The Physics of Superconductors pp 275-451 | Cite as

# Concepts in High Temperature Superconductivity

## Abstract

It is the purpose of our study to explore the theory of high temperature superconductivity. Much of the motivation for this comes from the study of cuprate high temperature superconductors. However, we do not focus in great detail on the remarkable and exciting physics that has been discovered in these materials. Rather, we focus on the core theoretical issues associated with the mechanism of high temperature superconductivity. Although our discussions of theoretical issues in a strongly correlated superconductor are intended to be self contained and pedagogically complete, our discussions of experiments in the cuprates are, unfortunately, considerably more truncated and impressionistic.

## Keywords

High Temperature Superconductivity Hubbard Model Charge Density Wave Charge Order Phase Fluctuation## Preview

Unable to display preview. Download preview PDF.

## References

- 1.J.R. Schrieffer, Theory of Superconductivity, Frontiers in Physics (Addison-Wesley) (1988).Google Scholar
- 2.J.G. Bednorz and K.A. Muller, “Possible high
*T*_{c}superconductivity in the Ba-La-Cu-O system,”*Z. Phys. B*,**64**, 189–193 (1986).ADSCrossRefGoogle Scholar - 3.V.J. Emery and S.A. Kivelson, “Superconductivity in bad metals,”
*Phys. Rev. Lett*.,**74**, 3253–3256 (1995).ADSCrossRefGoogle Scholar - 4.P.W. Anderson, “Experimental constraints on the theory of high-Tc super-conductivity,”
*Science*,**256**, 1526–1531 (1992).ADSCrossRefGoogle Scholar - 5.P.W. Anderson, “The resonating valence bond state in La
_{2}CuO_{4}and super-conductivity,”*Science*,**235**, 1169–1198 (1987).CrossRefGoogle Scholar - 6.V.J. Emery, S.A. Kivelson, and J.M. Tranquada, “Stripe phases in high-temperature superconductors,”
*Proc. Natl. Acad. Sci*.,**96**, 8814–8817 (1999).ADSCrossRefGoogle Scholar - 7.P.A. Lee, “Pseudogaps in underdoped cuprates,”
*Physica C*,**317–318**, 194–204 (1999).CrossRefGoogle Scholar - 8.L. Taillefer, B. Lussier, R. Gagnon, K. Behnia, and H. Aubin, “Universal heat conduction in YBa
_{2}Cu_{3}0_{6.9},”*Phys. Rev. Lett*,**79**, 483–486 (1997).ADSCrossRefGoogle Scholar - 9.P.J. Turner, R. Harris, S. Kamal, M.E. Hayden, D.M. Broun, D.C. Morgan, A. HosScini, P. Dosanjh, J.S. Preston, R. Liang, D.A. Bonn, and W.N. Hardy, “Broadband microwave spectroscopy of d-wave quasiparticles in oxygen-ordered YBa
_{2}Cu_{3}O_{6.50},”*cond-mat/0111353, submitted to PRL*(2002).Google Scholar - 10.K.A. Moller, D.J. Baar, J.S. Urbach, R. Liang, W.N. Hardy, and A. Kapitulnik, “Magnetic field dependence of the density of states of YBa
_{2}Cu_{3}O_{6.95}as determined from the specific heat,”*Phys. Rev. Lett*.,**73**, 2744–2747 (1994).ADSCrossRefGoogle Scholar - 11.B. Revaz, J.-Y. Genoud, J.K. Neumaier, A. Erb, and E. Walker, “d-wave scaling relations in the mixed-state specific heat of YBa
_{2}Cu_{3}O_{7},”*Phys. Rev. Lett*.,**80**, 3364–3368 (1998).ADSCrossRefGoogle Scholar - 12.D.H. Lu, D.L. Feng, N.P. Armitage, K. M. Shen, A. Damascelli, C. Kim, F. Ronning, Z.X. Shen, D.A. Bonn, R. Liang, W.N. Hardy, A.I. Rykov, and S. Tajima, “Superconducting gap and strong in-plane anisotropy in untwinned YBa
_{2}Cu_{3}O_{7−δ},”*Phys. Rev. Lett*,**86**, 4370–4373 (2001).ADSCrossRefGoogle Scholar - 13.D. Basov, R. Liang, D.A. Bonn, W.N. Hardy, B. Dabrowski, D.B.T.M. Quijada, J.P. Rice, D.M. Ginsberg, and T. Timusk, “In-plane anisotropy of the penetration depth in YBa
_{2}Cus_{3}O_{7−x}and YBa_{2}Cu_{4}O_{8},”*Phys. Rev. Lett*,**74**, 598–601 (1995).ADSCrossRefGoogle Scholar - 14.S. Chakravarty and S. Kivelson, “Electronic mechanism of superconductivity in the cuprates, C
_{60}, and polyacenes,”*Phys. Rev. B*,**64**, 064511–064519 (2001).ADSCrossRefGoogle Scholar - 15.V.J. Emery and S.A. Kivelson, “Frustrated electronic phase separation and high-temperature superconductors,”
*Physica C*,**209**, 597–621 (1993).ADSCrossRefGoogle Scholar - 16.S. Caprara, C. Castellani, C. Di Castro, and M. Grilli, “Phase separation and superconductivity in strongly interacting electron systems,”
*Physica C*,**235–240**, 2155–2156 (1994).CrossRefGoogle Scholar - 17.A. Moreo, S. Yunoki, and E. Dagotto, “Phase separation scenario for manganese oxides and related materials,”
*Science*,**283**, 2034–2040 (1999).CrossRefGoogle Scholar - 18.P.W. Anderson, “A re-examination of concepts in magnetic metals: the ‘nearly antiferromagnetic Fermi liquid’,”
*Adv. Phys*.,**46**, 3–11 (1997).ADSCrossRefGoogle Scholar - 19.J.E. Hirsch, “Antiferromagnetism, localization, and pairing in a two-dimensional model for CuO2,”
*Phys. Rev. Lett*,**59**, 228–231 (1987).ADSCrossRefGoogle Scholar - 20.V.J. Emery, S.A. Kivelson, and O. Zachar, “Spin-gap proximity effect mechanism of high-temperature superconductivity,”
*Phys. Rev. B*,**56**, 6120–6147 (1997).ADSCrossRefGoogle Scholar - 21.S. Chakravarty, A. Sudbo, P.W. Anderson, and S. Strong, “Interlayer tunneling and gap anisotropy in high-temperature superconductors,”
*Science*,**261**, 337–340 (1993).ADSCrossRefGoogle Scholar - 22.E. Demler and S.-C. Zhang, “Quantitative test of a microscopic mechanism of high-temperature superconductivity,”
*Nature*,**396**, 733–737 (1998).ADSCrossRefGoogle Scholar - 23.A.H. Castro Neto and F. Guinea, “Superconductivity, Josephson coupling, and order parameter symmetry in striped cuprates,”
*Phys. Rev. Lett*,**80**, 4040–4043 (1998).ADSCrossRefGoogle Scholar - 24.
- 25.V.J. Emery, S.A. Kivelson, and O. Zachar, “Classification and stability of phases of the multicomponent one-dimensional electron gas,”
*Phys. Rev. B*,**59**, 15641–15653 (1999).ADSCrossRefGoogle Scholar - 26.D.J. Scalapino, “The 2-leg Hubbard ladder: Computational studies of new materials,”
*cond-mat/0109125*(2001).Google Scholar - 27.H.J.A. Molegraaf, C. Presura, D. van der Marel, P.H. Kes, and M. Li, “Superconductivity-induced transfer of in-plane spectral weight in Bi
_{2}Sr_{2}CaCu_{2}O_{8+δ},”*Science*,**295**, 2239–2241 (2002).ADSCrossRefGoogle Scholar - 28.A.F. Santander-Syro, R.P.S.M. Lobo, N. Bontemps, Z. Konstantinovic, Z.Z. Li, and H. Raffy, “Pairing in cuprates from high energy electronic states,”
*cond-mat/0111539*(2001).Google Scholar - 29.P. Monthoux, A.V. Balatsky, and D. Pines, “Toward a theory of high-temperature superconductivity in the antiferromagnetically correlated cuprate oxides,”
*Phys. Rev. Lett*,**67**, 3448–3451 (1991).ADSCrossRefGoogle Scholar - 30.N. Bulut and D.J. Scalapino, “d(x
^{2}−*y*^{2}) symmetry and the pairing mechanism,”*Phys. Rev. B*,**54**, 14971–14973 (1996).ADSCrossRefGoogle Scholar - 31.D.J. Scalapino, “Superconductivity and spin fluctuations,”
*J. Low Temp. Phys*.,**117**, 179–188 (1999), international Conference on Physics and Chemistry of Molecular and Oxide Superconductors. MOS’99, Stockholm, Sweden, 28 July–2 Aug. 1999. Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar - 32.R.J. Radtke, S. Ullah, K. Levin, and N.R. Norman, “Constraints on superconducting transition temperatures in the cuprates: antiferromagnetic spin fluctuations,”
*Phys. Rev. B*,**46**, 11975–11985 (1992).ADSCrossRefGoogle Scholar - 33.CM. Varma, J. Zaanen, and K. Raghavachari, “Superconductivity in the fullerenes,”
*Science*,**254**, 989–992 (1991).ADSCrossRefGoogle Scholar - 34.M. Schlüter, M. Lannoo, M. Needels, G.A. Baraff, and D. Tomanek, “Electronphonon coupling and superconductivity in alkali-intercalated C
_{60}solid,”*Phys. Rev. Lett*.,**68**, 526–529 (1992).ADSCrossRefGoogle Scholar - 35.P. Morel and P.W. Anderson, “Calculation of the superconducting state parameters with retarded electron-phonon interaction,”
*Physical Review*,**125**, 1263–1271 (1962).ADSCrossRefGoogle Scholar - 36.J.R. Schrieffer, D.J. Scalapino, and J.W. Wilkins, “Effective tunneling density of states in superconductors,”
*Phys. Rev. Lett*.,**10**(1963).Google Scholar - 37.S. Chakravarty, S. Khlebnikov, and S. Kivelson, “Comment on “Electronphonon coupling and superconductivity in alkali-intercalated C
_{60}solid”,”*Phys. Rev. Lett*.,**69**, 212 (1992).ADSCrossRefGoogle Scholar - 38.R. Shankar, “Renormalization-group approach to interacting fermions,”
*Rev. Mod. Phys*.,**66**, 129–192 (1994).MathSciNetADSCrossRefGoogle Scholar - 39.J. Polchinski, “Renormalization and effective lagrangians,”
*Nucl. Phys. B*,**231**, 269–295 (1984).ADSCrossRefGoogle Scholar - 40.Z.-X. Shen, D.S. Dessau, B.O. Wells, D.M. King, W.E. Spicer, A.J. Arko, D. Marshal, L.W. Lombardo, A. Kapitulnik, P. Dickinson, S. Doniach, J. Di-Carlo, A.G. Losser, and C.H. Park, “Anomalously large gap anisotropy in the
*a–b*plane of bi2212,”*Phys. Rev. Lett*,**70**, 1553–1556 (1993).ADSCrossRefGoogle Scholar - 41.R. Micnas, J. Ranninger, and S. Robaszkiewicz, “Superconductivity in narrow-band systems with local nonretarded attractive interactions,”
*Rev. Mod. Phys*.,**62**, 113–234 (1990).ADSCrossRefGoogle Scholar - 42.T. Holstein, “Studies of polaron motion: I,”
*Annals of Physics*.,**8**, 325–342 (1959).ADSzbMATHCrossRefGoogle Scholar - 43.G. Gruner, Density waves in solids (Perseus Books Group) (2000).Google Scholar
- 44.G. Bilbro and W.L. McMillan, “Theoretical model of superconductivity and the martensitic transformation in A15 compounds,”
*Phys. Rev. B*,**14**, 1887–1892 (1976).ADSCrossRefGoogle Scholar - 45.O. Zachar, S.A. Kivelson, and V.J. Emery, “Landau theory of stripe phases in cuprates and nickelates,”
*Phys. Rev. B*,**57**, 1422–1426 (1998).ADSCrossRefGoogle Scholar - 46.J.M. Tranquada, “Phase separation, charge segregation and superconductivity in layered cuprates,”
*Neutron Scattering in Layered Copper-Oxide Superconductors, A. Furrer, Editor*,**83**, 225–260 (1998), kluwer, Dordrecht, The Netherlands.CrossRefGoogle Scholar - 47.J.M. Tranquada, “Experimental evidence for topological doping in the cuprates,”
*AIP-Conference-Proceedings*,**483**, 336–340 (1999).ADSCrossRefGoogle Scholar - 48.J. Zaanen, “High-temperature superconductivity: stripes defeat the Fermi liquid,”
*Nature*,**404**, 714 (2000).CrossRefGoogle Scholar - 49.S. Sachdev, “Quantum criticality: competing ground states in low dimensions,”
*Science*,**288**, 475–480 (2000).ADSCrossRefGoogle Scholar - 50.J. Orenstein and A.J. Millis, “Advances in the physics of high-temperature superconductivity,”
*Science*,**288**, 468–474 (2000).ADSCrossRefGoogle Scholar - 51.G. Baskaran, “Competition between superconductivity and charge stripe order in high-Tc cuprates,”
*Mod. Phys. Lett. B*,**14**, 377–384 (2000).ADSCrossRefGoogle Scholar - 52.S.A. Kivelson, E. Pradkin, and V.J. Emery, “Electronic liquid-crystal phases of a doped Mott insulator,”
*Nature*,**393**, 550–553 (1998).ADSCrossRefGoogle Scholar - 53.C.M. Varma, “Non Fermi-liquid states and pairing of a general model of copper-oxide metals,”
*Phys. Rev. B*,**55**, 14554–14580 (1997).ADSCrossRefGoogle Scholar - 54.S. Chakravarty, R.B. Laughlin, D.K. Morr, and C. Nayak, “Hidden order in the cuprates,”
*Phys. Rev. B*,**63**, 094503–094510 (2001).ADSCrossRefGoogle Scholar - 55.I. Affleck and J.B. Marston, “Large-n limit of the Heisenberg-Hubbard model: Implications for high-
*T*_{c}superconductors,”*Phys. Rev. B*,**37**, 3774–3777 (1988).ADSCrossRefGoogle Scholar - 56.G. Kotliar, “Resonating valence bonds and d-wave superconductivity,”
*Phys. Rev. B*,**37**, 3664–3666 (1998).ADSCrossRefGoogle Scholar - 57.D.A. Ivanov, P.A. Lee, and X.-G. Wen, “Staggered-vorticity correlations in a lightly doped t-J model: A variational approach,”
*Phys. Rev. Lett*,**34**, 3958–3961 (2000).ADSCrossRefGoogle Scholar - 58.Q.H. Wang, J.H. Han, and D.H. Lee, “Staggered currents in the mixed state,”
*Phys. Rev. Lett*,**87**, 7004–7007 (2001).Google Scholar - 59.T. Senthil and M.RA. Fisher, “Fractionalization in the cuprates: Detecting the topological order,”
*Phys. Rev. Lett*,**86**, 292–295 (2000).ADSCrossRefGoogle Scholar - 60.S.A. Kivelson, G. Aeppli, and V.J. Emery, “Thermodynamics of the interplay between magnetism and high-temperature superconductivity,”
*Proc. Nat Acad. Sci*.,**98**, 11903–11907 (2001).ADSzbMATHCrossRefGoogle Scholar - 61.C. Castellani, C. Di Castro, and M. Grilli, “Singular quasiparticle scattering in the proximity of charge instabilities,”
*Phys. Rev. Lett*,**75**, 4650–4653 (1995).ADSCrossRefGoogle Scholar - 62.S. Andergassen, S. Caprara, C. Di Castro, and M. Grilli, “Anomalous isotopic effect near the charge-ordering quantum criticality,”
*Phys. Rev. Lett*,**87**, 56401–56403 (2001).ADSCrossRefGoogle Scholar - 63.A.V. Chubukov, S. Sachdev, and J. Ye, “Theory of two-dimensional quantum Heisenberg antiferromagnets with a nearly critical ground state,”
*Phys. Rev. B*,**49**, 11919–11961 (1994).ADSCrossRefGoogle Scholar - 64.N.D. Mathur, F.M. Grosche, S.R. Julian, I.R. Walker, D.M. Freye, R.K.W. Haselwimmer, and G.G. Lonzarich, “Magnetically mediated superconductivity in heavy fermion compounds,”
*Nature*,**394**, 39–43 (1998).ADSCrossRefGoogle Scholar - 66.S.A. Grigera, R.S. Perry, A.J. Schofield, M. Chiao, S.R. Julian, G.G. Lonzarich, S.I. Ikeda, Y. Maeno, A.J. Millis, and A.P. Mackenzie, “Magnetic fieldtuned quantum criticality in the metallic ruthenate Sr
_{3}Ru_{2}O_{7},”*Science*,**294**, 329–332 (2001).ADSCrossRefGoogle Scholar - 67.J.R. Schrieffer, “Ward’s identity and the suppression of spin fluctuation superconductivity,”
*J. Low Temp. Phys*.,**99**, 397–402 (1995).ADSCrossRefGoogle Scholar - 68.
