison-Wesley, Redwood City, CA, USA) (1994).Google Scholar
  359. 361.
    A.C. Cosentini, M. Capone, L. Guidoni, and G.B. Bachelet, “Phase separation in the two-dimensional Hubbard model: A fixed-node quantum Monte Carlo study,” Phys. Rev. B, 58, R14685–R14688 (1998).ADSCrossRefGoogle Scholar
  360. 362.
    F. Becca, M. Capone, and S. Sorella, “Spatially homogeneous ground state of the two-dimensional Hubbard model,” Phys. Rev. B, 62, 12700–12706 (2001).ADSCrossRefGoogle Scholar
  361. 363.
    S. Hellberg and E. Manousakis, “2-Dimensional t-J Model at Low Electron Density,” Phys. Rev. B, 52, 4639–4642 (1995).ADSCrossRefGoogle Scholar
  362. 364.
    V.J. Emery, S.A. Kivelson, and H.Q. Lin, “Phase separation in the t-J model,” Phys. Rev. Lett, 64, 475–478 (1990).ADSCrossRefGoogle Scholar
  363. 365.
    S.A. Kivelson, V.J. Emery, and H.Q. Lin, “Doped antiferromagnets in the weak-hopping limit,” Phys. Rev. B, 42, 6523–6530 (1990).ADSCrossRefGoogle Scholar
  364. 366.
    E. Eisenberg, R. Berkovits, D.A. Huse, and B.L. Altshuler, “The breakdown of the Nagaoka phase in the 2D t-J model,” Phys. Rev. B, 65, 134437–134443 (2002).ADSCrossRefGoogle Scholar
  365. 367.
    W.O. Putikka, M.U. Luchini, and T.M. Rice, “Aspects of the phase diagram of the two-dimensional t-J model,” Phys. Rev. Lett, 68, 538–541 (1992).ADSCrossRefGoogle Scholar
  366. 368.
    D. Poilblanc, “Phase diagram of the two-dimensional t-J model at low doping,” Phys. Rev. B, 52, 9201–9204 (1995).ADSCrossRefGoogle Scholar
  367. 369.
    M. Calandra, F. Becca, and S. Sorella, “Charge fluctuations close to phase separation in the two-dimensional t-J model,” Phys. Rev. Lett, 81, 5185–5188 (1998).ADSCrossRefGoogle Scholar
  368. 370.
    H. Yokoyama and M. Ogata, “Phase diagram and pairing symmetry of the two-dimensional t-J model by a variation theory,” J. Phys. Soc. Japan, 65, 3615–3629 (1996).ADSCrossRefGoogle Scholar
  369. 371.
    C.T. Shih, Y.C. Chen, and T.K. Lee, “Phase separation of the two-dimensional t-J model,” Phys. Rev. B, 57, 627–631 (1998).ADSCrossRefGoogle Scholar
  370. 372.
    C.S. Shin, Y.C. Chen, and T.K. Lee, “Revisit phase separation of the two-dimensional t — J model by the Power-Lanczos method,” cond-mat/0104067 (2001).Google Scholar
  371. 373.
    M. Khono, “Ground-state properties of the two-dimensional t-J model,” Phys. Rev. B, 55, 1435–1441 (1997).ADSCrossRefGoogle Scholar
  372. 374.
    F. Becca, L. Capriotti, and S. Sorella, “Stripes and spin incommensurabilities are favored by lattice anisotropics,” Phys. Rev. Lett, 87, 167005–167008 (2001).ADSCrossRefGoogle Scholar
  373. 375.
    S.R. White and D.J. Scalapino, “Why do stripes form in doped antiferromagnets and what is their relationship to superconductivity?” cond-mat/0006071 (2000).Google Scholar
  374. 376.
    C. Nayak and F. Wilczek, “Possible electronic structure of domain walls in Mott insulators,” Int. J. Mod. Phys. B, 10, 2125–2136 (1996).ADSCrossRefGoogle Scholar
  375. 377.
    J. Zaanen and O. Gunnarsson, “Charged magnetic domain lines and the magnetism of high-T c oxides,” Phys. Rev. B, 40, 7391–7394 (1989).ADSCrossRefGoogle Scholar
  376. 378.
    D. Poilblanc and T.M. Rice, “Charged solitons in the Hartree-Fock approximation to the large-U Hubbard model,” Phys. Rev. B, 39, 9749–9752 (1989).ADSCrossRefGoogle Scholar
  377. 379.
    H.J. Schulz, “Domain walls in a doped antiferromagnet,” J. de Physique, 50, 2833–2849 (1989).CrossRefGoogle Scholar
  378. 380.
    K. Machida, “Magnetism in La2Cu04 based compounds,” Physica C, 158, 192–196 (1989).ADSCrossRefGoogle Scholar
  379. 381.
    O. Zachar, “Stripes: Why hole rich lines are antiphase domain walls?” cond-mat/0001217 (2000).Google Scholar
  380. 382.
