Advertisement

Photoemission in the High-Tc Superconductors

  • J. C. Campuzano
  • M. R. Norman
  • M. Randeria
Chapter

Abstract

Angle resolved photoemission spectroscopy (ARPES) has played a major role in the elucidation of the electronic excitations in the high temperature cuprate superconductors. Several reasons have contributed to this development. First, the great improvement in experimental resolution, both in energy and momentum, aided by the large energy scales present in the cuprates, allows one to see features on the scale of the superconducting gap. More recently the resolution has improved to such an extent, that now features in traditional superconductors like Nb and Pb, with energy scales of a meV, can be observed by ARPES [1].

Keywords

Fermi Surface Spectral Function Superconducting State Fermi Function Doping Dependence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Chainani, T. Yokoya, T. Kiss, S. Shin, Phys. Rev. Lett. 85, 1966 (2000).ADSCrossRefGoogle Scholar
  2. 2.
    A. Damascelli, Z.-X. Shen, Z. Hussain, Rev. Mod. Phys. (2002), cond-mat/0208504.Google Scholar
  3. 3.
    D.L. Lynch and C.G Olson, Photoemission studies of high-temperature superconductors (Cambridge University Press, Cambridge, UK, 1999).CrossRefGoogle Scholar
  4. 4.
    S. Hüfner, Photoelectron Spectroscopy (Springer-Verlag, Berlin, 1996), and references therein.Google Scholar
  5. 5.
    C.N. Berglund and W.E. Spicer, Phys. Rev. 136, A1030 and A1044 (1964).ADSCrossRefGoogle Scholar
  6. 7.
    J. Hermanson, Solid State Comm. 22, 9 (1977).ADSCrossRefGoogle Scholar
  7. 8.
    For a review of the first five years of work on the cuprates, see Sec. 4 and 5 of Z. X. Shen and D. S. Dessau, Phys. Repts. 253, 1 (1995).ADSCrossRefGoogle Scholar
  8. 9.
    J. Mesot, M. Randeria, M. R. Norman, A. Kaminski, H.M. Fretwell, J. C. Campuzano, H. Ding, T. Takeuchi, T. Sato, T. Yokoya, T. Takahashi, I. Chong, T. Terashima, M. Takano, T. Mochiku, and K. Kadowaki, Phys. Rev. B 63, 224516 (2001).ADSCrossRefGoogle Scholar
  9. 10.
    H. Hertz, Ann. Physik 31, 983 (1887).ADSCrossRefGoogle Scholar
  10. 11.
    W. L. Schaich and N. W. Ashcroft, Phys. Rev. B 3, 2452 (1971).ADSCrossRefGoogle Scholar
  11. 12.
    C. Caroli, D. Lederer-Rozenblatt, B. Roulet, and D. Saint-James, Phys. Rev. B 8, 4552 (1973).ADSCrossRefGoogle Scholar
  12. 13.
    J. B. Pendry, Surf. Sci. 57, 679 (1976). For a review of applications of these methods to the cuprates, see: A. Bansil and M. Lindroos, J. Phys. Chem. Solids 56, 1855 (1995).ADSCrossRefGoogle Scholar
  13. 14.
    C.G. Larsson, Surface Science 152/153, 213 (1985); ibid 162, 19 (1985).ADSCrossRefGoogle Scholar
  14. 15.