- 69.G. Baskaran, Z. Zou, and R.B. Laughlin, “The resonating valence bond state and high-
*T*_{c}superconductivity — a mean field theory,”*Solid State Comm*.,**63**, 973–976 (1987).ADSCrossRefGoogle Scholar - 70.S.A. Kivelson, D.S. Rokhsar, and J.P. Sethna, “Topology of the resonating valence-bond state: Solitons and high-
*T*_{c}superconductivity,”*Phys. Rev. B*,**35**, 8865–8868 (1987).ADSCrossRefGoogle Scholar - 71.D.S. Rokhsar and S.A. Kivelson, “Superconductivity and the quantum hardcore dimer gas,”
*Phys. Rev. Lett*,**61**, 2376–2379 (1988).ADSCrossRefGoogle Scholar - 72.N. Read and S. Sachdev, “Large-N expansion for frustrated quantum antiferromagnets,”
*Phys. Rev. Lett*,**66**, 1773–1776 (1991).ADSCrossRefGoogle Scholar - 73.V. Kalmeyer and R.B. Laughlin, “Theory of the spin liquid state of the Heisenberg antiferromagnet,”
*Phys. Rev. B*,**39**, 11879–11899 (1989).ADSCrossRefGoogle Scholar - 74.X.G. Wen, F. Wilcek, and A. Zee, “Chiral spin states and superconductivity,”
*Phys. Rev. B*,**39**, 11413–11423 (1989).ADSCrossRefGoogle Scholar - 75.P.B. Wiegmann, “Superconductivity in strongly correlated electronic systems and confinement versus deconfinement phenomenon,”
*Phys. Rev. Lett*,**60**, 821–824 (1988).ADSCrossRefGoogle Scholar - 76.L. Balents, M.P.A. Fisher, and C. Nayak, “Nodal liquid theory of the pseudogap phase of high-Tc superconductors,”
*Int. J. Mod. Phys. B*,**12**, 1033–1068 (1998).ADSCrossRefGoogle Scholar - 77.L. Balents, M.P.A. Fisher, and C. Nayak, “Dual order parameter for the nodal liquid,”
*Phys. Rev. B*,**60**, 1654–1667 (1999).ADSCrossRefGoogle Scholar - 78.T. Senthil and M.P.A. Fisher, “Z2 gauge theory of electron fractionalization in strongly correlated systems,”
*Phys. Rev. B*,**62**, 7850–7881 (2000).ADSCrossRefGoogle Scholar - 79.X.G. Wen, “Topological orders in rigid states,”
*Int. J. Mod. Phys. B*,**4**, 239–271 (1990).ADSCrossRefGoogle Scholar - 80.R. Moesner and S.L. Sondhi, “Resonating valence bond phase in the triangular lattice quantum dimer model,”
*Phys. Rev. Lett*,**86**, 1881–1884 (2001).ADSCrossRefGoogle Scholar - 81.R. Moessner, S.L. Sondhi, and E. Pradkin, “Short-ranged resonating valance bond physics, quantum dimer models, and Ising gauge theories,”
*Phys. Rev. B*,**65**, 024504–024516 (2002).ADSCrossRefGoogle Scholar - 82.T. Timusk and B. Statt, “The pseudogap in high-temperature superconductors: an experimental survey,”
*Rep. Prog. Phys*.,**62**, 61–122 (1999).ADSCrossRefGoogle Scholar - 83.J.L. Tallon and J.W. Loram, “The doping dependence of T*–what is the real high
*T*_{c}phase diagram?”*Physica C*,**349**, 53–68 (2001).ADSCrossRefGoogle Scholar - 84.A. Leggett, “Cuprate Superconductivity: Dependence of
*T*_{c}on the c-Axis Layering Structure,”*Phys. Rev. Lett*,**83**, 392–395 (1999).ADSCrossRefGoogle Scholar - 85.P.W. Anderson, The Theory of Superconductivity in the Cuprates (Princeton University Press, Princeton, NJ) (1997).Google Scholar
- 86.R.B. Laughlin, “Evidence for quasiparticle decay in photoemission from underdoped cuprates,”
*Phys. Rev. Lett*,**79**, 1726–1729 (1997).ADSCrossRefGoogle Scholar - 87.D. Orgad, S.A. Kivelson, E.W. Carlson, V.J. Emery, X.J. Zhou, and Z. X. Shen, “Evidence of electron fractionalization from photoemission spectra in the high temperature superconductors,”
*Phys. Rev. Lett*,**86**, 4362–4365 (2001).ADSCrossRefGoogle Scholar - 88.X.J. Zhou, P. Bogdanov, S.A. Kellar, T. Nöda, H. Eisaki, S. Uchida, Z. Hussain, and Z.-X. Shen, “One-dimensional electronic structure and suppression of d-Wave node state in La
_{1.28}Nd_{0.6}Sr_{0.12}CuO_{4},”*Science*,**286**, 268–272 (1999).CrossRefGoogle Scholar - 89.T. Valla, A.V. Fedorov, P.D. Johnson, Q. Li, G.D. Gu, and N. Koshizuka, “Temperature dependent scattering rates at the Fermi surface of optimally doped Bi
_{2}Sr_{2}CaCu_{2}O_{8+δ},”*Phys. Rev. Lett*,**85**, 828–831 (2000).ADSCrossRefGoogle Scholar - 90.A.V. Fedorov, T. Valla, P.D. Johnson, Q. Li, G.D. Gu, and N. Koshizuka, “Temperature dependent photoemission studies of optimally doped Bi
_{2}Sr_{2}CaCu_{2}O_{8},”*Phys. Rev. Lett*,**82**, 2179–2182 (1999).ADSCrossRefGoogle Scholar - 91.D.L. Feng, D.H. Lu, K.M. Shen, S. Oh, A. Andrus, J. O’Donnell, J. N. Eckstein, J. Shimoyama, K. Kishio, and Z. X. Shen, “On the similarity of the spectral weight pattern of Bi
_{2}Sr_{2}CaCuO_{8+δ}and La_{1.48}Nd_{0.4}Sr_{0.12}CuO_{4},”*Physica C*,**341**, 2097–2098 (2000).CrossRefGoogle Scholar - 92.A.G. Loeser, Z.-X. Shen, M.C. Schabel, C. Kim, M. Zhang, A. Kapitulnik, and P. Fournier, “Temperature and doping dependence of the Bi-Sr-Ca-Cu-O electronic structure and fluctuation effects,”
*Phys. Rev. B*,**56**, 14185–14189 (1997).ADSCrossRefGoogle Scholar - 93.C.M. Varma, P.B. Littlewood, S. Schmittrink, E. Abrahams, and A.E. Ruckenstein, “Phenomenology of the normal state of the Cu-O high-temperature superconductors,”
*Phys. Rev. Lett*,**63**, 1996–1999 (1989).ADSCrossRefGoogle Scholar - 94.C.M. Varma, Z. Nussinov, and W. van Saarloos, “Singular Fermi liquids,”
*cond-mat/0103393*(2001).Google Scholar - 95.E. Abrahams and C.M. Varma, “What angle-resolved photoemission experiments tell us about the microscopic theory for high-temperature superconductors,”
*Proc. Natl. Accad. Sci*. (2000).Google Scholar - 96.J.M. Harris, Z.-X. Shen, P.J. White, D.S. Marshall, M.C. Schabel, J.N. Eckstein, and I. Bozovic, “Anomalous superconducting state gap size versus Tc behavior in underdoped Bi
_{2}Sr_{2}Ca_{1−x}Dy_{x};Cu_{2}O_{8},”*Phys. Rev. B*,**54**, R15665–R15668 (1996).ADSCrossRefGoogle Scholar - 97.H. Ding, T. Yokoya, J.C. Campuzano, T. Takahashi, M. Randeria, M.R. Norman, and T.M. K.H.J. Giapintzakis, “Spectroscopic evidence for a pseudogap in the normal state of underdoped high-
*T*_{c}superconductors,”*Nature*,**382**, 51–54 (1996).ADSCrossRefGoogle Scholar - 98.C. Renner, B. Revaz, J.-Y. Genoud, K. Kadowaki, and O. Fischer, “Pseudogap precursor of the superconducting gap in under-and overdoped Bi
_{2}Sr_{2}CaCu_{2}O8+_{δ},”*Phys. Rev. Lett*,**80**, 149–152 (1998).ADSCrossRefGoogle Scholar - 99.Y. Ando, K. Segawa, S. Komiya, and A.N. Lavrov, “Electrical resistivity anisotropy from self-organized one-dimensionality in high-temperature superconductors,”
*Phys. Rev. Lett*,**88**, 137005–137008 (2002).ADSCrossRefGoogle Scholar - 100.I. Maggio-Aprile, C. Renner, A. Erb, E. Walker, and O. Fischer, “Direct vortex lattice imaging and tunneling spectroscopy of flux lines on YBa
_{2}Cu_{3}O_{7−δ},”*Phys. Rev. Lett*,**75**, 2754–2757 (1995).ADSCrossRefGoogle Scholar - 101.C. Howald, P. Fournier, and A. Kapitulnik, “Inherent inhomogeneities in tunneling spectra of Bi
_{2}Sr_{2}CaCu_{2}O_{8−x}crystals in the superconducting state,”*Phys. Rev. B*,**64**, 100504–100507 (2001).ADSCrossRefGoogle Scholar - 102.S.H. Pan, J.P. O’Neal, R.L. Badzey, C. Chamon, H. Ding, J.R. Engelbrecht, Z. Wang, H. Eisaki, S. Uchida, A.K. Guptak, K.W. Ng, E.W. Hudson, K.M. Lang, and J.C. Davis, “Microscopic electronic inhomogeneity in the high
*T*_{c}superconductor Bi_{2}Sr_{2}CaCu_{2}O_{8+x},”*Nature*,**413**, 282–285 (2001).ADSCrossRefGoogle Scholar - 103.J.E. Sonier, J.H. Brewer, R.F. Kiefl, D.A. Bonn, S.R. Dunsiger, W.N. Hardy, R. Liang, W.A. MacFarlane, R.I. Miller, and T.M. Riseman, “Measurements of the fundamental length scales in the vortex state of YBa
_{2}Cu_{3}O_{6.60},”*Phys. Rev. Lett*,**79**, 2875–2878 (1997).ADSCrossRefGoogle Scholar - 104.C.A.R.S. de Melo, M. Randeria, and J.R. Engelbrecht, “Crossover from BCS to Bose superconductivity: Transition temperature and time-dependent Ginzburg-Landau theory,”
*Phys. Rev. Lett*,**71**, 3202–3205 (1993).ADSCrossRefGoogle Scholar - 105.Q. Chen, I. Kosztin, B. Janko, and K. Levin, “Pairing fluctuation theory of superconducting properties in underdoped to overdoped cuprates,”
*Phys. Rev. Lett*,**81**, 4708–4711 (1998).ADSCrossRefGoogle Scholar - 106.A.S. Alexandrov and N.F. Mott, “Thermal transport in a charged Bose gas and in high-
*T*_{c}oxides,”*Phys. Rev. Lett*,**71**, 1075–1078 (1993).ADSCrossRefGoogle Scholar - 107.A.S. Alexandrov and N.F. Mott, “Bipolarons,”
*Rep. Prog. Phys*.,**57**, 1197–1288 (1994).ADSCrossRefGoogle Scholar - 108.Y.J. Uemura, G.M. Luke, B.J. Sternlieb, J.H. Brewer, J.F. Carolan, W.N. Hardy, R. Kadono, J.R. Kempton, R.F. Kiefl, S.R. Kreitzman, P. Mulhern, T.M. Riseman, D.L. Williams, B.X. Yang, S. Uchida, H. Takagi, J. Gopalakrishnan, A.W. Sleight, M.A. Subramanian, C.L. Chien, M.Z. Cieplak, G. Xiao, V.Y. Lee, B.W. Statt, C.E. Stronach, W.J. Kossler, and X.H. Yu, “Universal correlations between Tc and ns / m* (carrier density over effective mass) in high-
*T*_{c}cuprate superconductors,”*Phys. Rev. Lett*,**62**, 2317–2320 (1989).ADSCrossRefGoogle Scholar - 109.E. Dagotto, T. Hotta, and A. Moreo, “Colossal magnetoresistant materials: the key role of phase separation,”
*Physics Reports*,**344**, 1–153 (2001).ADSCrossRefGoogle Scholar - 110.J.M. Luttinger, “Fermi surface and some simple equilibrium properties of a system of interacting fermions,”
*Phys. Rev*.,**119**, 1153–1163 (1960).MathSciNetADSzbMATHCrossRefGoogle Scholar - 112.V.J. Emery and S.A. Kivelson, “Crossovers and phase coherence in cuprate superconductors,”
*J. Phys. Chem. Solids*,**59**, 1705–1710 (1998).ADSCrossRefGoogle Scholar - 113.A.N. Kocharian, C. Yang, and Y.L. Chiang, “Self-consistent and exact studies of pairing correlations and crossover in the one-dimensional attractive Hubbard model,”
*Phys. Rev. B*,**59**, 7458–7472 (1999).ADSCrossRefGoogle Scholar - 114.A.N. Kocharian, C. Yang, and Y.L. Chiang, “Phase diagram and BCS-Bose condensation crossover in ID and 2D Hubbard models,”
*Physica C*,**364–365**, 131–133 (2001).CrossRefGoogle Scholar - 115.J.W. Allen, CG. Olson, M.B. Maple, J.-S. Kang, L.Z. Liu, J.-H. Park, R.O. Anderson, W.P. Ellis, JT. Market, Y. Dalichaouch, and R. Liu, “Resonant photoemission study of Nd
_{2−x}Ce_{x}CuO_{4−y}: Nature of electronic states near the Fermi level,”*Phys. Rev. Lett*,**64**, 595–598 (1990).ADSCrossRefGoogle Scholar - 116.R.O. Anderson, R. Cleassen, J.W. Allen, CG. Olson, C. Janowitz, L.Z. Liu, J.-H. Park, M.B. Maple, Y. Dalichaouch, M.C de Andrade, R.F. Jardim, E.A. Early, S.-J. Ho, and W.P. Ellis, “Luttinger Fermi surface of metallic gap spectral weight in Nd
_{1.85}Ce_{0.15}CuO_{4−y},”*Phys. Rev. Lett*,**70**, 3163–3166 (1993).ADSCrossRefGoogle Scholar - 117.T. Watanabe, T. Takahashi, S. Suzuki, S. Sato, and H. Katayama-Yoshida, “Inverse-photoemission study of hole-concentration dependence of the electronic structure in Bi
_{2}Sr_{2}Ca_{1−x}Y_{x}Cu_{2}O_{8}(x=0.0−0.05),”*Phys. Rev. B*,**44**, 5316–5317 (1991).ADSCrossRefGoogle Scholar - 118.A. Ino, C Kim, M. Nakamura, T. Yoshida, T. Mizokawa, Z.-X. Shen, A. Fujimori, T. Kakeshita, H. Eisaki, and S. Uchida, “Electronic structure of La
_{2−x}Sr_{x}CuO_{4}in the vicinity of the superconductor-insulator transition,”*Phys. Rev. B*,**62**, 4137–4141 (2000).ADSCrossRefGoogle Scholar - 119.G. Rietveld, NY. Chen, and D. van der Marel, “Anomalous temperature dependence of the work function in YBa
_{2}Cu_{3}O_{7−δ},”*Phys. Rev. B*,**69**, 2578–2581 (1992), a rather larger value of the chemical potential shift at*T*_{c}, but still very small compared to the bandwidth, was obtained from high precision measurements of the work function.ADSCrossRefGoogle Scholar - 120.D.J. Scalapino, J.E. Loh, and J.E. Hirsch, “d-wave pairing near a spin density wave instability,”
*Phys. Rev. B*,**34**, 8190–8192 (1986).ADSCrossRefGoogle Scholar - 121.W. Kohn and J.M. Luttinger, “New mechanism for superconductivity,”
*Phys. Rev. Lett*,**15**, 524–526 (1965).MathSciNetADSCrossRefGoogle Scholar - 122.V.J. Emery, “Theory of high-
*T*_{c}superconductivity in oxides,”*Phys. Rev. Lett*,**58**, 2794–2797 (1987).ADSCrossRefGoogle Scholar - 123.G. Kotliar and J. Liu, “Superexchange mechanism and d-wave superconductivity,”
*Phys. Rev. B*,**38**, 5142–5145 (1988).ADSCrossRefGoogle Scholar - 124.C. Gros, R. Joynt, and T.M. Rice, “Superconductivity instability in the large-U limit of the two-dimensional Hubbard model,”