    W.V. Liu and E. Fradkin, “Antiferromagnetic spin ladders effectively coupled by one-dimensional electron liquids,” Phys. Rev. Lett., 86, 1865–1868 (2001).ADSCrossRefGoogle Scholar
  381. 383.
    A.L. Chernyshev, S.R. White, and A.H. Castro Neto, “Charge stripe in an antiferromagnet: Id band of composite excitations,” cond-mat/0111474 (2001), see also Ref. 411.Google Scholar
  382. 384.
    A. Moreo, “Pairing correlations in the two-dimensional Hubbard model,” Phys. Rev. B, 45, 5059–5061 (1992).ADSCrossRefGoogle Scholar
  383. 385.
    S.-C. Zhang, J. Carlson, and J.E. Gubernatis, “Constrained path Monte Carlo method for fermion ground states,” Phys. Rev. B, 55, 7464–7477 (1997).ADSCrossRefGoogle Scholar
  384. 386.
    E. Dagotto and J. Riera, “Indications of {ze444-1} superconductivity in the two dimensional t-J model,” Phys. Rev. Lett, 70, 682–685 (1993).ADSCrossRefGoogle Scholar
  385. 387.
    E. Dagotto, A. Moreo, F. Ortolani, D. Poilblanc, and J. Riera, “Static and dynamical properties of doped Hubbard clusters,” Phys. Rev. B, 45, 10741–10760 (1992).ADSCrossRefGoogle Scholar
  386. 388.
    M. Calandra and S. Sorella, “From antiferromagnetism to d-wave superconductivity in the two-dimensional t-J model,” Phys. Rev. B, 61, R11894–R11897 (2000).ADSCrossRefGoogle Scholar
  387. 389.
    S. Sorella, G.B. Martins, F. Becca, C. Gazza, L. Capriotti, A. Parola, and E. Dagotto, “Superconductivity in the two-dimensional t-J model,” cond-mat/0110460 (2001).Google Scholar
  388. 390.
    M. Boninsegni and E. Manousakis, “Two-hole d-wave binding in the physical region of the t-J model: A Green’s-function Monte Carlo study,” Phys. Rev. B, 47, 11897–11904 (1993).ADSCrossRefGoogle Scholar
  389. 391.
    T. Tohyama, C.G. C.T. Shih, Y. C. Chen, T. K. Lee, S. Maekawa, and E. Dagotto, “Stripe stability in the extended t-J model on planes and four-leg ladders,” Phys. Rev. B, 59, R11649–R11652 (1999).ADSCrossRefGoogle Scholar
  390. 392.
    E.L. Nagaev, Physics of Magnetic Semiconductors (Mir, Moscow) (1983).Google Scholar
  391. 393.
    A. Auerbach and B.E. Larson, “Doped antiferromagnet: The instability of homogeneous magnetic phases,” Phys. Rev. B, 43, 7800–7809 (1991).ADSCrossRefGoogle Scholar
  392. 394.
    A. Auerbach and B.E. Larson, “Small-polaron theory of doped antiferromagnets,” Phys. Rev. Lett, 66, 2262–2265 (1990).ADSCrossRefGoogle Scholar
  393. 395.
    A. Auerbach, “Spin tunneling, Berry phases, and doped antiferromagnets,” Phys. Rev. B, 48, 3287–3289 (1993).ADSCrossRefGoogle Scholar
  394. 396.
    E.W. Carlson, S.A. Kivelson, Z. Nussinov, and V.J. Emery, “Doped antiferromagnets in high dimension,” Phys. Rev. B, 57, 14704–14721 (1998).ADSCrossRefGoogle Scholar
  395. 397.
    P.B. Visscher, “Phase separation instability in the Hubbard model,” Phys. Rev. B, 10, 943–945 (1974).ADSCrossRefGoogle Scholar
  396. 398.
    L.B. Ioffe and A.I. Larkin, “Two-dimensional Hubbard model with strong electron repulsion,” Phys. Rev. B, 37, 5730–5737 (1988).ADSCrossRefGoogle Scholar
  397. 399.
    L. Pryadko, D. Hone, and S.A. Kivelson, “Instability of charge ordered states in doped antiferromagnets,” Phys. Rev. Lett, 80, 5651–5654 (1998).ADSCrossRefGoogle Scholar
  398. 400.
    J.K. Freericks, E.H. Lieb, and D. Ueltschi, “Segregation in the Falicov-Kimball model,” math-ph/0107003 (2001).Google Scholar
  399. 401.
    E.L. Nagaev, “Lanthanum manganites and other giant-magnetoresistance magnetic conductors,” Usp. Fiz. Nauk., 166, 833 (1996).CrossRefGoogle Scholar
  400. 402.
    S. Trugman, “Interaction of holes in a Hubbard antiferromagnet and high-temperature superconductivity,” Phys. Rev. B, 37, 1597–1603 (1988).ADSCrossRefGoogle Scholar
  401. 403.