    P.A.P. Lindberg, L.I. Johansson and A.N. Christensen, Surface Science 197, 353 (1987).CrossRefGoogle Scholar
  15. 16.
    F.L. Hopkinson, J.B. Pendry, and D.J. Titterington, Comput. Phys. Comm. 26, 111 (1980).Google Scholar
  16. 17.
    A. Bansil, M. Lindroos, and J.C. Campuzano, Proc. Mater. Res. Soc. 253, 519 (1992); M. Lindroos, A. Bansil, K. Gofron, H. Ding, J.C. Campuzano, R. Liu, and B.W. Veal, Physica C 212, 347 (1993).Google Scholar
  17. 18.
    H.L. Edwards, J.T. Markert and A.L. de Lozanne, Phys. Rev. Lett. 69, 2967 (1992).ADSCrossRefGoogle Scholar
  18. 19.
    N. V. Smith, P. Thiry, and Y. Petroff, Phys. Rev. B 47, 15476 (1993).ADSCrossRefGoogle Scholar
  19. 20.
    See, e.g., L. Hedin and S. Lundquist, Solid State Physics 23, 1 (Academic, New York, 1969).Google Scholar
  20. 21.
    M. Randeria, H. Ding, J-C. Campuzano, A. Bellman, G. Jennings, T. Yokoya, T. Takahashi, H. Katayama-Yoshida, T. Mochiku, and K. Kadowaki, Phys. Rev. Lett. 74, 4951 (1995).ADSCrossRefGoogle Scholar
  21. 22.
    H. Ding, J. C. Campuzano, A. F. Bellman, T. Yokoya, M. R. Norman, M. Randeria, T. Takahashi, H. Katayama-Yoshida, T. Mochiku, K. Kadowaki, G. Jennings, Phys. Rev. Lett. 74, 2784 (1995) and 75, 1425 (E) (1995).ADSCrossRefGoogle Scholar
  22. 23.
    A. V. Federov, T. Valla, P. D. Johnson, Q. Li, G. D. Gu, N. Koshizuka, Phys. Rev. Lett. 82, 2179 (1999); T. Valla, A.V. Fedorov, P.D. Johnson, B.O. Wells, S.L. Hulbert, Q. Li, G.D. Gu, and N. Koshizuka, Science 285, 2110 (1999); T. Valla, A. V. Fedorov, P. D. Johnson, Q. Li, G. D. Gu, N. Koshizuka, Phys. Rev. Lett. 85, 828 (2000).ADSCrossRefGoogle Scholar
  23. 24.
    P.V. Bogdanov, A. Lanzara, S.A. Kellar, X.J. Zhou, E.D. Lu, W.J. Zheng, G. Gu, J.-I. Shimoyama, K. Kishio, H. Ikeda, R. Yoshizaki, Z. Hussain, and Z. X. Shen, Phys. Rev. Lett. 85, 2581 (2000).ADSCrossRefGoogle Scholar
  24. 25.
    A. Kaminski, M. Randeria, J. C. Campuzano, M. R. Norman, H. Fretwell, J. Mesot, T. Sato, T. Takahashi, and K. Kadowaki, Phys. Rev. Lett. 86, 1070 (2001).ADSCrossRefGoogle Scholar
  25. 26.
    M. R. Norman, M. Eschrig, A. Kaminski, J. C. Campuzano, Phys. Rev. B 64, 184508 (2001).ADSCrossRefGoogle Scholar
  26. 27.
    W. E. Pickett, Rev. Mod. Phys. 61, 433 (1989).ADSCrossRefGoogle Scholar
  27. 28.
    P. W. Anderson, The Theory of Superconductivity in the High-T c Cuprates (Princeton Univ. Pr., Princeton, 1997).Google Scholar
  28. 29.
    O. K. Andersen A. I. Liechtenstein, O. Jepsen, F. Paulsen, J. Phys. Chem. Solids 56, 1573 (1995).ADSCrossRefGoogle Scholar
  29. 30.
    P. W. Anderson, Science 235, 1196 (1987).ADSCrossRefGoogle Scholar
  30. 31.
    C. G. Olson, R. Liu, D. W. Lynch, R. S. List, A. J. Arko, B. W. Veal, Y. C. Chang, P. Z. Jiang, and A. P. Paulikas, Phys. Rev. B 42, 381 (1990).ADSCrossRefGoogle Scholar