*Z. Phys. B*,**68**, 425–432 (1987).ADSCrossRefGoogle Scholar - 125.D.J. Scalapino, E. Loh, and J.E. Hirsch, “Fermi-surface instabilities and superconducting d-wave pairing,”
*Phys. Rev. B*,**35**, 6694–6698 (1987).ADSCrossRefGoogle Scholar - 126.M. Grilli, R. Raimondi, C Castellani, C. Di Castro, and G. Kotliar, “Superconductivity, phase separation, and charge-transfer instability in the U=∞ limit of the three-band model of the CuO
_{2}planes,”*Phys. Rev. Lett*,**67**, 259–262 (1991).ADSCrossRefGoogle Scholar - 127.A. Perali, C. Castellani, C. Di Castro, and M. Grilli, “
*d*-wave superconductivity near charge instabilities,”*Phys. Rev. B*,**54**, 16216–16225 (1996).ADSCrossRefGoogle Scholar - 128.D.A. Wollman, D.J.V. Harlingen, W.C. Lee, D.M. Ginsberg, and A.J. Leggett, “Experimental determination of the superconducting pairing state in YBCO from phase coherence in YBCO-Pb SQUIDs,”
*Phys. Rev. Lett*.,**71**, 2134–2147 (1993).ADSCrossRefGoogle Scholar - 129.C.C. Tsuei, J.R. Kirtley, C.C. Chi, L.S. Yu-Jahnes, A. Gupta, T. Shaw, J.Z. Sun, and M.B. Ketchen, “Pairing symmetry and flux quantization in a tricrystal superconducting ring of YBa
_{2}Cu_{3}O_{7−·},”*Phys. Rev. Lett*.,**73**, 593 (1994).ADSCrossRefGoogle Scholar - 130.K.A. Kouznetsov, A.G. Sun, B. Chen, A.S. Katz, S.R. Bahcall, J. Clarke, R.C. Dynes, D.A. Gajewski, S.H. Han, M.B. Maple, J. Giapintzakis, J.-T. Kim, and D.M. Ginsberg, “C-axis Josephson tunneling between YBa
_{2}Cu_{3}O_{7−·}and Pb: direct evidence for mixed order parameter symmetry in a high-*T*_{c}superconductor,”*Phys. Rev. Lett*.,**79**, 3050–3053 (1997).ADSCrossRefGoogle Scholar - 131.R.A. Klemm, G. Arnold, A. Bille, and K. Scharnberg, “Theory of c-axis twist Bi2212 Josephson junctions: Strong evidence for incoherent tunneling and s-wave superconductivity,”
*Physica*C**341**, 1663–1664 (2000).ADSCrossRefGoogle Scholar - 132.A. Damascelli, D.H. Lu, and Z.-X. Shen, “Prom Mott insulator to overdoped superconductor: Evolution of the electronic structure of cuprates studied by ARPES,”
*J. Electron Spectr. Relat. Phenom*.,**165**, 117–118 (2001).Google Scholar - 133.J.R. Schrieffer, S.C. Zhang, and X.G. Wen, “Spin-bag mechanism of high-temperature superconductivity,”
*Phys. Rev. Lett*,**60**, 944–947 (1988).ADSCrossRefGoogle Scholar - 134.M. Granath, V. Oganesyan, S.A. Kivelson, E. Pradkin, and V.J. Emery, “Nodal quasiparticles in stripe ordered superconductors,”
*Phys. Rev. Lett*.,**87**, 167011–167014 (2001).ADSCrossRefGoogle Scholar - 135.M. Vojta, Y. Zhang, and S. Sachdev, “Quantum phase transitions in d-wave superconductors,”
*Phys. Rev. Lett*,**85**, 4940–4943 (2000).ADSCrossRefGoogle Scholar - 136.M. Kugler, O. Fischer, C. Renner, S. Ono, and Y. Ando, “Scanning tunneling spectroscopy of Bi
_{2}Sr_{2}CuO6 +*δ*: new evidence for the common origin of the pseudogap and superconductivity,”*Phys. Rev. Lett*,**86**, 4911 (2001).ADSCrossRefGoogle Scholar - 137.N.J. Curro, P.C. Hammel, B.J. Suh, M. Hucker, B. Buchner, U. Ammerahl, and A. Revcolevschi, “Inhomogeneous low frequency spin dynamics in La
_{1.65}Eu_{0.2}Sr_{0.15}CuO_{4},”*Phys. Rev. Lett*,**85**, 642–645 (2000).ADSCrossRefGoogle Scholar - 138.H. Takagi, B. Batlogg, H.L. Kao, J. Kwo, R.J. Cava, J.J. Krajewski, and W.F.P. Jr., “Systematic evolution of temperature-dependent resistivity in La
_{2−x}Sr_{x}CuO_{4},”*Phys. Rev. Lett*,**69**, 2975–2978 (1992).ADSCrossRefGoogle Scholar - 139.B. Bucher, P. Steiner, J. Karpinski, E. Kaldis, and P. Wächter, “Influence of the spin gap on the normal state transport in YBa
_{2}Cu_{4}O_{8},”*Phys. Rev. Lett*,**70**, 2012–2015 (1993).ADSCrossRefGoogle Scholar - 140.K. Takenaka, K. Mizuhashi, H. Takagi, and S. Uchida, “Interplane charge transport in YBa
_{2}Cu_{3}O_{7−y}: Spin-gap effect on in-plane and out-of-plane resistivity,”*Phys. Rev. B*,**50**, 6534–6537 (1994).ADSCrossRefGoogle Scholar - 141.A.N. Lavrov, Y. Ando, and S. Ono, “Two mechanisms of pseudogap formation in Bi-2201: evidence from the c-axis magnetoresistance,”
*Euro. Phys. Lett*,**57**, 267–273 (2002).ADSCrossRefGoogle Scholar - 142.J.W. Loram, K.A. Mirza, J.R. Cooper, and W.Y. Liang, “Electronic specific heat of YBa
_{2}Cu_{3}O_{6+x}from 1.8 to 300 K,”*Phys. Rev. Lett*,**71**, 1740–1743 (1993).ADSCrossRefGoogle Scholar - 143.J. Orenstein, G.A. Thomas, A.J. Millis, S.L. Cooper, D.H. Rapkine, T. Timusk, L.F. Schneemeyer, and J.V. Waszczak, “Frequency-and temperature-dependent conductivity in YBa
_{2}Cu_{3}O_{6+x}crystals,”*Phys. Rev. B*,**42**, 6342–6362 (1990).ADSCrossRefGoogle Scholar - 144.A. Puchkov, D.N. Basov, and T. Timusk, “Pseudogap state in high-
*T*_{c}superconductors: an infrared study,”*J.Phys Cond. Matt*,**8**, 10049 (1996).ADSCrossRefGoogle Scholar - 145.C.C. Homes, T. Timusk, R. Liang, D.A. Bonn, and W.N. Hardy, “Optical conductivity of c axis oriented YBa
_{2}Cu_{3}O_{6.70}: Evidence for a pseudogap,”*Phys. Rev. Lett*,**71**, 1645–1648 (1993).ADSCrossRefGoogle Scholar - 146.D. Basov, H.A. Mook, B. Dabrowski, and T. Timusk, “c-axis response of single-and double-layered cuprates,”
*Phys. Rev. B*,**52**, R13141–R13144 (1995).ADSCrossRefGoogle Scholar - 147.M. Arai, T. Nishijima, Y. Endoh, T. Egami, S. Tajima, K. Tomimoto, Y. ShiO’Hara, M. Takahashi, A. Garrett, and S.M. Bennington, “Incommensurate spin dynamics of underdoped superconductor YBa
_{2}Cu_{3}O_{6.7},”*Phys. Rev. Lett*,**83**, 608–611 (1999).ADSCrossRefGoogle Scholar - 148.P.C. Dai, H.A. Mook, S.M. Hayden, G. Aeppli, T.G. Perring, R.D. Hunt, and F. Dogan, “The magnetic excitation spectrum and thermodynamics of high
*T*_{c}superconductors,”*Science*,**284**, 1344–1347 (1999).ADSCrossRefGoogle Scholar - 149.B. Batlogg and V.J. Emery, “Crossovers in cuprates,”
*Nature*,**382**, 20 (1996).ADSCrossRefGoogle Scholar - 150.X.G. Wen and P.A. Lee, “Theory of underdoped cuprates,”
*Phys. Rev. Lett*,**76**, 503–506 (1996).ADSCrossRefGoogle Scholar - 151.E.W. Carlson, D. Orgad, S.A. Kivelson, and V.J. Emery, “Dimensional crossover in quasi-one-dimensional and high
*T*_{c}superconductors,”*Phys. Rev. B*,**62**, 3422–3437 (2000).ADSCrossRefGoogle Scholar - 152.
- 153.D.-H. Lee, “Superconductivity in a doped Mott insulator,”
*Phys. Rev. Lett*,**84**, 2694–2697 (2000).ADSCrossRefGoogle Scholar - 154.S. Sachdev, “Kagome-acute-and triangular-lattice Heisenberg antiferromagnets: Ordering from quantum fluctuations and quantum-disordered ground states with unconfined bosonic spinons,”
*Phys. Rev. B*,**45**, 12377–12396 (1992).ADSCrossRefGoogle Scholar - 155.M.U. Ubbens and P.A. Lee, “Superconductivity phase diagram in the gaugefield description of the t-J model,”
*Phys. Rev. B*,**49**, 6853–6863 (1994).ADSCrossRefGoogle Scholar - 156.S.-C. Zhang, “SO(5) quantum nonlinear sigma model theory of the high-
*T*_{c}superconductivity,”*Science*,**275**, 1089–1096 (1997).MathSciNetzbMATHCrossRefGoogle Scholar - 157.S.-C. Zhang, J.-P. Hu, E. Arrigoni, W. Hanke, and A. Auerbach, “Projected SO(5) models,”
*Phys. Rev. B*,**60**, 13070–13084 (1999).ADSCrossRefGoogle Scholar - 158.A. Auerbach and E. Altman, “Projected SO(5) Hamiltonian for cuprates and its applications,”
*Int. Jour. Mod. Phys. B*,**15**, 2509–2518 (2001).ADSCrossRefGoogle Scholar - 159.J. Ye, “Thermally generated vortices, gauge invariance, and electron spectral function in the pseudogap regime,”
*Phys. Rev. Lett*,**87**, 227003–227006 (2001).ADSCrossRefGoogle Scholar - 160.A. Abanaov, A.V. Chubukov, and J. Schmalian, “Fingerprints of spin mediated pairing in cuprates,”
*Journal of Electron Spectroscopy and Related Phenomena*,**117–118**, 129–151 (2001).CrossRefGoogle Scholar - 161.M. Takigawa, A.P. Reyes, P.C. Hammel, J.D. Thompson, R.H. Heffner, Z. Fisk, and K.C. Ott, “Cu and O NMR studies of the magnetic properties of YBa
_{2}Cu_{3}O_{6.63}(*T*_{c}=62 K),”*Phys. Rev. B*,**43**, 247–257 (1991).ADSCrossRefGoogle Scholar - 162.H.A. Mook and F. Dogan, “Charge fluctuations in YBa
_{2}Cu_{3}O_{7−x}high-temperature superconductors,”*Nature*,**401**, 145–148 (1999).ADSCrossRefGoogle Scholar - 163.P. Dai, H.A. Mook, and F. Dogan, “Incommensurate magnetic fluctuations in YBa
_{2}Cu_{3}O_{6.6},”*Phys. Rev. B*,**80**, 1738–1741 (1998).ADSCrossRefGoogle Scholar - 164.J.M. Tranquada, P.M. Gehring, G. Shirane, S. Shamoto, and M. Sato, “Neutron-scattering study of the dynamical spin susceptibility in YBa
_{2}Cu_{3}O_{6.6},”*Phys. Rev. B*,**46**, 5561–5575 (1992).ADSCrossRefGoogle Scholar - 165.H.A. Mook, P. Dai, and F. Dogan, “Charge and spin structure in YBa
_{2}Cu_{3}O_{6.35},”*Phys. Rev. Lett*,**88**, 097004–097007 (2002).ADSCrossRefGoogle Scholar - 166.S. Wakimoto, R.J. Birgeneau, M.A. Kastner, Y.S. Lee, R. Erwin, P.M. Gehring, S.H. Lee, M. Fujita, K. Yamada, Y. Endoh, K. Hirota, and G. Shirane, “Direct observation of a one-dimensional static spin modulation in insulating La
_{1.95}Sr_{0.05}CuO_{4},”*Phys. Rev. B*,**61**, 3699–3706 (2000).ADSCrossRefGoogle Scholar - 167.H. Kimura, H. Matsushita, K. Hirota, Y. Endoh, K. Yamada, G. Shirane, Y.S. Lee, M.A. Kastner, and R.J. Birgeneau, “Incommensurate geometry of the elastic magnetic peaks in superconducting La
_{1.88}Sr_{0.12}CuO_{4},”*Phys. Rev. B*,**61**, 14366–14369 (2000).ADSCrossRefGoogle Scholar - 168.B.O. Wells, Y.S. Lee, M.A. Kastner, R.J. Christianson, R.J. Birgeneau, K. Yamada, Y. Endoh, and G. Shirane, “Incommensurate spin fluctuations in high-transition temperature superconductors,”
*Science, 277*, 1067–1071 (1997).Google Scholar - 169.M. Matsuda, M. Fujita, K. Yamada, R.J. Birgeneau, Y. Endoh, and G. Shirane, “Electronic phase separation in lightly doped La
_{2−x}Sr_{x}CuO_{4},”*Phys. Rev. B*,**65**, 134515 (2002).ADSCrossRefGoogle Scholar - 170.P.A. Lee and N. Nagaosa, “Gauge theory of the normal state of high-
*T*_{c}superconductors,”*Phys. Rev. B*,**46**, 5621–39 (1992).ADSCrossRefGoogle Scholar - 171.C. Meingast, V. Pasler, P. Nagel, A. Rykov, S. Tajima, and P. Olsson, “Phase fluctuations and the pseudogap in YBa
_{2}Cu_{3}O_{7−δ},”*Phys. Rev. Lett*,**86**, 1606–1609 (2001).ADSCrossRefGoogle Scholar - 172.J. Corson, R. Mallozzi, J. Orenstein, J.N. Eckstein, and I. Bozovic, “Vanishing of phase coherence in underdoped Bi
_{2}Sr_{2}CaCu_{2}O_{8+δ},”*Nature*,**398**, 221–223 (1999).ADSCrossRefGoogle Scholar - 173.D.A. Bonn, S. Kamal, A. Bonakdarpour, L. Ruixing, W.N. Hardy, C.C. Homes, and D.N.B.T. Timusk, “Surface impedance studies of YBCO,”
*Czech. J. Phys*.,**46**, 3195–3202 (1996).CrossRefGoogle Scholar - 174.V. Pasler, P. Schweiss, C. Meingast, B. Obst, H. Wuhl, A.I. Rykov, and S. Tajima, “3D-XY critical fluctuations of the thermal expansivity in detwinned YBa
_{2}Cu_{3}O_{7−δ}single crystals near optimal doping,”*Phys. Rev. Lett*,**81**, 1094–1097 (1998).ADSCrossRefGoogle Scholar - 175.C. Varma, “Pseudogap phase and the quantum-critical point in copper-oxide metals,”
*Phys. Rev. Lett*,**83**, 3538–3541 (1999).ADSCrossRefGoogle Scholar - 176.S. Chakravarty,
*unpublished*.Google Scholar - 177.T. Valla, P.D. Johnson, Z. Yusof, B. Wells, Q. Li, S.M. Loureiro, R.J. Cava, M. Mikami, Y. Mori, M. Yoshimura, and T. Sasaki, “Coherence-incoherence and dimensional crossover in layered strongly correlated metals,”
*submitted to Science*(2002).Google Scholar - 178.J. Zaanen, “Superconductivity: self-organized one dimensionality,”
*Science*,**286**, 251–252 (1999).CrossRefGoogle Scholar - 179.Preliminary evidence of the existence of nematic order in La
_{2−x}Sr_{x}CuO_{4}and YBa_{2}Cu_{3}O_{7-δ}can be found in [99].Google Scholar - 180.J.P. Eisenstein, M.P. Lilly, K.B. Cooper, L.N. Pfeiffer, and K.W. West, “New collective states of 2D electrons in high Landau levels,”
*Physica E*,**9**, 1–8 (2001).ADSCrossRefGoogle Scholar - 181.M.M. Fogler, “Stripe and bubble phases in quantum Hall systems,”
*cond-mat/0111001*(2001).Google Scholar - 182.M.M. Fogler, “Quantum Hall liquid crystals,”
*cond-mat/0111049*(2001).Google Scholar - 183.V.J. Emery, “Theory of the one-dimensional electron gas,” in “Highly Conducting One-Dimensional Solids,” edited by J.T. Devreese, R.P. Evrard, and V.E. van Dören, 327 (Plenum, New York) (1979).Google Scholar