    A.H. Castro Neto, “Landau theory of phase separation in cuprates,” Phys. Rev. B, 51, 3254–3256 (1995).ADSCrossRefGoogle Scholar
  402. 404.
    M. Seul and D. Andelman, “Domain shapes and patterns — the phenomenology of modulated phases,” Science, 267, 476–483 (1995).ADSCrossRefGoogle Scholar
  403. 405.
    B.P. Stojkovic, Z.G. Yu, A.R. Bishop, A.H. Castro Neto, and N. Gronbech-Jensen, “Charge ordering and long-range interactions in layered transition metal oxides,” Phys. Rev. Lett, 82, 4679–4682 (1999).ADSCrossRefGoogle Scholar
  404. 406.
    L.P. Pryadko, S. A. K. V.J. Emery, Y.B. Bazaliy, and E.A. Dernier, “Topological doping and the stability of stripe phases,” Phys. Rev. B, 60, 7541–7557 (1999).ADSCrossRefGoogle Scholar
  405. 407.
    A.L. Chernyshev, A.H. Castro Neto, and A.R. Bishop, “Metallic stripe in two dimensions: stability and spin-charge separation,” Phys. Rev. Lett, 84, 4922–4925 (2000).ADSCrossRefGoogle Scholar
  406. 408.
    S.A. Kivelson and V.J. Emery, “Topological doping of correlated insulators,” Synthetic Metals, 80, 151–158 (1996).CrossRefGoogle Scholar
  407. 409.
    J. Zaanen and Z. Nussinov, “Stripes and nodal fermions as two sides of the same coin,” cond-mat/0006193 (2000).Google Scholar
  408. 410.
    J. Han, Q.H. Wang, and D.H. Lee, “Antiferromagnetism, stripes, and superconductivity in the t-J model with Coulomb interaction,” Int. J. Mod. Phys. B, 15, 1117–1126 (2001).ADSGoogle Scholar
  409. 411.
    A.H. Castro Neto, “Luttinger stripes in antiferromagnets,” Z. Phys. B, 103, 185–192 (1997).ADSCrossRefGoogle Scholar
  410. 412.
    J. Zaanen and P.B. Littlewood, “Freezing Electronic Correlations by Polaronic Instabilities in Doped La2NiO,” Phys. Rev. B, 50, 7222–7225 (1994).ADSCrossRefGoogle Scholar
  411. 413.
    H.J. Schulz, “Incommensurate antiferromagnetism in the two-dimensional Hubbard model,” Phys. Rev. Lett, 64, 1445–1448 (1990).ADSCrossRefGoogle Scholar
  412. 414.
    A.I. Larkin, “Effect of inhomogeneities on the structure of the mixed state of superconductors,” Sov. Phys. JETP, 31, 784–786 (1970).ADSGoogle Scholar
  413. 415.
    V.J. Emery and S.A. Kivelson, “Charge inhomogeneity and high temperature superconductivity,” J. Phys. Chem. Sol., 61, 467–471 (2000).ADSCrossRefGoogle Scholar
  414. 416.
    N. Ichikawa, S. Uchida, J.M. Tranquada, T. Niemoller, P. M. Gehring, S. H. Lee, and J. R. Schneider, “Local magnetic order vs superconductivity in a layered cuprate,” Phys. Rev. Lett, 85, 1738–1741 (2000).ADSCrossRefGoogle Scholar
  415. 417.
    J. Schmalian and P.G. Wolynes, “Stripe glasses: Self-generated randomness in a uniformly frustrated system,” Phys. Rev. Lett, 85, 836–839 (2000).ADSCrossRefGoogle Scholar
  416. 418.
    J. Burgy, M. Mayr, V. Martin-Mayor, A. Moreo, and E. Dagotto, “Colossal effects in transition metal oxides caused by intrinsic inhomogeneities,” Phys. Rev. Lett, 87, 277202–277205 (2001).ADSCrossRefGoogle Scholar
  417. 419.
    U. Low, V.J. Emery, K. Fabricius, and S.A. Kivelson, “Study of an Ising model with competing long-and short-range interactions,” Phys. Rev. Lett, 72, 1918–1921 (1994).ADSCrossRefGoogle Scholar
  418. 420.
    M. Grousson, G. Tarjus, and P. Viot, “Monte Carlo study of the three-dimensional Coulomb frustrated Ising ferromagnet,” Phys. Rev. E, 64, 036109–036117 (2001).ADSCrossRefGoogle Scholar
  419. 421.
    L. Chayes, V.J. Emery, S.A. Kivelson, Z. Nussinov, and G. Tarjus, “Avoided critical behavior in a uniformly frustrated system,” Physica A, 225, 129–153 (1996).MathSciNetADSCrossRefGoogle Scholar
  420. 422.