- 184.J. Solyom, “The Fermi gas model of one-dimensional conductors,”
*Adv. Phys*.,**28**, 201–303 (1979).ADSCrossRefGoogle Scholar - 185.E. Fradkin, Field Theories of Condensed Matter Systems (Addison-Wesley, Massachusetts) (1991).zbMATHGoogle Scholar
- 186.J. von Delft and H. Schoeller, “Bosonization for beginners — Refermionization for experts,”
*Annalen Phys*.,**7**, 225–305 (1998).ADSzbMATHCrossRefGoogle Scholar - 187.A.O. Gogolin, A.A. Nersesyan, and A.M. Tsvelik, Bosonization and Strongly Correlated Systems (Cambridge University Press, Cambridge) (1998).Google Scholar
- 188.H.J. Schulz, G. Guniberti, and P. Pieri, “Fermi liquids and Luttinger liquids,”
*cond-mat/9807366*(1998).Google Scholar - 189.J. Voit, “One-dimensional Fermi liquids,”
*Rep. Prog. Phys*.,**58**, 977–1116 (1995).ADSCrossRefGoogle Scholar - 190.J.M. Kosterlitz and D.J. Thouless, “Ordering, metastability and phase transitions in two-dimensional systems,”
*J. Phys. C*,**6**, 1181–1203 (1973).ADSCrossRefGoogle Scholar - 191.T. Giamarchi and H.J. Schulz, “Correlation functions of one-dimensional quantum systems,”
*Phys. Rev. B*,**39**, 4620–4629 (1989).ADSCrossRefGoogle Scholar - 192.A. Luther and V.J. Emery, “Backward scattering in the one-dimensional electron gas,”
*Phys. Rev. Lett*.,**33**, 589–592 (1974).ADSCrossRefGoogle Scholar - 193.N. Kawakami and S.K. Yang, “Luttinger anomaly exponent of momentum distribution in the Hubbard chain,”
*Phys. Lett. A*,**148**, 359–362 (1990).ADSCrossRefGoogle Scholar - 194.R.M. Noack, N. Bulut, D.J. Scalapino, and M.G. Zacher, “Enhanced {ze434-1} pairing correlations in the two-leg Hubbard ladder,”
*Phys. Rev. B*,**56**, 7162–7166 (1997).ADSCrossRefGoogle Scholar - 195.T. Valla, A.V. Fedorov, P.D. Johnson, and S.L. Hulber, “Many-body effects in angle-resolved photoemission: Quasiparticle energy and lifetime of a Mo(110) surface state,”
*Phys. Rev. Lett*,**83**, 2085–2088 (1999).ADSCrossRefGoogle Scholar - 196.A. Luther and I. Peschel, “Single-particle states, Kohn anomaly and pairing fluctuations in one dimension,”
*Phys. Rev. B*,**9**, 2911–2919 (1974).ADSCrossRefGoogle Scholar - 197.V. Meden and K. Schönhammer, “Spectral functions for the Tomonaga-Luttinger model,”
*Phys. Rev. B*,**46**, 15753–15760 (1992).ADSCrossRefGoogle Scholar - 198.J. Voit, “Charge-spin separation and the spectral properties of Luttinger liquids,”
*Phys. Rev. B*,**47**, 6740–6743 (1993).ADSCrossRefGoogle Scholar - 199.D. Orgad, “Spectral functions for the Tomonga-Luttinger and Luther-Emery liquids,”
*Phil. Mag. B*,**81**, 377–398 (2001).ADSGoogle Scholar - 200.G.-H. Gweon, J.W. Allen, and J.D. Denlinger, “Ubiquitous generalized spectral signatures of electron fractionalization in quasi-low dimensional metals,”Google Scholar
- 201.F.H.L. Essler and A.M. Tsvelik, “Weakly coupled one-dimensional Mott insulators,”
*Phys. Rev. B*,**65**, 115117–115129 (2002).ADSCrossRefGoogle Scholar - 202.D.J. Scalapino, Y. Imry, and P. Pincus, “Generalized Ginzburg-Landau theory of pseudo-one-dimensional systems,”
*Phys. Rev. B*,**11**, 2042–2048 (1975).ADSCrossRefGoogle Scholar - 203.E. Arrigoni, “Crossover to Fermiliquid behavior for weakly coupled Luttinger liquids in the anisotropic large-dimension limit,”
*Phys. Rev. B*,**61**, 7909–7929 (2000).ADSCrossRefGoogle Scholar - 204.D.L. Feng, D.H. Lu, K.M. Shen, C. Kim, H. Eisaki, A. Damascelli, R. Yoshizaki, J. Shimoyama, K. Kishio, G.D. Gu, S. Oh, A. Andrus, J. O’Donnell, J.N. Eckstein, and Z.X. Shen, “Signature of superfluid density in the single-particle excitation spectrum of Bi
_{2}Sr_{2}CaCu_{2})_{8+δ},”*Science*,**289**, 277–281 (2000).ADSCrossRefGoogle Scholar - 205.H. Ding, J.R. Engelbrecht, Z. Wang, J.C. Campuzano, S.-C. Wang, H.-B. Yang, R. Rogan, T. Takahashi, K. Kadowaki, and D.G. Hinks, “Coherent quasiparticle weight and its connection to high-Tc superconductivity from angle-resolved photoemission,”
*Phys. Rev. Lett*.,**87**, 227001–227004 (2000).ADSCrossRefGoogle Scholar - 206.S. Biermann, A. Georges, A. Lichtenstein, and T. Giamarchi, “Deconfinement transition and Luttinger to Fermi liquid crossover in quasi-one-dimensional systems,”
*Phys. Rev. Lett*.,**87**, 276405–276408 (2001).ADSCrossRefGoogle Scholar - 207.S. Biermann, A. Georges, T. Giamarchi, and A. Lichtenstein, “Quasi-one-dimensional organic conductors: dimensional crossover and some puzzles,”
*cond-mat/0201542*(2002).Google Scholar - 208.L. Yin and S. Chakravarty, “Spectral anomaly and high temperature superconductors,”
*Int. J. Mod. Phys. B*,**7**, 805–845 (1996).ADSCrossRefGoogle Scholar - 209.V.J. Emery, E. Fradkin, S.A. Kivelson, and T.C. Lubensky, “Quantum theory of the smectic metal state in stripe phases,”
*Phys. Rev. Lett*.,**85**, 2160–2163 (2000).ADSCrossRefGoogle Scholar - 210.A.H. Castro Neto, “Stripes, vibrations, and superconductivity,”
*Phys. Rev. B*,**64**, 104509–104535 (2001).ADSCrossRefGoogle Scholar - 211.A. Vishwanath and D. Carpentier, “Two-Dimensional anisotropic non-Fermiliquid phase of coupled Luttinger liquids,”
*Phys. Rev. Lett*.,**86**, 676–679 (2001).ADSCrossRefGoogle Scholar - 212.R. Mukhopadhyay, C.L. Kane, and T.C. Lubensky, “Sliding Luttinger liquid phases,”
*Phys. Rev. B*,**64**, 045120–045137 (2001).ADSCrossRefGoogle Scholar - 213.S.L. Sondhi and K. Yang, “Sliding phases via magnetic fields,”
*Phys. Rev. B*,**63**, 054430–054436 (2001).ADSCrossRefGoogle Scholar - 214.
- 215.T. Senthil and O. Motrunich, “Microscopic models for fractionalized phases in strongly correlated systems,”
*cond-mat/0201320*(2002).Google Scholar - 216.P. Fazekas and P.W. Anderson, “On the ground state properties of the anisotropic triangular antiferromagnet. (Application of anisotropic Heisenberg model),”
*Phil. Mag*.,**30**, 423–440 (1974).ADSCrossRefGoogle Scholar - 217.R.B. Laughlin, “The relationship between high-temperature superconductivity and the fractional quantum Hall effect,”
*Science*,**242**, 525–533 (1988).ADSCrossRefGoogle Scholar - 218.N. Read and B. Chakraborty, “Statistics of the excitations of the resonating-valence-bond state,”
*Phys. Rev. B*,**40**, 7133–7140 (1989).ADSCrossRefGoogle Scholar - 219.V. Kalmeyer and R.B. Laughlin, “Equivalence of the resonating-valence-bond and fractional quantum Hall states,”
*Phys. Rev. Lett*.,**59**, 2095–2098 (1987).ADSCrossRefGoogle Scholar - 220.S.A. Kivelson, “Statistics of holons in the quantum hard-core dimer gas,”
*Phys. Rev. B*,**39**, 259–264 (1989).ADSCrossRefGoogle Scholar - 221.E. Demier, C. Nayak, H.-Y. Kee, Y.B. Kim, and T. Senthil, “Fractionalization patterns in strongly correlated electron systems: Spin-charge separation and beyond,”
*cond-mat/0105446*(2001).Google Scholar - 222.F.D.M. Haidane, “O(3) nonlinear sigma model and the topological distinction between integer-and half-integer-spin antiferromagnets in two dimensions,”
*Phys. Rev. Lett*.,**61**, 1029–1032 (1988).MathSciNetADSCrossRefGoogle Scholar - 223.S. Chakravarty, B.I. Halperin, and D. Nelson, “Two-dimensional quantum Heisenberg antiferromagnet at low temperatures,”
*Phys. Rev. B*,**39**, 2344–2371 (1989).ADSCrossRefGoogle Scholar - 224.S. Chakravarty, B.I. Halperin, and D. Nelson, “Low-temperature behavior of two-dimensional quantum antiferromagnets,”
*Phys. Rev. Lett*.,**60**, 1057–1060 (1988).ADSCrossRefGoogle Scholar - 225.R. Coldea, S.M. Hayden, G. Aeppli, T.G. Perring, C.D. Frost, T.E. Mason, S.-W. Cheong, and Z. Fisk, “Spin waves and electronic interactions in La
_{2}CuO_{4},”*Phys. Rev. Lett*.,**86**(2001).Google Scholar - 226.R.J. Birgeneau, A. Aharony, N.R. Belk, F.C. Chou, Y. Endoh, M. Greven, S. Hosoya, M.A. Kastner, CH. Lee, Y.S. Lee, G. Shirane, S. Wakimoto, B.O. Wells, and K. Yamada, “Magnetism and magnetic fluctuations in La
_{2−x}Sr_{x}CuO_{4}for x=0 (2D antiferromagnet), 0.04 (3D spin glass) and x=0.15 (superconductor),”*Jour. Phys. Chem. Solids*,**56**, 1912–1919 (1995).Google Scholar - 227.A. Weidinger, C. Niedermayer, A. Golnik, R. Simon, E. Recknagel, J.I. Budnick, B. Chamberland, and C. Baines, “Observation of magnetic ordering in superconducting La
_{2−x}Sr_{x}CuO_{4}by muon spin rotation,”*Phys. Rev. Lett*.,**62**(1989).Google Scholar - 228.C. Niedermayer, C. Bernhard, T. Blasius, A. Golnik, A. Moodenbaugh, and J.I. Budnick, “Common phase diagram for antiferromagnetism in La
_{2−x}Sr_{x}CuO_{4}and Y_{1−x};Ca_{x}Ba_{2}Cu_{3}O_{6}as seen by muon spin rotation,”*Phys. Rev. Lett*.,**80**(1999).Google Scholar - 229.C. Panagopoulos, J.L. Tallon, B.D. Rainford, T. Xiang, J.R. Cooper, and C.A. Scott, “Evidence for a generic novel quantum transition in high-Tc cuprates,”
*cond-mat/0204106*(2002).Google Scholar - 230.P. Azaria, C. Hooley, P. Lecheminant, C. Lhuillier, and A.M. Tsvelik, “Kagome lattice antiferromagnet stripped to its basics,”
*Phys. Rev. Lett*.,**81**, 1694–1697 (1998).ADSCrossRefGoogle Scholar - 231.W. LiMing, G. Misguich, P. Sindzingre, and C. Lhuillier, “From Neel long-range order to spin liquids in the multiple-spin exchange model,”
*Phys. Rev. B*,**62**, 6372–6377 (2000).ADSCrossRefGoogle Scholar - 232.G. Misguich, B. Bernu, C. Lhuillier, and C. Waldtmann, “Spin liquid in the multiple-spin exchange model on the triangular lattice:
^{3}He on graphite,”*Phys. Rev. Lett*.,**81**, 1098–1101 (1998).ADSCrossRefGoogle Scholar - 233.C. Lhuillier and G. Misguich, “Frustrated quantum magnets,”
*cond-mat/0109146*(2001).Google Scholar - 234.S. Chakravarty, S.A. Kivelson, C. Nayak,, and K. Volker, “Wigner glass, spin liquids and the metal-insulator transition,”
*Phil. Mag. B*,**79**(1999).Google Scholar - 235.A.V. Chubukov, S. Sachdev, and T. Senthil, “Quantum phase transitions in frustrated quantumantiferromagnets,”
*Nucl. Phys. B*,**426**, 601–643 (1994).ADSCrossRefGoogle Scholar - 236.R. Meservey and B.B. Schwartz, “equilibrium properties: comparison of experimental results with predictions of the BCS theory,” in “Superconductivity,” edited by R.D. Parks, vol. 1 (Marcel Deckker, Inc., New York, NY) (1969).Google Scholar
- 237.E.A. Lynton, Superconductivity (Methuen, London) (1962).zbMATHGoogle Scholar
- 238.T.P. Orlando, E.J. McNiff Jr., S. Foner, and M.R. Beasley, “Critical fields, Pauli paramagnetic limiting, and material parameters of Nb3Sn and V3Si,”
*Phys. Rev. B*,**19**, 4545–4561 (1979).ADSCrossRefGoogle Scholar - 239.Y.G. Naidyuk and I.K. Yanson, “Point-contact spectroscopy of heavy-fermion systems,”
*J. Phys. Cond. Matt*.,**10**, 8905–8938 (1998).ADSCrossRefGoogle Scholar - 240.M.B. Maple, J.W. Chen, S.E. Lambert, Z. Fisk, J.L. Smith, H.R. Ott, J.S. Brooks, and M.J. Naughton, “Upper critical magnetic field of the heavy-fermion superconductor UBe13,”
*Phys. Rev. Lett*.,**54**, 477–480 (1985).ADSCrossRefGoogle Scholar - 241.F. Gross, K. Andres, and S. Chandrasekhar, “Experimental determination of the absolute value of the London penetration depth in the heavy fermion superconductors UBe
_{13}and UPt_{3},”*Physica C*,**162–164**, 419–420 (1989).CrossRefGoogle Scholar - 242.F. Sharifi, A. Pargellis, R.C. Dynes, B. Miller, E.S. Hellman, J. Rosamilia, and E.H.H. Jr., “Electron tunneling in the high-Tc bismuthate superconductors,”
*Phys. Rev. B*,**44**, 12521–12524 (1991).ADSCrossRefGoogle Scholar - 243.Y.J. Uemura, L.P. Le, G.M. Luke, B.J. Sternlieb, W.D. Wu, J.H. Brewer, T.M. Riseman, C.L. Seaman, M.B. Maple, M. Ishikawa, D.G. Hinks, J.D. Jorgensen, G. Saito, and H. Yamochi, “Basic similarities among cuprate, bismuthate, organic, chevrel-phase, and heavy-fermion superconductors shown by penetration-depth measurements,”
*Phys. Rev. Lett*.,**66**, 2665–2668 (1991).ADSCrossRefGoogle Scholar - 244.O. Gunnarsson, “Superconductivity in fullendes,”
*Rev. Mod. Phys*.,**69**, 575–606 (1997).ADSCrossRefGoogle Scholar - 245.Y.J. Uemura, A. Keren, L.P. Le, G.M. Luke, B.J. Sternlieb, W.D. Wu, J.H. Brewer, R.L. Whetten, S.M. Huang, S. Lin, R.B. Kaner, F. Diederich, S. Donovan, G. Gruner, and K. Holczer, “Magnetic-field penetration depth in K
_{3}C_{60}measured by muon spin relaxation,”*Nature*,**352**, 605–607 (1991).ADSCrossRefGoogle Scholar - 246.
- 247.A.S. Alexandrov, “Nonadiabatic polaronic superconductivity in MgB
_{2}and cuprates,”*Physica C*,**363**, 231–236 (2001).ADSCrossRefGoogle Scholar - 248.H. Schmidt, J.F. Zasadzinski, K.E. Gray, and D.G. Hinks, “Evidence for two-band superconductivity from break junction tunneling on MgB
_{2},”*Phys. Rev. Lett*.,**88**, 127002–127005 (2002).ADSCrossRefGoogle Scholar - 249.A.V. Sologubenko, J. Jun, S.M. Kazakov, J. Karpinski, and H.R. Ott, “Temperature dependence and anisotropy of the bulk upper critical field H
_{c2}of MgB_{2},”*Phys. Rev. B*,**65**, R180505–R180508 (2002).ADSCrossRefGoogle Scholar - 250.T. Arai, K. Ichimura, K. Nomur, S. Takasaki, J. Yamada, S. Nakatsuji, and H. Anzai, “Superconducting and normal-state gaps in
*κ*-(BEDT-TTF)_{2}Cu(NCS)_{2}studied by STM spectroscopy,”*Solid State Commun*.,**116**, 679–682 (2000).ADSCrossRefGoogle Scholar - 251.Y.J. Uemura, A. Keren, L.P. Le, G.M. Luke, W.D. Wu, Y. Kubo, T. Manako, Y. Shimakawa, M. Subramanian, J.L. Cobb, and J.T. Markert, “Magnetic-field penetration depth in Tl
_{2}Ba_{2}CuO_{6+δ}in the overdoped regime,”*Nature*,**364**, 605–607 (1993).ADSCrossRefGoogle Scholar - 252.R. Prozorov, R.W. Giannetta, A. Carrington, P. Fournier, R.L. Greene, P. Guptasarma, D.G. Hinks, and A.R. Banks, “Measurements of the absolute value of the penetration depth in high-
*T*_{c}superconductors using a low-*T*_{c}superconductive coating,”*Appl. Phys. Lett*.,**77**, 4202 (2000).ADSCrossRefGoogle Scholar - 253.A. Biswas, P. Fournier, V.N. Smolyaninova, R.C. Budhani, J.S. Higgins, and R.L. Greene, “Gapped tunneling spectra in the normal state of Pr
_{2−x}Ce_{x}CuO_{4},”*Phys. Rev. B*,**64**, 104519–104526 (2001).ADSCrossRefGoogle Scholar - 254.Kajitani, K. Hiraga, S. Hosoya, and T.F.K.O.-I.Y. Syono, “Structural study of oxygen-saturated or quenched Pr
_{2−x}Ce_{x}CuO_{4}with xi=0.15,”*Physica C*,**178**, 397–404 (1991).ADSCrossRefGoogle Scholar - 255.L. Ozyuzer, Z. Yusof, J.F. Zasadzinski, R. Mogilevsky, D.G. Hinks, and K.E. Gray, “Evidence of {ze438-1} symmetry in the tunneling conductance density of states of Tl
_{2}Ba_{2}CuO_{6},”*Phys. Rev. B*,**57**, R3245–R3248 (1998).ADSCrossRefGoogle Scholar - 256.C. Niedermayer, C. Bernhard, U. Binninger, H. Glückler, J.L. Tallon, E.J. Ansaldo, and J.I. Budnick, “Muon spin rotation study of the correlation between Tc and ns/m* in overdoped Tl
_{2}Ba_{2}CuO_{6+δ},”*Phys. Rev. Lett*.,**71**, 1764 (1993).ADSCrossRefGoogle Scholar - 257.M. Kang, G. Blumberg, M.V. Klein, and N.N. Kolesnikov, “Resonance Raman study of the superconducting gap and low energy excitations in Tl
_{2}Ba_{2}CuO_{6+δ}superconductors,”*Phys. Rev. Lett*.,**77**, 4434 (1996).ADSCrossRefGoogle Scholar - 258.N. Miyakawa, P. Guptasarma, J.F. Zasadzinski, D.G. Hinks, and K.E. Gray, “Strong dependence of the superconducting gap on oxygen doping from tunneling measurements on Bi
_{2}Sr_{2}CaCu_{2}O_{8−δ},”*Phys. Rev. Lett*.,**80**, 157–160 (1998).ADSCrossRefGoogle Scholar - 259.M. Niderost, R. Frassanito, M. Saalfrank, A.C. Mota, G. Blatter, V.N. Zavaritsky, T.W. Li, and P.H. Kes, “Lower critical field H
_{ci}and barriers for vortex entry in Bi_{2}Sr_{2}CaCu_{2}O_{8+δ}crystals,”*Phys. Rev. Lett*.,**81**, 3231 (1998).ADSCrossRefGoogle Scholar - 260.S.L. Lee, P. Zimmermann, H. Keller, M. Warden, I.M. Savic, R. Schauwecker, D. Zech, R. Cubitt, E.M. Forgan, P.H. Kes, T.W. Li, A.A. Menovsky, and Z. Tarnawski, “Evidence for flux-lattice melting and a dimensional crossover in single-crystal Bi
_{2.15}Sr_{1.85}CaCu_{2}O_{8+δ}from muon spin rotation studies,”*Phys. Rev. Lett*.,**71**, 3862–3865 (1993).ADSCrossRefGoogle Scholar - 261.M. Weber, P. Birrer, F.N. Gygax, B. Hitti, E. Lippelt, H. Maletta, and A. Schenck, “Measurements of the London penetration depth in Bi-based high-
*T*_{c}compounds,”*Hyp. Int*.,**63**, 93 (1993).ADSCrossRefGoogle Scholar - 262.C. Bernhard, J.L. Tallon, T. Blasius, A. Golnik, and C. Neidermayer, “Anomalous peak in the superconducting condensate density of cuprate high-Tc superconductors at a unique doping state,”
*Phys. Rev. Lett*.,**86**, 1614–1617 (2001).ADSCrossRefGoogle Scholar - 263.C. Panagopoulos, J.R. Cooper, and T. Xiang, “Systematic behavior of the inplane penetration depth in d-wave cuprates,”
*Phys. Rev. B*,**57**, 13422–13425 (1998).ADSCrossRefGoogle Scholar - 264.P. Zimmermann, H. Keller, S.I. Lee, I.M. Savic, M. Warden, D. Zech, R. Cubitt, E.M. Forgan, E. Kaldis, J. Karpinski, and C. Kruger, “Muon-spin-rotation studies of the temperature dependence of the magnetic penetration depth in the YBa
_{2}Cu_{3}O_{x}family and related compounds,”*Phys. Rev. B*,**52**, 541–552 (1995).ADSCrossRefGoogle Scholar - 265.J.Y.T. Wei, C.C. Tsuei, P.J.M. van Bentum, Z. Xiong, C.W. Chu, and M.K. Wu, “Quasiparticle tunneling spectra of the high-Tc mercury cuprates: Implications of the d-wave two-dimensional van Hove scenario,”
*Phys. Rev. B*,**57**, 3650–3662 (1998).ADSCrossRefGoogle Scholar - 266.L. Fäbrega, A. Calleja, A. Sin, S.P. nol, X. Obradors, J. Fontcuberta, and P.J.C. King, “Muon spin relaxation in Resubstituted HgA
_{2}Ca_{n−1}Cu_{n}O_{2n+2+x}(A = Sr,Ba; n = 2,3) superconductors,”*Phys. Rev. B*,**60**, 7579–7584 (1999).ADSCrossRefGoogle Scholar - 267.A. Fujimori, A. Ino, T. Yoshida, T. Mizokawa, M. Nakamura, C. Kim, Z.X. Shen, T. Kakeshita, H. Eisaki, and S. Uchida, “Fermi surface, pseudogap and superconducting gap in La
_{2−x}Sr_{x}CuO_{4},”*Physica C*,**341–348**, 2067 (2000).CrossRefGoogle Scholar - 268.C. Panagopoulos, B.D. Rainford, J.R. Cooper, W. Lo, J.L. Tallon, J.W. Loram, J. Betouras, Y.S. Wang, and C.W. Chu, “Effects of carrier concentration on the superfluid density of high-Tc cuprates,”
*Phys. Rev. B*,**60**, 14617–14620 (1999).ADSCrossRefGoogle Scholar - 269.P.G. Radaelli, D.G. Hinks, A.W. Mitchell, B.A. Hunter, J.L. Wagner, B. Dabrowski, K.G. Vandervoort, H.K. Viswanathan, and J.D. Jorgensen, “Structural and superconducting properties of La
_{2−x}Sr_{x}CuO_{4}as a function of Sr content,”*Phys. Rev. B*,**49**, 4163–4175 (1994).ADSCrossRefGoogle Scholar - 270.V.J. Emery and S.A. Kivelson, “Importance of phase fluctuations in superconductors with small superfluid density,”
*Nature*,**374**, 434–437 (1995).ADSCrossRefGoogle Scholar - 271.L.M. Merchant, J. Ostrick, R.P.B. Jr., and R.C. Dynes, “Crossover from phase fluctuation to amplitude-dominated superconductivity: A model system,”
*Phys. Rev. B*,**63**, 134508–134514 (2001).ADSCrossRefGoogle Scholar - 272.A.J. Rimberg, T.R. Ho, C. Kurdak, J. Clarke, K.L. Campman, and A.C. Gossard, “Dissipation-driven superconductor-insulator transition in a two-dimensional Josephson-junction array,”
*Phys. Rev. Lett*.,**78**, 2632–2635 (1997).ADSCrossRefGoogle Scholar - 273.A. Kapitulnik, N. Mason, S.A. Kivelson, and S. Chakravarty, “Effects of dissipation on quantum phase transitions,”
*Phys. Rev. B*,**63**, 125322–125333 (2001).ADSCrossRefGoogle Scholar - 274.N. Mason and A. Kapitulnik, “True superconductivity in a two-dimensional superconducting-insulating system,”
*Phys. Rev. B*,**64**, 60504–60508 (2001).ADSCrossRefGoogle Scholar - 275.E.W. Carlson, S.A. Kivelson, V.J. Emery, and E. Manousakis, “Classical phase fluctuations in high temperature superconductors,”
*Phys. Rev. Lett*.,**83**, 612–615 (2000).ADSCrossRefGoogle Scholar - 276.B.I. Spivak and S.A. Kivelson, “Aharonov-Bohm oscillations with period hc/4e and negative magnetoresistance in dirty superconductors,”
*Phys. Rev. B*,**45**, 10490–10495 (1992), electron correlations could change this assumption.CrossRefGoogle Scholar - 277.P.M. Chaikin and T.C. Lubensky, Principles of condensed matter physics (Cambridge) (1995).Google Scholar
- 278.E. Roddick and D. Stroud, “Effect of phase fluctuations on the low-temperature penetration depth of high-Tc superconductors,”
*Phys. Rev. Lett*.,**74**, 1430–1433 (1995).ADSCrossRefGoogle Scholar - 279.M.W. Coffey, “Effect of superconductor phase fluctuations upon penetration depth,”
*Phys. Lett. A*,**200**, 195–200 (1995).ADSCrossRefGoogle Scholar - 280.S. Kamal, D.A. Bonn, N. Goldenfeld, P.J. Hirschfeld, R. Liang, and W.N. Hardy, “Penetration depth measurements of 3D XY critical behavior in YBa
_{2}Cu_{3}O_{6.95}crystals,”*Phys. Rev. Lett*.,**73**, 1845–1848 (1994).ADSCrossRefGoogle Scholar - 281.S. Chakravarty, G. Ingold, S.A. Kivelson, and A. Luther, “Onset of global phase coherence in Josephson-junction arrays: a dissipative phase transition,”
*Phys. Rev. Lett*.,**56**(1986).Google Scholar - 282.K.-H. Wagenblast, A.V. Otterlo, G. Schon, and G.T. Zimanyi, “Superconductor-insulator transition in a tunable dissipative environment,”
*Phys. Rev. Lett*.,**79**(1997).Google Scholar - 283.S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, UK) (1999).Google Scholar
- 284.M.V. Feigel’man, A.I. Larkin, and M.A. Skvortsov, “Quantum superconductor-metal transition in a proximity array,”
*Phys. Rev. Lett*.,**86**, 1869–1872 (2001).ADSCrossRefGoogle Scholar - 285.B.I. Spivak, A. Zyuzin, and M. Hruska, “Quantum superconductor-metal transition,”
*Phys. Rev. B*,**64**, 132502–132505 (2001).ADSCrossRefGoogle Scholar - 286.Y. Oreg and E. Demler, “Fermions and bosons in superconducting amorphous wires,”
*cond-mat/0106645*(2001).Google Scholar - 287.L. Ozyuzer, J.F. Zasadzinski, and N. Miyakawa, “Tunneling spectra and superconducting gap in Bi
_{2}Sr_{2}CaCu_{2}O_{8+δ}and Tl_{2}Ba_{2}CuO_{6+δ},”*Int. J. Mod. Phys. B*,**13**, 3721–3724 (1999).ADSCrossRefGoogle Scholar - 288.S. Doniach and M. Inui, “Long-range Coulomb interactions and the onset of superconductivity in the high-Tc materials,”
*Phys. Rev. B*,**41**, 6668–6678 (1990).ADSCrossRefGoogle Scholar - 289.J.M. Harris, P.J. White, Z.-X. Shen, H. Ikeda, R. Yoshizaki, H. Eisaki, S. Uchida, W.D. Si, J.W. Xiong, Z.-X. Zhao, and D.S. Dessau, “Measurement of an anisotropic energy gap in single plane Bi
_{2}Sr_{2−x}La_{x}CuO_{6+δ},”*Phys. Rev. Lett*.,**79**, 143–146 (1997).ADSCrossRefGoogle Scholar - 290.T. Schneider and H. Keller, “Extreme type II superconductors. Universal properties and trends,”
*Physica*,**207**, 366–380 (1993).Google Scholar - 291.F. a recent analysis of the doping dependence of ξ
_{0}see Y. Ando and K. Segawa, “Magnetoresistance of untwinned YBa_{2}Cu_{3}O_{y}single crystals in a wide range of doping: anomalous hole-doping dependence of the coherence length,”*Phys. Rev. Lett*.,**88**, 167005 (2002).ADSCrossRefGoogle Scholar - 292.C.P.B. W.N. Hardy, D. A. Bonn, and R. Liang, “Magnetic field dependence of lambda in YBa
_{2}Cu_{3}O_{6.95}: results as a function of temperature and field orientation,”*Phys. Rev. Lett*.,**83**, 3277–3280 (1999).ADSCrossRefGoogle Scholar - 293.X.-G. Wen and P.A. Lee, “Theory of quasiparticles in the underdoped high-Tc superconducting state,”
*Phys. Rev. Lett*.,**80**, 2193–2196 (1998).ADSCrossRefGoogle Scholar - 294.A.J. Millis, S.M. Girvin, L.B. Ioffe, and A.I. Larkin, “Anomalous charge dynamics in the superconducting state of underdoped cuprates,”
*Jour. Phys. Chem. Solids*,**59**, 1742–1744 (1998).ADSCrossRefGoogle Scholar - 295.L. Benfatto, S. Caprara, C. Castellani, A. Paramekanti, and M. Randeria, “Phase fluctuations, dissipation, and superfluid stiffness in d-wave superconductors,”
*Phys. Rev. B*,**63**, 174513–174521 (2001).ADSCrossRefGoogle Scholar - 296.G.T. Zimanyi, S.A. Kivelson, and A. Luther, “Superconductivity from predominantly repulsive interactions in quasi one-dimensional systems,”
*Phys. Rev. Lett*.,**60**, 2089–2092 (1988).ADSCrossRefGoogle Scholar - 297.S.A. Kivelson and G.T. Zimanyi, “High temperature superconductors, RVB, and conducting polymers,”
*Molec. Cryst and Liq. Cryst*,**160**, 457–481 (1988).Google Scholar - 298.A.M. Finkel’stein and S.A. Brazovsky, “Interchain coupling in linear conductors,”
*J. Phys. C*,**14**, 847–857 (1981).ADSCrossRefGoogle Scholar - 299.S.A. Brazovsky and A.M. Finkel’stein, “The influence of phonons on the optical properties and conductivity of quasi-one-dimensional metals,”
*Solid State Comm*.,**38**, 745 (1981).ADSCrossRefGoogle Scholar - 300.S.A. Kivelson and M.I. Salkola, “Metal-non-metal transition in polyacetylene,”
*Synth. Met*,**44**, 281–291 (1991).CrossRefGoogle Scholar - 301.G.G. Batrouni, R.T. Scalettar, G.T. Zimanyi, and A.P. Kampf, “Supersolids in the Bose-Hubbard Hamiltonian,”
*Phys. Rev. Lett*.,**74**, 2527–2530 (1995), see also [502].ADSCrossRefGoogle Scholar - 302.M.P.A. Fisher, P.B. Weichman, G. Grinstein, and D.S. Fisher, “Boson localization and the superfluid-insulator transition,”
*Phys. Rev. B*,**40**, 546–570 (1989).ADSCrossRefGoogle Scholar - 303.C. Nayak and K. Shtengel, “Microscopic models of two-dimensional magnets with fractionalized excitations,”
*Phys. Rev. B*,**64**, 064422–064428 (2001).ADSCrossRefGoogle Scholar - 304.R. Coldea, D.A. Tennant, A.M. Tsvelik, and Z. Tylczynski, “Experimental realization of a 2D fractional quantum spin liquid,”
*Phys. Rev. Lett*.,**86**, 1335–1338 (2001).ADSCrossRefGoogle Scholar - 305.S. Chakravarty, “Magnetic properties of La