    Z. Nussinov, J. Rudnick, S.A. Kivelson, and L.N. Chayes, “Avoided critical behavior in O(n) systems,” Phys. Rev. Lett, 83, 472–475 (1999).ADSCrossRefGoogle Scholar
  421. 423.
    D.B. Tanner and T. Timusk, “Optical properties of high-temperature superconductors,” in “Physical Properties of High Temperature Superconductors Vol. Ill,” edited by D. M. Ginsberg (World Scientific, Singapore) (1992).Google Scholar
  422. 424.
    N.P. Ong, “Transport properties of high T c cuprates,” in “Phyral Properties of High Temperature Superconductors Vol. II,” edited by D. M. Ginsberg (World Scientific, Singapore) (1992).Google Scholar
  423. 425.
    K. Krishana, J.M. Harris, and N.P. Ong, “Quasiparticle mean free path in YBa2Cu3O7 measured by the thermal Hall conductivity,” Phys. Rev. Lett, 75, 3529–3532 (1995).ADSCrossRefGoogle Scholar
  424. 426.
    K.M. Lang, V. Madhavan, J.E. Hoffman, E.W. Hudson, H. Eisaki, S. Uchida, and J. C. Davis, “Imaging the granular structure of high-T c superconductivity in underdoped Bi2Sr2CaCu2O8+delta,” Nature, 415, 412–416 (2002).ADSCrossRefGoogle Scholar
  425. 427.
    T.R. Thurston, R.J. Birgeneau, M.A. Kastner, N.W. Preyer, G. Shirane, Y. Fujii, K. Yamada, Y. Endoh, K. Kakurai, M. Matsuda, Y. Hidaka, and T. Murakami, “Neutron scattering study of the magnetic excitations in metallic and superconducting La2−xSrxCuO4−y,” Phys. Rev. B, 40, 4585–4595 (1989).ADSCrossRefGoogle Scholar
  426. 428.
    S.-W. Cheong, G. Aeppli, T.E. Mason, H. Mook, S.M. Hayden, P.C. Canfield, Z. Fisk, K.N. Clausen, and J.L. Martinez, “Incommensurate magnetic fluctuations in La2−xSrxCu04,” Phys. Rev. Lett, 67, 1791–1794 (1991).ADSCrossRefGoogle Scholar
  427. 429.
    J.M. Tranquada, B.J. Sternlieb, J. D. Axe, Y. Nakamura, and S. Uchida, “Evidence for stripe correlations of spins and holes in copper oxide superconductors,” Nature, 375, 561–563 (1995).ADSCrossRefGoogle Scholar
  428. 430.
    J.M. Tranquada, D.J. Buttrey, V. Sachan, and J.E. Lorenzo, “Simultaneous ordering of holes and spins in La2NiO4.125,” Phys. Rev. Lett., 73, 1003–1006 (1994).ADSCrossRefGoogle Scholar
  429. 431.
    A. Lanzara, P.V. Bogdanov, X.J. Zhou, S.A. Kellar, D.L. Feng, E.D. Lu, T. Yoshida, H. Eisaki, A. Fujimori, K. Kishio, J.-I. Shimoyama, T. Nöda, S. Uchida, Z. Hussain, and Z.-X. Shen, “Evidence for ubiquitous strong electron-phonon coupling in high-temperature superconductors,” Nature, 412, 510–514 (2001).ADSCrossRefGoogle Scholar
  430. 432.
    L.P. Gor’kov and A.V. Sokol, “On the problem of the phase diagram of new superconductors,” J. Physique, 50, 2823–2832 (1989).CrossRefGoogle Scholar
  431. 433.
    A.J. Heeger, S.A. Kivelson, J.R. Schrieffer, and W. Su, “Solitons in conducting polymers,” Rev. Mod. Phys., 60, 781–850 (1988).ADSCrossRefGoogle Scholar
  432. 434.
    D.K. Campbell, A.R. Bishop, and K. Fesser, “Polarons in quasi-one-dimensional systems,” Phys. Rev. B, 26, 6862–6874 (1982).ADSCrossRefGoogle Scholar
  433. 435.
    L.B. Ioffe and A. Larkin, “Superconductivity in the liquid-dimer valence-bond state,” Phys. Rev. B, 40, 6941–6947 (1989).ADSCrossRefGoogle Scholar
  434. 436.
    M. Marder, N. Papanicolaou, and G.C. Psaltakis, “Phase separation in a t-J model,” Phys. Rev. B, 41, 6920–32 (1990).ADSCrossRefGoogle Scholar
  435. 437.
    M. Vojta and S. Sachdev, “Charge order, superconductivity and a global phase diagram of doped antiferromagnets,” Phys. Rev. Lett., 83, 3916–3919 (1999).ADSCrossRefGoogle Scholar
  436. 438.
    S. Sachdev and S.-C. Zhang, “Tuning order in cuprate superconductors,” Science, 295, 452 (2002).CrossRefGoogle Scholar
  437. 439.