_{2}CuO_{4},” (Addison-Wesley, Redwood City, CA, USA) (1990).Google Scholar - 306.A.E. Sikkema, I. Affleck, and S.R. White, “Spin gap in a doped Kondo chain,”
*Phys. Rev. Lett*.,**79**, 929–932 (1997).ADSCrossRefGoogle Scholar - 307.O. Zachar, V.J. Emery, and S.A. Kivelson, “Exact results for a ID Kondo lattice from bosonization,”
*Phys. Rev. Lett*,**77**, 1342–1345 (1996).ADSCrossRefGoogle Scholar - 308.O. Zachar, “Staggered liquid phases of the one-dimensional Kondo-Heisenberg lattice model,”
*Phys. Rev. B*,**63**, 205104–205113 (2001).ADSCrossRefGoogle Scholar - 309.D.J. Scalapino and S.R. White, “Numerical results for the Hubbard model: implications for the high-
*T*_{c}pairing mechanism,”*Foundations of Physics*,**31**, 27–39 (2001).CrossRefGoogle Scholar - 310.F.D.M. Haldane, “Continuum dynamics of the 1-D Heisenberg antiferromagnet: identification with the 0(3) nonlinear sigma model,”
*Phys. Lett. A*,**93**, 464–468 (1983).MathSciNetADSCrossRefGoogle Scholar - 311.S. Chakravarty, “Dimensional crossover in quantum antiferromagnets,”
*Phys. Rev. Lett*,**77**, 4446–4449 (1996).MathSciNetADSCrossRefGoogle Scholar - 312.S.R. White, R.M. Noack, and D.J. Scalapino, “Resonating valence bond theory of coupled Heisenberg chains,”
*Phys. Rev. Lett*,**73**, 886–889 (1994).ADSCrossRefGoogle Scholar - 313.D.J. Scalapino and S.A. Trugman, “Local antiferromagnetic correlations and {ze441-1} pairing,”
*Philos. Mag. B*,**74**, 607–610 (1996).CrossRefGoogle Scholar - 314.M. Havilio and A. Auerbach, “Superconductivity and quantum spin disorder in cuprates,”
*Phys. Rev. Lett*,**83**, 4848–4851 (1999).ADSCrossRefGoogle Scholar - 315.M. Havilio and A. Auerbach, “Correlations in doped antiferromagnets,”
*Phys. Rev. B*,**62**, 324–336 (2000).ADSCrossRefGoogle Scholar - 316.S.R. White and D.J. Scalapino, “Superconductivity in ladders and coupled planes,”
*Phys. Rev. B*,**45**, 5744–5747 (1992).ADSCrossRefGoogle Scholar - 317.D. Poilblanc, “Internal structure of the singlet {ze441-1} hole pair in an antiferromagnet,”
*Phys. Rev. B*,**495**, 1477–1479 (1993).Google Scholar - 318.Y. Fang, A.E. Ruckenstein, E. Dagotto, and S. Schmitt-Rink, “Holes in the infinite-U Hubbard model: instability of the Nagaoka state,”
*Phys. Rev. B*,**40**, 7406–7409 (1989), see also [503].ADSCrossRefGoogle Scholar - 319.D. Rokhsar, “Quadratic quantum antiferromagnets in the fermionic large-N limit,”
*Phys. Rev. B*,**42**, 2526–2531 (1990).MathSciNetADSzbMATHCrossRefGoogle Scholar - 320.CM. Varma and A. Zawadowskii, “Scaling in an interacting two-component (valence-fluctuation) electron gas,”
*Phys. Rev. B*,**32**, 7399–7407 (1985).ADSCrossRefGoogle Scholar - 321.H.-H. Lin, L. Balents, and M.RA. Fisher, “N-chain Hubbard model in weak coupling,”
*Phys. Rev. B*,**56**, 6569–6593 (1997).ADSCrossRefGoogle Scholar - 322.S.R. White and D.J. Scalapino, “Density matrix renormalization group study of the striped phase in the 2D t-J model,”
*Phys. Rev. Lett*,**80**, 1272–1275 (1998).ADSCrossRefGoogle Scholar - 323.S.R. White and D.J. Scalapino, “Energetics of domain walls in the 2D t-J model,”
*Phys. Rev. Lett*,**81**, 3227–3230 (1998).ADSCrossRefGoogle Scholar - 324.S. Hellberg and E. Manousakis, “Phase separation at all interaction strengths in the t-J model,”
*Phys. Rev. Lett*,**78**, 4609–4612 (1997).ADSCrossRefGoogle Scholar - 325.D. Poilblanc, O. Chiappa, J. Riera, S.R. White, and D.J. Scalapino, “Evolution of the spin gap upon doping a 2-leg ladder,”
*Phys. Rev. B*,**62**, R14633–R14636 (2000).ADSCrossRefGoogle Scholar - 326.S.R. White and D.J. Scalapino, “Competition between stripes and pairing in a t-t′-J model,”
*Phys. Rev. B*,**60**, R753–R756 (1999).ADSCrossRefGoogle Scholar - 327.S.C. Hellberg and E. Manousakis, “Stripes and the t-J model,”
*Phys. Rev. Lett*.,**83**, 132 (1999), see also Refs. 328,329.ADSCrossRefGoogle Scholar - 328.S.R. White and D.J. Scalapino, “Comment on “Stripes and the t-J Model”,”
*Phys. Rev. Lett*.,**84**, 3021 (2000).ADSCrossRefGoogle Scholar - 329.S.C. Hellberg and E. Manousakis, “Reply: Hellberg and Manousakis,”
*Phys. Rev. Lett*.,**84**, 3022 (2000).ADSCrossRefGoogle Scholar - 330.E. Arrigoni, A.P. Harju, W. Hanke, B. Brendel, and S.A. Kivelson, “Stripes and superconducting pairing in the t-J model with Coulomb interactions,”
*Phys. Rev. B*,**65**, 134503–134507 (2002).ADSCrossRefGoogle Scholar - 331.S.R. White and D.J. Scalapino, “Phase separation and stripe formation in the two-dimensional t-J model: A comparison of numerical results,”
*Phys. Rev. B***61**, 6320–6326 (2000).ADSCrossRefGoogle Scholar - 332.E. Daggoto, “Correlated electrons in high-temperature superconductors,”
*Rev. Mod. Phys*.,**66**, 763–840 (1994).ADSCrossRefGoogle Scholar - 333.S.C. Hellberg and E. Manousakis, “Green’s-function Monte Carlo for lattice fermions: Application to the t-J model,”
*Phys. Rev. B*,**61**, 11787–11806 (2000).ADSCrossRefGoogle Scholar - 334.S. Sorella, “Green function Monte Carlo with stochastic reconfiguration,”
*Phys. Rev. Lett*,**80**, 4558–4561 (1998).ADSCrossRefGoogle Scholar - 335.Y.C. Chen and T.K. Lee, “t-J model studied by the power Lanczos method,”
*Phys. Rev. B*,**51**, 6723–6726 (1995).ADSCrossRefGoogle Scholar - 336.S.R. White, “Density-matrix algorithms for quantum renormalization groups,”
*Phys. Rev. B*,**48**, 10345–10356 (1993).ADSCrossRefGoogle Scholar - 337.S.R. White, “Spin gaps in a frustrated Heisenberg model for CaV
_{4}O_{9},”*Phys. Rev. Lett*,**77**, 3633–3636 (1996).ADSCrossRefGoogle Scholar - 338.E. Dagotto and T.M. Rice, “Surprises on the way from one-to two-dimensional quantum magnets: the ladder materials,”
*Science*,**271**, 618–623 (1996).ADSCrossRefGoogle Scholar - 339.E. Dagotto, “Experiments on ladders reveal a complex interplay between a spin-gapped normal state and superconductivity,”
*Rep. Prog. Phys*.,**62**, 1525–1571 (1999).ADSCrossRefGoogle Scholar - 340.E. Lieb and F.Y. Wu, “Absence of Mott transition in an exact solution of the short-range, one-band model in one dimension,”
*Phys. Rev. Lett*,**20**, 1445–1448 (1968).ADSCrossRefGoogle Scholar - 341.H.J. Schulz, in “Proceedings of the 9th Jerusalem Winter School for Theoretical Physics,” edited by V. J. Emery (World Scientific, New York) (1993).Google Scholar
- 342.B. Frischmuth, B. Ammon, and M. Troyer, “Susceptibility and low-temperature thermodynamics of spin-1/2 Heisenberg ladders,”
*Phys. Rev. B*,**54**, R3714–R3717 (1996).ADSCrossRefGoogle Scholar - 343.R.M. Noack, S.R. White, and D.J. Scalapino, “Correlations in a two-chain Hubbard model,”
*Phys. Rev. Lett*,**73**, 882–885 (1994).ADSCrossRefGoogle Scholar - 344.R.M. Noack, D.J. Scalapino, and S.R. White, “The ground state of the two-leg Hubbard ladder. A density-matrix renormalization group study,”
*Physica C*,**270**, 281–296 (1996).ADSCrossRefGoogle Scholar - 345.E. Dagotto, J. Riera, and D. Scalapino, “Superconductivity in ladders and coupled planes,”
*Phys. Rev. B*,**45**, 5744–5747 (1992).ADSCrossRefGoogle Scholar - 346.T. Kimura, K. Kuroki, and H. Aoki, “Pairing correlation in the three-leg Hubbard ladder-renormalization group and quantum Monte Carlo studies,”
*J. Phys. Soc. Jpn*.,**67**, 1377–1390 (1998).ADSCrossRefGoogle Scholar - 347.E. Jeckelmann, D.J. Scalapino, and S.R. White, “Comparison of different ladder models,”
*Phys. Rev. B*,**58**, 9492–9497 s (1998).ADSCrossRefGoogle Scholar - 348.S. Daul, D.J. Scalapino, and S.R. White, “Pairing correlations on t-U-J ladders,”
*Phys. Rev. Lett*,**84**, 4188–4191 (2000).ADSCrossRefGoogle Scholar - 349.S.R. White and D.J. Scalapino, “Ground-state properties of the doped three-leg t-J ladder,”
*Phys. Rev. B*,**57**, 3031–3037 (1998).ADSCrossRefGoogle Scholar - 350.T.M. Rice, S. Haas, M. Sigrist, and F.-C. Zhang, “Lightly doped t-J three-leg ladders: An analog for the underdoped cuprates,”
*Phys. Rev. B*,**56**, 14655–14667 (1997).ADSCrossRefGoogle Scholar - 351.W.R. White and D.J. Scalapino, “Ground states of the doped four-leg t-J ladder,”
*Phys. Rev. B*,**55**, R14701–R14704 (1997).ADSCrossRefGoogle Scholar - 352.D.J. Scalapino,
*private communication*.Google Scholar - 353.M. Ogata, M.U. Luchini, S. Sorella, and F.F. Assaad, “Phase diagram of the one-dimensional t-J model,”
*Phys. Rev. Lett*,**66**, 2388–2391 (1991).ADSCrossRefGoogle Scholar - 354.OS. Hellberg and E.J. Meie, “Luttinger-liquid instability in the one-dimensional t-J model,”
*Phys. Rev. B*,**48**, 646–649 (1993).ADSCrossRefGoogle Scholar - 355.M. Troyer, H. Tsunetsugu, and T.M. Rice, “Properties of lightly doped t-J two-leg ladders,”
*Phys. Rev. B*,**53**, 251–267 (1996).ADSCrossRefGoogle Scholar - 356.OA. Hayward and D. Poilblanc, “Luttinger-liquid behavior and superconducting correlations in t-J ladders,”
*Phys. Rev. B*,**53**, 11721–11728 (1996).ADSCrossRefGoogle Scholar - 357.G. Sierra, M.A. Martin-Delgado, J. Dukelsky, S.R. White, and D.J. Scalapino, “Dimer-hole-RVB state of the two-leg t-J ladder: A recurrent variational ansatz,”
*Phys. Rev. B*,**57**, 11666–11673 (1998).ADSCrossRefGoogle Scholar - 358.S. Rommer, S.R. White, and D.J. Scalapino, “Phase separation in t-J ladders,”
*Phys. Rev. B*,**61**, 13424–13430 (2000).ADSCrossRefGoogle Scholar - 359.S.R. White, I. Affleck, and D.J. Scalapino, “Priedel oscillations and charge density waves in chains and ladders,”
*Phys. Rev. B*,**65**, 165122–165134 (2002).ADSCrossRefGoogle Scholar - 360.S.A. Kivelson and V.J. Emery, “Strongly Correlated Electronic Materials: The Los Alamos Symposium 1993,” (Addison-Wesley, Redwood City, CA, USA) (1994).Google Scholar
- 361.A.C. Cosentini, M. Capone, L. Guidoni, and G.B. Bachelet, “Phase separation in the two-dimensional Hubbard model: A fixed-node quantum Monte Carlo study,”
*Phys. Rev. B*,**58**, R14685–R14688 (1998).ADSCrossRefGoogle Scholar - 362.F. Becca, M. Capone, and S. Sorella, “Spatially homogeneous ground state of the two-dimensional Hubbard model,”
*Phys. Rev. B*,**62**, 12700–12706 (2001).ADSCrossRefGoogle Scholar - 363.S. Hellberg and E. Manousakis, “2-Dimensional t-J Model at Low Electron Density,”
*Phys. Rev. B*,**52**, 4639–4642 (1995).ADSCrossRefGoogle Scholar - 364.V.J. Emery, S.A. Kivelson, and H.Q. Lin, “Phase separation in the t-J model,”
*Phys. Rev. Lett*,**64**, 475–478 (1990).ADSCrossRefGoogle Scholar - 365.S.A. Kivelson, V.J. Emery, and H.Q. Lin, “Doped antiferromagnets in the weak-hopping limit,”
*Phys. Rev. B*,**42**, 6523–6530 (1990).ADSCrossRefGoogle Scholar - 366.E. Eisenberg, R. Berkovits, D.A. Huse, and B.L. Altshuler, “The breakdown of the Nagaoka phase in the 2D t-J model,”
*Phys. Rev. B*,**65**, 134437–134443 (2002).ADSCrossRefGoogle Scholar - 367.W.O. Putikka, M.U. Luchini, and T.M. Rice, “Aspects of the phase diagram of the two-dimensional t-J model,”
*Phys. Rev. Lett*,**68**, 538–541 (1992).ADSCrossRefGoogle Scholar - 368.D. Poilblanc, “Phase diagram of the two-dimensional t-J model at low doping,”
*Phys. Rev. B*,**52**, 9201–9204 (1995).ADSCrossRefGoogle Scholar - 369.M. Calandra, F. Becca, and S. Sorella, “Charge fluctuations close to phase separation in the two-dimensional t-J model,”
*Phys. Rev. Lett*,**81**, 5185–5188 (1998).ADSCrossRefGoogle Scholar - 370.H. Yokoyama and M. Ogata, “Phase diagram and pairing symmetry of the two-dimensional t-J model by a variation theory,”
*J. Phys. Soc. Japan*,**65**, 3615–3629 (1996).ADSCrossRefGoogle Scholar - 371.C.T. Shih, Y.C. Chen, and T.K. Lee, “Phase separation of the two-dimensional t-J model,”
*Phys. Rev. B*,**57**, 627–631 (1998).ADSCrossRefGoogle Scholar - 372.C.S. Shin, Y.C. Chen, and T.K. Lee, “Revisit phase separation of the two-dimensional
*t — J*model by the Power-Lanczos method,”*cond-mat/0104067*(2001).Google Scholar - 373.M. Khono, “Ground-state properties of the two-dimensional t-J model,”
*Phys. Rev. B*,**55**, 1435–1441 (1997).ADSCrossRefGoogle Scholar - 374.F. Becca, L. Capriotti, and S. Sorella, “Stripes and spin incommensurabilities are favored by lattice anisotropics,”
*Phys. Rev. Lett*,**87**, 167005–167008 (2001).ADSCrossRefGoogle Scholar - 375.S.R. White and D.J. Scalapino, “Why do stripes form in doped antiferromagnets and what is their relationship to superconductivity?”
*cond-mat/0006071*(2000).Google Scholar - 376.C. Nayak and F. Wilczek, “Possible electronic structure of domain walls in Mott insulators,”
*Int. J. Mod. Phys. B*,**10**, 2125–2136 (1996).ADSCrossRefGoogle Scholar - 377.J. Zaanen and O. Gunnarsson, “Charged magnetic domain lines and the magnetism of high-
*T*_{c}oxides,”*Phys. Rev. B*,**40**, 7391–7394 (1989).ADSCrossRefGoogle Scholar - 378.D. Poilblanc and T.M. Rice, “Charged solitons in the Hartree-Fock approximation to the large-U Hubbard model,”
*Phys. Rev. B*,**39**, 9749–9752 (1989).ADSCrossRefGoogle Scholar - 379.H.J. Schulz, “Domain walls in a doped antiferromagnet,”
*J. de Physique*,**50**, 2833–2849 (1989).CrossRefGoogle Scholar - 380.K. Machida, “Magnetism in La
_{2}Cu0_{4}based compounds,”*Physica C*,**158**, 192–196 (1989).ADSCrossRefGoogle Scholar - 381.O. Zachar, “Stripes: Why hole rich lines are antiphase domain walls?”
*cond-mat/0001217*(2000).Google Scholar - 382.W.V. Liu and E. Fradkin, “Antiferromagnetic spin ladders effectively coupled by one-dimensional electron liquids,”
*Phys. Rev. Lett*.,**86**, 1865–1868 (2001).ADSCrossRefGoogle Scholar - 383.A.L. Chernyshev, S.R. White, and A.H. Castro Neto, “Charge stripe in an antiferromagnet: Id band of composite excitations,”
*cond-mat/0111474*(2001), see also Ref. 411.Google Scholar - 384.A. Moreo, “Pairing correlations in the two-dimensional Hubbard model,”
*Phys. Rev. B*,**45**, 5059–5061 (1992).ADSCrossRefGoogle Scholar - 385.S.-C. Zhang, J. Carlson, and J.E. Gubernatis, “Constrained path Monte Carlo method for fermion ground states,”
*Phys. Rev. B*,**55**, 7464–7477 (1997).ADSCrossRefGoogle Scholar - 386.E. Dagotto and J. Riera, “Indications of {ze444-1} superconductivity in the two dimensional t-J model,”
*Phys. Rev. Lett*,**70**, 682–685 (1993).ADSCrossRefGoogle Scholar - 387.E. Dagotto, A. Moreo, F. Ortolani, D. Poilblanc, and J. Riera, “Static and dynamical properties of doped Hubbard clusters,”
*Phys. Rev. B*,**45**, 10741–10760 (1992).ADSCrossRefGoogle Scholar - 388.M. Calandra and S. Sorella, “From antiferromagnetism to d-wave superconductivity in the two-dimensional t-J model,”
*Phys. Rev. B*,**61**, R11894–R11897 (2000).ADSCrossRefGoogle Scholar - 389.S. Sorella, G.B. Martins, F. Becca, C. Gazza, L. Capriotti, A. Parola, and E. Dagotto, “Superconductivity in the two-dimensional t-J model,”
*cond-mat/0110460*(2001).Google Scholar - 390.M. Boninsegni and E. Manousakis, “Two-hole d-wave binding in the physical region of the t-J model: A Green’s-function Monte Carlo study,”
*Phys. Rev. B*,**47**, 11897–11904 (1993).ADSCrossRefGoogle Scholar - 391.T. Tohyama, C.G. C.T. Shih, Y. C. Chen, T. K. Lee, S. Maekawa, and E. Dagotto, “Stripe stability in the extended t-J model on planes and four-leg ladders,”
*Phys. Rev. B*,**59**, R11649–R11652 (1999).ADSCrossRefGoogle Scholar - 392.E.L. Nagaev, Physics of Magnetic Semiconductors (Mir, Moscow) (1983).Google Scholar
- 393.A. Auerbach and B.E. Larson, “Doped antiferromagnet: The instability of homogeneous magnetic phases,”
*Phys. Rev. B*,**43**, 7800–7809 (1991).ADSCrossRefGoogle Scholar - 394.A. Auerbach and B.E. Larson, “Small-polaron theory of doped antiferromagnets,”
*Phys. Rev. Lett*,**66**, 2262–2265 (1990).ADSCrossRefGoogle Scholar - 395.A. Auerbach, “Spin tunneling, Berry phases, and doped antiferromagnets,”
*Phys. Rev. B*,**48**, 3287–3289 (1993).ADSCrossRefGoogle Scholar - 396.E.W. Carlson, S.A. Kivelson, Z. Nussinov, and V.J. Emery, “Doped antiferromagnets in high dimension,”
*Phys. Rev. B*,**57**, 14704–14721 (1998).ADSCrossRefGoogle Scholar - 397.P.B. Visscher, “Phase separation instability in the Hubbard model,”
*Phys. Rev. B*,**10**, 943–945 (1974).ADSCrossRefGoogle Scholar - 398.L.B. Ioffe and A.I. Larkin, “Two-dimensional Hubbard model with strong electron repulsion,”
*Phys. Rev. B*,**37**, 5730–5737 (1988).ADSCrossRefGoogle Scholar - 399.L. Pryadko, D. Hone, and S.A. Kivelson, “Instability of charge ordered states in doped antiferromagnets,”
*Phys. Rev. Lett*,**80**, 5651–5654 (1998).ADSCrossRefGoogle Scholar - 400.J.K. Freericks, E.H. Lieb, and D. Ueltschi, “Segregation in the Falicov-Kimball model,”
*math-ph/0107003*(2001).Google Scholar - 401.E.L. Nagaev, “Lanthanum manganites and other giant-magnetoresistance magnetic conductors,”
*Usp. Fiz. Nauk*.,**166**, 833 (1996).CrossRefGoogle Scholar - 402.S. Trugman, “Interaction of holes in a Hubbard antiferromagnet and high-temperature superconductivity,”
*Phys. Rev. B*,**37**, 1597–1603 (1988).ADSCrossRefGoogle Scholar - 403.A.H. Castro Neto, “Landau theory of phase separation in cuprates,”
*Phys. Rev. B*,**51**, 3254–3256 (1995).ADSCrossRefGoogle Scholar - 404.M. Seul and D. Andelman, “Domain shapes and patterns — the phenomenology of modulated phases,”
*Science*,**267**, 476–483 (1995).ADSCrossRefGoogle Scholar - 405.B.P. Stojkovic, Z.G. Yu, A.R. Bishop, A.H. Castro Neto, and N. Gronbech-Jensen, “Charge ordering and long-range interactions in layered transition metal oxides,”
*Phys. Rev. Lett*,**82**, 4679–4682 (1999).ADSCrossRefGoogle Scholar - 406.L.P. Pryadko, S. A. K. V.J. Emery, Y.B. Bazaliy, and E.A. Dernier, “Topological doping and the stability of stripe phases,”
*Phys. Rev. B*,**60**, 7541–7557 (1999).ADSCrossRefGoogle Scholar - 407.A.L. Chernyshev, A.H. Castro Neto, and A.R. Bishop, “Metallic stripe in two dimensions: stability and spin-charge separation,”
*Phys. Rev. Lett*,**84**, 4922–4925 (2000).ADSCrossRefGoogle Scholar - 408.S.A. Kivelson and V.J. Emery, “Topological doping of correlated insulators,”
*Synthetic Metals*,**80**, 151–158 (1996).CrossRefGoogle Scholar - 409.J. Zaanen and Z. Nussinov, “Stripes and nodal fermions as two sides of the same coin,”
*cond-mat/0006193*(2000).Google Scholar - 410.J. Han, Q.H. Wang, and D.H. Lee, “Antiferromagnetism, stripes, and superconductivity in the t-J model with Coulomb interaction,”
*Int. J. Mod. Phys*.**B, 15**, 1117–1126 (2001).ADSGoogle Scholar - 411.A.H. Castro Neto, “Luttinger stripes in antiferromagnets,”
*Z. Phys. B*,**103**, 185–192 (1997).ADSCrossRefGoogle Scholar - 412.J. Zaanen and P.B. Littlewood, “Freezing Electronic Correlations by Polaronic Instabilities in Doped La
_{2}NiO,”*Phys. Rev. B*,**50**, 7222–7225 (1994).ADSCrossRefGoogle Scholar - 413.H.J. Schulz, “Incommensurate antiferromagnetism in the two-dimensional Hubbard model,”
*Phys. Rev. Lett*,**64**, 1445–1448 (1990).ADSCrossRefGoogle Scholar - 414.A.I. Larkin, “Effect of inhomogeneities on the structure of the mixed state of superconductors,”
*Sov. Phys. JETP*,**31**, 784–786 (1970).ADSGoogle Scholar - 415.V.J. Emery and S.A. Kivelson, “Charge inhomogeneity and high temperature superconductivity,”
*J. Phys. Chem. Sol*.,**61**, 467–471 (2000).ADSCrossRefGoogle Scholar - 416.N. Ichikawa, S. Uchida, J.M. Tranquada, T. Niemoller, P. M. Gehring, S. H. Lee, and J. R. Schneider, “Local magnetic order vs superconductivity in a layered cuprate,”
*Phys. Rev. Lett*,**85**, 1738–1741 (2000).ADSCrossRefGoogle Scholar - 417.J. Schmalian and P.G. Wolynes, “Stripe glasses: Self-generated randomness in a uniformly frustrated system,”
*Phys. Rev. Lett*,**85**, 836–839 (2000).ADSCrossRefGoogle Scholar - 418.J. Burgy, M. Mayr, V. Martin-Mayor, A. Moreo, and E. Dagotto, “Colossal effects in transition metal oxides caused by intrinsic inhomogeneities,”
*Phys. Rev. Lett*,**87**, 277202–277205 (2001).ADSCrossRefGoogle Scholar - 419.U. Low, V.J. Emery, K. Fabricius, and S.A. Kivelson, “Study of an Ising model with competing long-and short-range interactions,”
*Phys. Rev. Lett*,**72**, 1918–1921 (1994).ADSCrossRefGoogle Scholar - 420.M. Grousson, G. Tarjus, and P. Viot, “Monte Carlo study of the three-dimensional Coulomb frustrated Ising ferromagnet,”
*Phys. Rev. E*,**64**, 036109–036117 (2001).ADSCrossRefGoogle Scholar - 421.L. Chayes, V.J. Emery, S.A. Kivelson, Z. Nussinov, and G. Tarjus, “Avoided critical behavior in a uniformly frustrated system,”
*Physica A*,**225**, 129–153 (1996).MathSciNetADSCrossRefGoogle Scholar - 422.Z. Nussinov, J. Rudnick, S.A. Kivelson, and L.N. Chayes, “Avoided critical behavior in O(n) systems,”
*Phys. Rev. Lett*,**83**, 472–475 (1999).ADSCrossRefGoogle Scholar - 423.D.B. Tanner and T. Timusk, “Optical properties of high-temperature superconductors,” in “Physical Properties of High Temperature Superconductors Vol. Ill,” edited by D. M. Ginsberg (World Scientific, Singapore) (1992).Google Scholar
- 424.N.P. Ong, “Transport properties of high
*T*_{c}cuprates,” in “Phyral Properties of High Temperature Superconductors Vol. II,” edited by D. M. Ginsberg (World Scientific, Singapore) (1992).Google Scholar - 425.K. Krishana, J.M. Harris, and N.P. Ong, “Quasiparticle mean free path in YBa
_{2}Cu_{3}O_{7}measured by the thermal Hall conductivity,”*Phys. Rev. Lett*,**75**, 3529–3532 (1995).ADSCrossRefGoogle Scholar - 426.K.M. Lang, V. Madhavan, J.E. Hoffman, E.W. Hudson, H. Eisaki, S. Uchida, and J. C. Davis, “Imaging the granular structure of high-
*T*_{c}superconductivity in underdoped Bi_{2}Sr_{2}CaCu_{2}O_{8+delta},”*Nature*,**415**, 412–416 (2002).ADSCrossRefGoogle Scholar - 427.T.R. Thurston, R.J. Birgeneau, M.A. Kastner, N.W. Preyer, G. Shirane, Y. Fujii, K. Yamada, Y. Endoh, K. Kakurai, M. Matsuda, Y. Hidaka, and T. Murakami, “Neutron scattering study of the magnetic excitations in metallic and superconducting La
_{2−x}Sr_{x}CuO_{4−y},”*Phys. Rev. B*,**40**, 4585–4595 (1989).ADSCrossRefGoogle Scholar - 428.S.-W. Cheong, G. Aeppli, T.E. Mason, H. Mook, S.M. Hayden, P.C. Canfield, Z. Fisk, K.N. Clausen, and J.L. Martinez, “Incommensurate magnetic fluctuations in La
_{2−x}SrxCu_{04},”*Phys. Rev. Lett*,**67**, 1791–1794 (1991).ADSCrossRefGoogle Scholar - 429.J.M. Tranquada, B.J. Sternlieb, J. D. Axe, Y. Nakamura, and S. Uchida, “Evidence for stripe correlations of spins and holes in copper oxide superconductors,”
*Nature*,**375**, 561–563 (1995).ADSCrossRefGoogle Scholar - 430.J.M. Tranquada, D.J. Buttrey, V. Sachan, and J.E. Lorenzo, “Simultaneous ordering of holes and spins in La
_{2}NiO_{4.125},”*Phys. Rev. Lett*.,**73**, 1003–1006 (1994).ADSCrossRefGoogle Scholar - 431.A. Lanzara, P.V. Bogdanov, X.J. Zhou, S.A. Kellar, D.L. Feng, E.D. Lu, T. Yoshida, H. Eisaki, A. Fujimori, K. Kishio, J.-I. Shimoyama, T. Nöda, S. Uchida, Z. Hussain, and Z.-X. Shen, “Evidence for ubiquitous strong electron-phonon coupling in high-temperature superconductors,”
*Nature*,**412**, 510–514 (2001).ADSCrossRefGoogle Scholar - 432.L.P. Gor’kov and A.V. Sokol, “On the problem of the phase diagram of new superconductors,”
*J. Physique*,**50**, 2823–2832 (1989).CrossRefGoogle Scholar - 433.A.J. Heeger, S.A. Kivelson, J.R. Schrieffer, and W. Su, “Solitons in conducting polymers,”
*Rev. Mod. Phys*.,**60**, 781–850 (1988).ADSCrossRefGoogle Scholar - 434.D.K. Campbell, A.R. Bishop, and K. Fesser, “Polarons in quasi-one-dimensional systems,”
*Phys. Rev. B*,**26**, 6862–6874 (1982).ADSCrossRefGoogle Scholar - 435.L.B. Ioffe and A. Larkin, “Superconductivity in the liquid-dimer valence-bond state,”
*Phys. Rev. B*,**40**, 6941–6947 (1989).ADSCrossRefGoogle Scholar - 436.M. Marder, N. Papanicolaou, and G.C. Psaltakis, “Phase separation in a t-J model,”
*Phys. Rev. B*,**41**, 6920–32 (1990).ADSCrossRefGoogle Scholar - 437.M. Vojta and S. Sachdev, “Charge order, superconductivity and a global phase diagram of doped antiferromagnets,”
*Phys. Rev. Lett*.,**83**, 3916–3919 (1999).ADSCrossRefGoogle Scholar - 438.S. Sachdev and S.-C. Zhang, “Tuning order in cuprate superconductors,”
*Science*,**295**, 452 (2002).CrossRefGoogle Scholar - 439.D.I. Khomskii and K.I. Kugel, “Why stripes? Spontaneous formation of inhomogeneous structures due to elastic interactions,”
*Europhys. Lett*,**55**, 208–213 (2001).ADSCrossRefGoogle Scholar - 440.A.A. Koulakov, M.M. Fogler, and B.I. Shklovskii, “Charge density wave in two-dimensional electron liquid in weak magnetic field,”
*Phys. Rev. Lett*.,**76**, 499–502 (1996).ADSCrossRefGoogle Scholar - 441.R. Moessner and T.J. Chalker, “Exact results for interacting electrons in high Landau levels,”
*Phys. Rev. B*,**54**, 5006–5015 (1996).ADSCrossRefGoogle Scholar - 442.M.P. Lilly, K.B. Cooper, J.P. Eisenstein, L.N. Pfeiffer, and K.W. West, “Evidence for an anisotropic state of two-dimensional electrons in high Landau levels,”
*Phys. Rev. Lett*,**82**, 394–397 (1999).ADSCrossRefGoogle Scholar - 443.B. Spivak, “Title: Phase separation in the two-dimensional electron liquid in MOSFETs,”
*cond-mat/0205127*(2002).Google Scholar - 444.S.A. Kivelson, “Making high-
*T*_{c}higher: a theoretical proposal,”*Physica B*,**61–67**, 61–67 (2002).CrossRefGoogle Scholar - 445.T.H. Geballe and B.Y. Moyzhes, “Qualitative understanding of the highest
*T*_{c}cuprates,”*Physica C*,**342**, 1821–1824 (2000).ADSCrossRefGoogle Scholar - 446.M. Fujita, H. Goka, K. Yamada, and M. Matsuda, “Competition between charge/spin-density-wave orders and superconductivity in La
_{1.875}Ba_{0.125−x}Sr_{x}CuO_{4},”*Phys. Rev. Lett*,**88**, 167008–167011 (2002).ADSCrossRefGoogle Scholar - 447.K. Yamada, C.H. Lee, K. Kurahashi, J. Wada, S. Wakimoto, S. Ueki, H. Kimura, Y. Endoh, S. Hosoya, G. Shirane, R.J. Birgeneau, M. Greven, M.A. Kastner, and Y. J. Kim, “Doping dependence of the spatially modulated dynamical spin correlations and the superconducting-transition temperature in La