    D.I. Khomskii and K.I. Kugel, “Why stripes? Spontaneous formation of inhomogeneous structures due to elastic interactions,” Europhys. Lett, 55, 208–213 (2001).ADSCrossRefGoogle Scholar
  438. 440.
    A.A. Koulakov, M.M. Fogler, and B.I. Shklovskii, “Charge density wave in two-dimensional electron liquid in weak magnetic field,” Phys. Rev. Lett., 76, 499–502 (1996).ADSCrossRefGoogle Scholar
  439. 441.
    R. Moessner and T.J. Chalker, “Exact results for interacting electrons in high Landau levels,” Phys. Rev. B, 54, 5006–5015 (1996).ADSCrossRefGoogle Scholar
  440. 442.
    M.P. Lilly, K.B. Cooper, J.P. Eisenstein, L.N. Pfeiffer, and K.W. West, “Evidence for an anisotropic state of two-dimensional electrons in high Landau levels,” Phys. Rev. Lett, 82, 394–397 (1999).ADSCrossRefGoogle Scholar
  441. 443.
    B. Spivak, “Title: Phase separation in the two-dimensional electron liquid in MOSFETs,” cond-mat/0205127 (2002).Google Scholar
  442. 444.
    S.A. Kivelson, “Making high-T c higher: a theoretical proposal,” Physica B, 61–67, 61–67 (2002).CrossRefGoogle Scholar
  443. 445.
    T.H. Geballe and B.Y. Moyzhes, “Qualitative understanding of the highest T c cuprates,” Physica C, 342, 1821–1824 (2000).ADSCrossRefGoogle Scholar
  444. 446.
    M. Fujita, H. Goka, K. Yamada, and M. Matsuda, “Competition between charge/spin-density-wave orders and superconductivity in La1.875Ba0.125−xSrxCuO4,” Phys. Rev. Lett, 88, 167008–167011 (2002).ADSCrossRefGoogle Scholar
  445. 447.
    K. Yamada, C.H. Lee, K. Kurahashi, J. Wada, S. Wakimoto, S. Ueki, H. Kimura, Y. Endoh, S. Hosoya, G. Shirane, R.J. Birgeneau, M. Greven, M.A. Kastner, and Y. J. Kim, “Doping dependence of the spatially modulated dynamical spin correlations and the superconducting-transition temperature in La2−xSrxCuO4,” Phys. Rev. B, 57, 6165–6172 (1998).ADSCrossRefGoogle Scholar
  446. 448.
    Y.S. Lee, R.J. Birgeneau, M.A. Kastner, Y. Endoh, S. Wakimoto, K. Yamada, R.W. Erwin, S.-H. Lee, and G. Shirane, “Neutron-scattering study of spin-density wave order in the superconducting state of excess-oxygen-doped La2CuO4+y,” Phys. Rev. B, 60, 3643–3654 (1999).ADSCrossRefGoogle Scholar
  447. 449.
    B. Khaykovich, Y.S. Lee, R. Erwin, S.-H. Lee, S. Wakimoto, K.J. Thomas, M.A. Kastner, and R.J. Birgeneau, “Enhancement of long-range magnetic order by magnetic field in superconducting La2CuO4+y,” cond-mat/0112505 (2001).Google Scholar
  448. 450.
    H. Kimura, K. Hirota, H. Matsushita, K. Yamada, Y. Endoh, S.-H. Lee, C.F. Majkrzak, R. Erwin, G. Shirane, M. Greven, Y.S. Lee, M.A. Kastner, and R. J. Birgeneau, “Neutron-scattering study of static antiferromagnetic correlations in La2−xSrxCu1−yZnyO4,” Phys. Rev. B, 59, 6517–6523 (1999).ADSCrossRefGoogle Scholar
  449. 451.
    M. Fujita, K. Yamada, H. Hiraka, P.M. Gehring, S.H. Lee, S. Wakimoto, and G. Shirane, “Static magnetic correlations near the insulating-superconducting phase boundary in La2−xSra;CuO4,” Phys. Rev. B, 65, 064505–064511 (2002).ADSCrossRefGoogle Scholar
  450. 452.
    P. Dai, H.A. Mook, R.D. Hunt, and F. Dogan, “Evolution of the resonance and incommensurate spin fluctuations in superconducting YBa2Cu3O6+a,” Phys. Rev. B, 63, 054525–054544 (2001).ADSCrossRefGoogle Scholar
  451. 453.
    P. Bourges, Y. Sidis, H.F. Fong, L.P. Regnault, J. Bossy, A. Ivanov, and B. Keimer, “The spin excitation spectrum in superconducting YBa2Cu3O6.85,” Science, 288, 1234–1237 (2000).ADSCrossRefGoogle Scholar
  452. 454.
    G. Aeppli, S. M. Hayden, P. Dai, H.A. Mook, R.D. Hunt, T.G. Perring, and F. Dogan, “The weights of various features in the magnetic spectra of cuprates,” Phys. Stat. Sol., 215, 519–522 (1999).ADSCrossRefGoogle Scholar
  453. 455.