_{2−x}Sr_{x}CuO_{4},”*Phys. Rev. B*,**57**, 6165–6172 (1998).ADSCrossRefGoogle Scholar - 448.Y.S. Lee, R.J. Birgeneau, M.A. Kastner, Y. Endoh, S. Wakimoto, K. Yamada, R.W. Erwin, S.-H. Lee, and G. Shirane, “Neutron-scattering study of spin-density wave order in the superconducting state of excess-oxygen-doped La
_{2}CuO_{4+y},”*Phys. Rev. B*,**60**, 3643–3654 (1999).ADSCrossRefGoogle Scholar - 449.B. Khaykovich, Y.S. Lee, R. Erwin, S.-H. Lee, S. Wakimoto, K.J. Thomas, M.A. Kastner, and R.J. Birgeneau, “Enhancement of long-range magnetic order by magnetic field in superconducting La
_{2}CuO_{4+y},”*cond-mat/0112505*(2001).Google Scholar - 450.H. Kimura, K. Hirota, H. Matsushita, K. Yamada, Y. Endoh, S.-H. Lee, C.F. Majkrzak, R. Erwin, G. Shirane, M. Greven, Y.S. Lee, M.A. Kastner, and R. J. Birgeneau, “Neutron-scattering study of static antiferromagnetic correlations in La
_{2−x}Sr_{x}Cu_{1−y}Zn_{y}O_{4},”*Phys. Rev. B*,**59**, 6517–6523 (1999).ADSCrossRefGoogle Scholar - 451.M. Fujita, K. Yamada, H. Hiraka, P.M. Gehring, S.H. Lee, S. Wakimoto, and G. Shirane, “Static magnetic correlations near the insulating-superconducting phase boundary in La
_{2−x}Sra;CuO_{4},”*Phys. Rev. B*,**65**, 064505–064511 (2002).ADSCrossRefGoogle Scholar - 452.P. Dai, H.A. Mook, R.D. Hunt, and F. Dogan, “Evolution of the resonance and incommensurate spin fluctuations in superconducting YBa
_{2}Cu_{3}O_{6+a},”*Phys. Rev. B*,**63**, 054525–054544 (2001).ADSCrossRefGoogle Scholar - 453.P. Bourges, Y. Sidis, H.F. Fong, L.P. Regnault, J. Bossy, A. Ivanov, and B. Keimer, “The spin excitation spectrum in superconducting YBa
_{2}Cu_{3}O_{6.85},”*Science*,**288**, 1234–1237 (2000).ADSCrossRefGoogle Scholar - 454.G. Aeppli, S. M. Hayden, P. Dai, H.A. Mook, R.D. Hunt, T.G. Perring, and F. Dogan, “The weights of various features in the magnetic spectra of cuprates,”
*Phys. Stat. Sol*.,**215**, 519–522 (1999).ADSCrossRefGoogle Scholar - 455.H.A. Mook, P.C. Dai, F. Dogan, and R.D. Hunt, “One-dimensional nature of the magnetic fluctuations in YBa
_{2}Cu_{3}O_{6},”*Nature*,**404**, 729–731 (2000).ADSCrossRefGoogle Scholar - 456.H.A. Mook and B.C. Chakoumakos, “Incommensurate fluctuations in Bi
_{2}Sr_{2}CaCu_{2}O_{8},”*Jour. Superconductivity*,**10**, 389–392 (1997).ADSCrossRefGoogle Scholar - 457.J.E. Hoffman, E.W. Hudson, K.M. Lang, V. Madhavan, H. Eisaki, S. Uchida, and J.C. Davis, “A four unit cell periodic pattern of quasi-particle states surrounding vortex cores in Bi
_{2}Sr_{2}CaCu_{2}O_{8+x},”*Science*,**295**, 466–469 (2002).ADSCrossRefGoogle Scholar - 458.C. Howald, H. Eisaki, N. Kaneko, and A. Kapitulnik, “Coexistence of charged stripes and superconductivity in Bi
_{2}Sr_{2}CaCu_{2}O_{8+δ},”*cond-mat/020156*.Google Scholar - 459.J.E. Hoffman, K. McElroy, D.-H. Lee, K.M. Lang, H. Eisaki, S. Uchida, and J.C. Davis, “Imaging quasiparticle quantum interference in BSCCO,”
*submitted to*Science (2002).Google Scholar - 460.E. Fradkin, S.A. Kivelson, E. Manousakis, and K. Nho, “Nematic phase of the two-dimensional electron gas in a magnetic field,”
*Phys. Rev. Lett*,**84**, 1982–1985 (2000).ADSCrossRefGoogle Scholar - 461.J. Zaanen, M.L. Horbach, and W.V. Saarloos, “Charged domain-wall dynamics in doped antiferromagnets and spin fluctuations in cuprate superconductors,”
*Phys. Rev. B*,**53**, 8671–8680 (1996).ADSCrossRefGoogle Scholar - 462.V. Oganesyan, S.A. Kivelson, and E. Fradkin, “Quantum theory of a nematic Fermi fluid,”
*Phys. Rev. B*,**64**, 195109–195114 (2001).ADSCrossRefGoogle Scholar - 463.C. Halboth and W. Metzner, “d-wave superconductivity and Pomeranchuk instability in the two-dimensional Hubbard model,”
*Phys. Rev. Lett*,**85**, 5162–5165 (2000).ADSCrossRefGoogle Scholar - 464.V. Hankevych, I. Grote, and F. Wegner, “Pomeranchuk and other instabilities in the
*t-t’*Hubbard model at the Van Hove filling,”*cond-mat/0205213*(2002).Google Scholar - 465.V. Oganesyan, E. Pradkin, and S.A. Kivelson,
*work in progress*(2002).Google Scholar - 466.A. Abanov, V. Kalatsky, and V.L. Pokrovsky, “Phase diagram of ultrathin ferromagnetic films with perpendicular anisotropy,”
*Phys. Rev. B*,**51**, 1023–1038 (1995).ADSCrossRefGoogle Scholar - 467.J. Zaanen, O.Y. Osman, H.V. Kruis, Z. Nussinov, and J. Tworzydlo, “The geometric order of stripes and Luttinger liquids,”
*Phil. Mag. B*,**81**, 1485–1531 (2002).ADSCrossRefGoogle Scholar - 468.Y.-B. Kim and H.-Y. Kee, “Pairing instability in a nematic Fermi liquid,”
*cond-mat/0204037*(2002).Google Scholar - 469.K.B. Cooper, M. Lilly, J.P. Eisenstein, L.N. Pfeiffer, and K.W. West, “The onset of anisotropic transport of two-dimensional electrons in high Landau levels: An isotropic-to-nematic liquid crystal phase transition?”
*cond-mat/0203174*(2002).Google Scholar - 470.V.J. Emery and S. Kivelson, “Mapping of the two-channel Kondo problem to a resonant-level model,”
*Phys. Rev. B*,**46**, 10812–10817 (1992).ADSCrossRefGoogle Scholar - 471.V.J. Emery and S.A. Kivelson, “Solution of an orbital Kondo array,”
*Phys. Rev. Lett*,**71**, 3701–3704 (1993).ADSCrossRefGoogle Scholar - 472.D. Chang and D.H. Lee, “Transport in inhomogeneous strongly correlated systems,”
*cond-mat/0205057*(2002).Google Scholar - 473.Z.M. Yusof, B.O. Wells, T. Valla, A.V. Fedorov, P.D. Johnson, Q. Li, C. Kendziora, S. Jian, and D.G. Hinks, “Quasiparticle liquid in the highly overdoped Bi
_{2}Sr_{2}CaCu_{2}O_{8+δ},”*Phys. Rev. Lett*.,**88**, 167006–167009 (2002).ADSCrossRefGoogle Scholar - 474.M. Granath, V. Oganesyan, D. Orgad, and S.A. Kivelson, “Distribution of spectral weight in a system with disordered stripes,”
*Phys. Rev. B*,**65**, 184501–184510 (2002).ADSCrossRefGoogle Scholar - 475.M.I. Salkola, V.J. Emery, and S.A. Kivelson, “Implications of charge ordering for single-particle properties of high
*T*_{c}superconductors,”*Phys. Rev. Lett*.,**77**, 155–158 (1996).ADSCrossRefGoogle Scholar - 476.M.G. Zacher, R. Eder, E. Arrigoni, and W. Hanke, “Stripes in doped antiferromagnets: single-particle spectral weight,”
*Phys. Rev. Lett*.,**85**, 2585–2588 (2000).ADSCrossRefGoogle Scholar - 477.M.G. Zacher, R. Eder, E. Arrigoni, and W. Hanke, “Evolution of the stripe phase as a function of doping from a theoretical analysis of angle-resolved photoemission data,”
*Phys. Rev. B*,**65**, 045109–045117 (2002).ADSCrossRefGoogle Scholar - 478.M. Vojta, Y. Zhang, and S. Sachdev, “Renormalization group analysis of quantum critical points in d-wave superconductors,”
*Int. J. Mod. Phys.B*,**14**, 3719–3734 (2000).ADSCrossRefGoogle Scholar - 479.T. Valla, A.V. Fedorov, P.D. Johnson, B.O. Wells, S.L. Hulbert, Q. Li, G.D. Gu, and N. Koshizuka, “Evidence for quantum critical behavior in the optimally doped cuprate Bi
_{2}Sr_{2}CaCu_{2}O_{8},”*Science*,**285**, 2110–2113 (1999).CrossRefGoogle Scholar - 480.Y. Zhang, N.P. Ong, P.W. Anderson, D.A. Bonn, R. Liang, and W.N. Hardy, “Giant enhancement of the thermal Hall conductivity kappa(xy) in the superconductor YBa
_{2}Cu_{3}O_{7},”*Phys. Rev. Lett*.,**86**, 890–893 (2001).ADSCrossRefGoogle Scholar - 481.D.A. Bonn, P. Dosanjh, R. Liang, and W.N. Hardy, “Evidence for rapid suppression of quasi-particle scattering below
*T*_{c}in YBa_{2}Cu_{3}O_{7},”*Phys. Rev. Lett*,**68**, 2390–2393 (1992), see also Ref. 504.ADSCrossRefGoogle Scholar - 482.D.L. Feng, A. Damascelli, K.M. Shen, N. Motoyama, D.H. Lu, H. Eisaki, K. Shimizu, J.i. Shimoyama, K. Kishio, N. Kaneko, M. Greven, G.D. Gu, X.J. Zhou, C. Kim, F. Ronning, N.P. Armitage, and Z.-X. Shen, “Electronic structure of the trilayer cuprate superconductor Bi
_{2}Sr_{2}Ca_{2}Cu_{3}O_{10+δ},”*cond-mat/0108386*(2001).Google Scholar - 483.H.F. Fong, P. Bourges, Y. Sidis, L.P. Regnault, A. Ivanov, G.D. Gul, N. Koshizuka, and B. Keimer, “Neutron scattering from magnetic excitation in Bi
_{2}Sr_{2}CaCu_{2}O_{8+δ},”*Nature*,**398**, 588–591 (1999).ADSCrossRefGoogle Scholar - 484.M. Dumm, D.N. Basov, S. Komiya, and Y. Ando, “Anistropic electromagnetic response of La
_{1.97}Sr_{0.03}CuO_{4}in the regime of spin stripes,”*unpublished*(2002).Google Scholar - 485.H.V. Kruis, Z. Nussinov, and J. Zaanen, “Emergent
*Z*_{2}gauge symmetry and spin-charge separation in one dimensional physics,”*cond-mat/0110055*(2001).Google Scholar - 486.M. Matsuda, M. Fujita, K. Yamada, R.J. Birgeneau, M.A. Kastner, H. Hiraka, Y. Endoh, S. Wakimoto, and G. Shirane, “Static and dynamic spin correlations in the spin-glass phase of slightly doped La
_{2−x}Sr_{x}CuO_{4},”*Phys. Rev. B*,**62**, 9148–9154 (2000).ADSCrossRefGoogle Scholar - 487.A.N. Lavrov, Y. Ando, S. Komiya, and I. Tsukada, “Unusual magnetic susceptibility anisotropy in untwinned La
_{2−x}Sr_{x}CuO_{4}single crystals in the lightly doped region,”*Phys. Rev. Lett*.,**87**, 017007–017010 (2001).ADSCrossRefGoogle Scholar - 488.B. Lake, G. Aeppli, T.E. Mason, A. Schroder, D.F. McMorrow, K. Lefmann, M. Isshiki, M. NO’Hara, H. Takagi, and S.M. Hayden, “Spin gap and magnetic coherence in a clean high-temperature superconductor,”
*Nature*,**400**, 43–46 (1999).ADSCrossRefGoogle Scholar - 489.T. Nöda, H. Eisaki, and S.I. Uchida, “Evidence for one-dimensional charge transport in La
_{2−x−y}Nd_{y}Sr_{x}CuO_{4},”*Science*,**286**, 265–268 (1999).CrossRefGoogle Scholar - 490.S. Tajima, T. Nöda, H. Eisaki, and S. Uchida, “C-axis optical response in the static stripe ordered phase of the cuprates,”
*Phys. Rev. Lett*.,**86**, 500–503 (2001).ADSCrossRefGoogle Scholar - 491.I. Iguchi, T. Yamaguchi, and A. Sugimoto, “Diamagnetic activity above
*T*_{c}as a precursor to superconductivity in La_{2−x}Sr_{x}CuO_{4},”*Nature*,**412**, 420–423 (2001).ADSCrossRefGoogle Scholar - 492.Y. Wang, Z. A. Xu, T. Kakeshita, S. Uchida, S. Ono, Y. Ando, and N.P. Ong, “Onset of the vortexlike Nernst signal above
*T*_{c}in La_{2−x}Sr_{x}CuO_{4}and Bi_{2}Sr_{2−y}LaCuO_{6},”*Phys. Rev. B*,**64**, 224519–224528 (2001).ADSCrossRefGoogle Scholar - 493.Z.A. Xu, N. Ong, Y. Wang, T. Kakeshita, and S. Uchida, “Vortex-like excitations and the onset of superconducting phase fluctuation in underdoped La
_{2−x}Sr_{x}CuO_{4},”*Nature*,**406**, 486–488 (2000).ADSCrossRefGoogle Scholar - 494.I. Ussishkin, S.L. Sondhi, and D.A. Huse, “Gaussian superconducting fluctuations, thermal transport, and the Nernst effect,”
*cond-mat/0204484*.Google Scholar - 495.A.G. Loeser, Z.-X. Shen, D.S. Dessau, D.S. Marshall, C.H. Park, P. Fournier, and A. Kapitulnik, “Excitation Gap in the Normal State of Underdoped Bi
_{2}Sr_{2}CaCu_{2}O_{8+δ},”*Science*,**273**, 325–329 (1996).ADSCrossRefGoogle Scholar - 496.R.S. Decca, H.D. Drew, E. Osquiguil, B. Maiorov, and J. Guimpel, “Anomalous proximity effect in underdoped YBa
_{2}Cu_{3}O_{6+x}josephson junctions,”*Phys. Rev. Lett*.,**85**, 3708–3711 (2000).ADSCrossRefGoogle Scholar - 497.M.K. Crawford, M.N. Kunchur, W.E. Farneth, and E.M. McCarron, “Anomalous oxygen isotope effect in La
_{2−x}Sr_{x}CuO_{4},”*Phys. Rev. B*,**41**, 282–287 (1990).ADSCrossRefGoogle Scholar - 498.J.C. Phillips and J. Jung, “Nanodomain structure and function of high temperature superconductors,”
*Phil. Mag. B*,**81**, 745–756 (2001).ADSCrossRefGoogle Scholar - 499.S.A. Kivelson and V.J. Emery, “Stripes and Related Phenomena,” 91 (Kluwer Academic/Plenum Publishing, New York) (2000).Google Scholar
- 500.O. Zachar, “Stripes disorder and correlation lengths in doped antiferromagnets,”
*Phys. Rev. B*,**62**, 13836–13839 (2000).ADSCrossRefGoogle Scholar - 501.N. Hasselmann, A.H. Castro Neto, C. Morais Smith, and Y. Dimashko, “Striped phase in the presence of disorder and lattice potentials,”
*Phys. Rev. Lett*.,**82**, 2135 (1999).ADSCrossRefGoogle Scholar - 502.R.T. Scalettar, G.G. Batrouni, A.P. Kampf, and G.T. Zimanyi, “Simultaneous diagonal and off-diagonal order in the Bose-Hubbard Hamiltonian,”
*Phys. Rev. B*,**51**, 8467–8480 (1995).ADSCrossRefGoogle Scholar - 503.S.R. White and I. Affleck, “Density matrix renormalization group analysis of the Nagaoka polaron in the two-dimensional t-J model,”
*Phys. Rev. B*,**64**, 024411–024416 (2001).ADSCrossRefGoogle Scholar - 504.D.A. Bonn, K. Zhang, S. Kamal, R. Liang, P. Dosanjh, W.N. Hardy, C. Kallin, and A.J. Berlinsky, “Evidence for rapid suppression of quasi-particle scattering below
*T*_{c}in YBa_{2}CuO_{7-δ},”*Phys. Rev. Lett*,**72**, 1391–1391 (1994).ADSCrossRefGoogle Scholar