    H.A. Mook, P.C. Dai, F. Dogan, and R.D. Hunt, “One-dimensional nature of the magnetic fluctuations in YBa2Cu3O6,” Nature, 404, 729–731 (2000).ADSCrossRefGoogle Scholar
  454. 456.
    H.A. Mook and B.C. Chakoumakos, “Incommensurate fluctuations in Bi2Sr2CaCu2O8,” Jour. Superconductivity, 10, 389–392 (1997).ADSCrossRefGoogle Scholar
  455. 457.
    J.E. Hoffman, E.W. Hudson, K.M. Lang, V. Madhavan, H. Eisaki, S. Uchida, and J.C. Davis, “A four unit cell periodic pattern of quasi-particle states surrounding vortex cores in Bi2Sr2CaCu2O8+x,” Science, 295, 466–469 (2002).ADSCrossRefGoogle Scholar
  456. 458.
    C. Howald, H. Eisaki, N. Kaneko, and A. Kapitulnik, “Coexistence of charged stripes and superconductivity in Bi2Sr2CaCu2O8+δ,” cond-mat/020156.Google Scholar
  457. 459.
    J.E. Hoffman, K. McElroy, D.-H. Lee, K.M. Lang, H. Eisaki, S. Uchida, and J.C. Davis, “Imaging quasiparticle quantum interference in BSCCO,” submitted to Science (2002).Google Scholar
  458. 460.
    E. Fradkin, S.A. Kivelson, E. Manousakis, and K. Nho, “Nematic phase of the two-dimensional electron gas in a magnetic field,” Phys. Rev. Lett, 84, 1982–1985 (2000).ADSCrossRefGoogle Scholar
  459. 461.
    J. Zaanen, M.L. Horbach, and W.V. Saarloos, “Charged domain-wall dynamics in doped antiferromagnets and spin fluctuations in cuprate superconductors,” Phys. Rev. B, 53, 8671–8680 (1996).ADSCrossRefGoogle Scholar
  460. 462.
    V. Oganesyan, S.A. Kivelson, and E. Fradkin, “Quantum theory of a nematic Fermi fluid,” Phys. Rev. B, 64, 195109–195114 (2001).ADSCrossRefGoogle Scholar
  461. 463.
    C. Halboth and W. Metzner, “d-wave superconductivity and Pomeranchuk instability in the two-dimensional Hubbard model,” Phys. Rev. Lett, 85, 5162–5165 (2000).ADSCrossRefGoogle Scholar
  462. 464.
    V. Hankevych, I. Grote, and F. Wegner, “Pomeranchuk and other instabilities in the t-t’ Hubbard model at the Van Hove filling,” cond-mat/0205213 (2002).Google Scholar
  463. 465.
    V. Oganesyan, E. Pradkin, and S.A. Kivelson, work in progress (2002).Google Scholar
  464. 466.
    A. Abanov, V. Kalatsky, and V.L. Pokrovsky, “Phase diagram of ultrathin ferromagnetic films with perpendicular anisotropy,” Phys. Rev. B, 51, 1023–1038 (1995).ADSCrossRefGoogle Scholar
  465. 467.
    J. Zaanen, O.Y. Osman, H.V. Kruis, Z. Nussinov, and J. Tworzydlo, “The geometric order of stripes and Luttinger liquids,” Phil. Mag. B, 81, 1485–1531 (2002).ADSCrossRefGoogle Scholar
  466. 468.
    Y.-B. Kim and H.-Y. Kee, “Pairing instability in a nematic Fermi liquid,” cond-mat/0204037 (2002).Google Scholar
  467. 469.
    K.B. Cooper, M. Lilly, J.P. Eisenstein, L.N. Pfeiffer, and K.W. West, “The onset of anisotropic transport of two-dimensional electrons in high Landau levels: An isotropic-to-nematic liquid crystal phase transition?” cond-mat/0203174 (2002).Google Scholar
  468. 470.
    V.J. Emery and S. Kivelson, “Mapping of the two-channel Kondo problem to a resonant-level model,” Phys. Rev. B, 46, 10812–10817 (1992).ADSCrossRefGoogle Scholar
  469. 471.
    V.J. Emery and S.A. Kivelson, “Solution of an orbital Kondo array,” Phys. Rev. Lett, 71, 3701–3704 (1993).ADSCrossRefGoogle Scholar
  470. 472.
    D. Chang and D.H. Lee, “Transport in inhomogeneous strongly correlated systems,” cond-mat/0205057 (2002).Google Scholar
  471. 473.
    Z.M. Yusof, B.O. Wells, T. Valla, A.V. Fedorov, P.D. Johnson, Q. Li, C. Kendziora, S. Jian, and D.G. Hinks, “Quasiparticle liquid in the highly overdoped Bi2Sr2CaCu2O8+δ,” Phys. Rev. Lett., 88, 167006–167009 (2002).ADSCrossRefGoogle Scholar
  472. 474.
    M. Granath, V. Oganesyan, D. Orgad, and S.A. Kivelson, “Distribution of spectral weight in a system with disordered stripes,” Phys. Rev. B, 65, 184501–184510 (2002).ADSCrossRefGoogle Scholar
  473. 475.
    M.I. Salkola, V.J. Emery, and S.A. Kivelson, “Implications of charge ordering for single-particle properties of high T c superconductors,” Phys. Rev. Lett., 77, 155–158 (1996).ADSCrossRefGoogle Scholar
  474. 476.
    M.G. Zacher, R. Eder, E. Arrigoni, and W. Hanke, “Stripes in doped antiferromagnets: single-particle spectral weight,” Phys. Rev. Lett., 85, 2585–2588 (2000).ADSCrossRefGoogle Scholar
  475. 477.
    M.G. Zacher, R. Eder, E. Arrigoni, and W. Hanke, “Evolution of the stripe phase as a function of doping from a theoretical analysis of angle-resolved photoemission data,” Phys. Rev. B, 65, 045109–045117 (2002).ADSCrossRefGoogle Scholar
  476. 478.
    M. Vojta, Y. Zhang, and S. Sachdev, “Renormalization group analysis of quantum critical points in d-wave superconductors,” Int. J. Mod. Phys.B, 14, 3719–3734 (2000).ADSCrossRefGoogle Scholar
  477. 479.
    T. Valla, A.V. Fedorov, P.D. Johnson, B.O. Wells, S.L. Hulbert, Q. Li, G.D. Gu, and N. Koshizuka, “Evidence for quantum critical behavior in the optimally doped cuprate Bi2Sr2CaCu2O8,” Science, 285, 2110–2113 (1999).CrossRefGoogle Scholar
  478. 480.
    Y. Zhang, N.P. Ong, P.W. Anderson, D.A. Bonn, R. Liang, and W.N. Hardy, “Giant enhancement of the thermal Hall conductivity kappa(xy) in the superconductor YBa2Cu3O7,” Phys. Rev. Lett., 86, 890–893 (2001).ADSCrossRefGoogle Scholar
  479. 481.
    D.A. Bonn, P. Dosanjh, R. Liang, and W.N. Hardy, “Evidence for rapid suppression of quasi-particle scattering below T c in YBa2Cu3O7,” Phys. Rev. Lett, 68, 2390–2393 (1992), see also Ref. 504.ADSCrossRefGoogle Scholar
  480. 482.
    D.L. Feng, A. Damascelli, K.M. Shen, N. Motoyama, D.H. Lu, H. Eisaki, K. Shimizu, J.i. Shimoyama, K. Kishio, N. Kaneko, M. Greven, G.D. Gu, X.J. Zhou, C. Kim, F. Ronning, N.P. Armitage, and Z.-X. Shen, “Electronic structure of the trilayer cuprate superconductor Bi2Sr2Ca2Cu3O10+δ,” cond-mat/0108386 (2001).Google Scholar
  481. 483.
    H.F. Fong, P. Bourges, Y. Sidis, L.P. Regnault, A. Ivanov, G.D. Gul, N. Koshizuka, and B. Keimer, “Neutron scattering from magnetic excitation in Bi2Sr2CaCu2O8+δ,” Nature, 398, 588–591 (1999).ADSCrossRefGoogle Scholar
  482. 484.
    M. Dumm, D.N. Basov, S. Komiya, and Y. Ando, “Anistropic electromagnetic response of La1.97Sr0.03CuO4 in the regime of spin stripes,” unpublished (2002).Google Scholar
  483. 485.
    H.V. Kruis, Z. Nussinov, and J. Zaanen, “Emergent Z 2 gauge symmetry and spin-charge separation in one dimensional physics,” cond-mat/0110055 (2001).Google Scholar
  484. 486.
    M. Matsuda, M. Fujita, K. Yamada, R.J. Birgeneau, M.A. Kastner, H. Hiraka, Y. Endoh, S. Wakimoto, and G. Shirane, “Static and dynamic spin correlations in the spin-glass phase of slightly doped La2−xSrxCuO4,” Phys. Rev. B, 62, 9148–9154 (2000).ADSCrossRefGoogle Scholar
  485. 487.
    A.N. Lavrov, Y. Ando, S. Komiya, and I. Tsukada, “Unusual magnetic susceptibility anisotropy in untwinned La2−xSrxCuO4 single crystals in the lightly doped region,” Phys. Rev. Lett., 87, 017007–017010 (2001).ADSCrossRefGoogle Scholar
  486. 488.
    B. Lake, G. Aeppli, T.E. Mason, A. Schroder, D.F. McMorrow, K. Lefmann, M. Isshiki, M. NO’Hara, H. Takagi, and S.M. Hayden, “Spin gap and magnetic coherence in a clean high-temperature superconductor,” Nature, 400, 43–46 (1999).ADSCrossRefGoogle Scholar
  487. 489.
    T. Nöda, H. Eisaki, and S.I. Uchida, “Evidence for one-dimensional charge transport in La2−x−yNdySrxCuO4,” Science, 286, 265–268 (1999).CrossRefGoogle Scholar
  488. 490.
    S. Tajima, T. Nöda, H. Eisaki, and S. Uchida, “C-axis optical response in the static stripe ordered phase of the cuprates,” Phys. Rev. Lett., 86, 500–503 (2001).ADSCrossRefGoogle Scholar
  489. 491.
    I. Iguchi, T. Yamaguchi, and A. Sugimoto, “Diamagnetic activity above T c as a precursor to superconductivity in La2−xSrxCuO4,” Nature, 412, 420–423 (2001).ADSCrossRefGoogle Scholar
  490. 492.
    Y. Wang, Z. A. Xu, T. Kakeshita, S. Uchida, S. Ono, Y. Ando, and N.P. Ong, “Onset of the vortexlike Nernst signal above T c in La2−xSrxCuO4 and Bi2Sr2−yLaCuO6,” Phys. Rev. B, 64, 224519–224528 (2001).ADSCrossRefGoogle Scholar
  491. 493.
    Z.A. Xu, N. Ong, Y. Wang, T. Kakeshita, and S. Uchida, “Vortex-like excitations and the onset of superconducting phase fluctuation in underdoped La2−xSrxCuO4,” Nature, 406, 486–488 (2000).ADSCrossRefGoogle Scholar
  492. 494.
    I. Ussishkin, S.L. Sondhi, and D.A. Huse, “Gaussian superconducting fluctuations, thermal transport, and the Nernst effect,” cond-mat/0204484.Google Scholar
  493. 495.
    A.G. Loeser, Z.-X. Shen, D.S. Dessau, D.S. Marshall, C.H. Park, P. Fournier, and A. Kapitulnik, “Excitation Gap in the Normal State of Underdoped Bi2Sr2CaCu2O8+δ,” Science, 273, 325–329 (1996).ADSCrossRefGoogle Scholar
  494. 496.
    R.S. Decca, H.D. Drew, E. Osquiguil, B. Maiorov, and J. Guimpel, “Anomalous proximity effect in underdoped YBa2Cu3O6+x josephson junctions,” Phys. Rev. Lett., 85, 3708–3711 (2000).ADSCrossRefGoogle Scholar
  495. 497.
    M.K. Crawford, M.N. Kunchur, W.E. Farneth, and E.M. McCarron, “Anomalous oxygen isotope effect in La2−xSrxCuO4,” Phys. Rev. B, 41, 282–287 (1990).ADSCrossRefGoogle Scholar
  496. 498.
    J.C. Phillips and J. Jung, “Nanodomain structure and function of high temperature superconductors,” Phil. Mag. B, 81, 745–756 (2001).ADSCrossRefGoogle Scholar
  497. 499.
    S.A. Kivelson and V.J. Emery, “Stripes and Related Phenomena,” 91 (Kluwer Academic/Plenum Publishing, New York) (2000).Google Scholar
  498. 500.
    O. Zachar, “Stripes disorder and correlation lengths in doped antiferromagnets,” Phys. Rev. B, 62, 13836–13839 (2000).ADSCrossRefGoogle Scholar
  499. 501.
    N. Hasselmann, A.H. Castro Neto, C. Morais Smith, and Y. Dimashko, “Striped phase in the presence of disorder and lattice potentials,” Phys. Rev. Lett., 82, 2135 (1999).ADSCrossRefGoogle Scholar
  500. 502.
    R.T. Scalettar, G.G. Batrouni, A.P. Kampf, and G.T. Zimanyi, “Simultaneous diagonal and off-diagonal order in the Bose-Hubbard Hamiltonian,” Phys. Rev. B, 51, 8467–8480 (1995).ADSCrossRefGoogle Scholar
  501. 503.
    S.R. White and I. Affleck, “Density matrix renormalization group analysis of the Nagaoka polaron in the two-dimensional t-J model,” Phys. Rev. B, 64, 024411–024416 (2001).ADSCrossRefGoogle Scholar
  502. 504.
    D.A. Bonn, K. Zhang, S. Kamal, R. Liang, P. Dosanjh, W.N. Hardy, C. Kallin, and A.J. Berlinsky, “Evidence for rapid suppression of quasi-particle scattering below T c in YBa2CuO7-δ,” Phys. Rev. Lett, 72, 1391–1391 (1994).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • E. W. Carlson
    • 1
  • S. A. Kivelson
    • 1
  • D. Orgad
    • 1
  • V. J. Emery
    • 2
  1. 1.Univ. of California at Los Angeles Dept. of PhysicsUSA
  2. 2.Brookhaven National Laboratory Dept. of PhysicsUSA

Personalised recommendations