  31. 32.
    The electronic structure of the insulator has been extensively studied by the Stanford group, confirming beautifully the predicted valence band maximum at (π/2, π/2), see B. O. Wells, Z.-X. Shen, A. Matsuura, D. M. King, M. A. Kastner, M. Greven, and R. J. Birgeneau, Phys. Rev. Lett. 74, 964 (1995).ADSCrossRefGoogle Scholar
  32. 33.
    A. Kaminski, J. Mesot, H. Fretwell, J. C. Campuzano, M. R. Norman, M. Randeria, H. Ding, T. Sato, T. Takahashi, T. Mochiku, K. Kadowaki, and H. Hoechst, Phys. Rev. Lett. 84, 1788 (2000).ADSCrossRefGoogle Scholar
  33. 34.
    J. C. Campuzano, G. Jennings, M. Faiz, L. Beaulaigue, B. W. Veal, J. Z. Liu, A. P. Paulikas, K. Vandervoort, H. Claus, Phys. Rev. Lett. 64, 2308 (1990).ADSCrossRefGoogle Scholar
  34. 35.
    D. M. King, Z.-X. Shen, D. S. Dessau, B. O. Wells, W. E. Spicer, A. J. Arko, D. S. Marshall, J. DiCarlo, A. G. Loeser, C. H. Park, E. R. Ratner, J. L. Peng, Z. Y. Li, R. L. Greene, Phys. Rev. Lett. 70, 3159 (1993); R. O. Anderson, R. Claessen, J. W. Allen, C. G. Olson, C. Janowitz, L. Z. Liu, J.-H. Park, M. B. Maple, Y. Dalichaouch, M. C. de Andrade, R. F. Jardim, E. A. Early, S.-J. Oh, W. P. Ellis, ibid 70, 3163 (1993); N. P. Armitage, D. H. Lu, C. Kim, A. Damascelli, K. M. Shen, F. Ronning, D. L. Feng, P. Bogdanov, Z.-X. Shen, Y. Onose, Y. Taguchi, Y. Tokura, P. K. Mang, N. Kaneko, M. Greven, ibid 87, 147003 (2001); N. P. Armitage, F. Ronning, D. H. Lu, C. Kim, A. Damascelli, K. M. Shen, D. L. Feng, H. Eisaki, Z.-X. Shen, P. K. Mang, N. Kaneko, M. Greven, Y. Onose, Y. Taguchi, Y. Tokura, ibid 88, 257001 (2002).ADSCrossRefGoogle Scholar
  35. 36.
    A. Ino, C. Kim, T. Mizokawa, Z.-X. Shen, A. Fujimori, M. Takaba, K. Tamasaku, H. Eisaki, S. Uchida, J. Phys. Soc. Japan 68, 1496 (1999); A. Ino, C. Kim, M. Nakamura, T. Mizokawa, Z.-X. Shen, A. Fujimori, T. Kakeshita, H. Eisaki, S. Uchida, Phys. Rev. B 62, 4137 (2000); A. Ino, C. Kim, M. Nakamura, T. Yoshida, T. Mizokawa, Z.-X. Shen, A. Fujimori, T. Kakeshita, H. Eisaki, S. Uchida, ibid 65, 094504 (2002); T. Yoshida, X. J. Zhou, M. Nakamura, S. A. Kellar, P. V. Bogdanov, E. D. Lu, A. Lanzara, Z. Hussain, A. Ino, T. Mizokawa, A. Fujimori, H. Eisaki, C. Kim, Z.-X. Shen, T. Kakeshita, S. Uchida, ibid, 63, 220501 (2001).ADSCrossRefGoogle Scholar
  36. 37.
    H. Ding, A. F. Bellman, J. C. Campuzano, M. Randeria, M. R. Norman, T. Yokoya, T. Takahashi, H. Katayama-Yoshida, T. Mochiku, K. Kadowaki, G. Jennings, and G. P. Brivio, Phys. Rev. Lett. 76, 1533 (1996).ADSCrossRefGoogle Scholar
  37. 38.
    M. R. Norman, M. Randeria, H. Ding, and J. C. Campuzano, Phys. Rev. B 52, 615 (1995).ADSCrossRefGoogle Scholar
  38. 39.
    R. L. Withers, J. G. Thompson, L. R. Wallenberg, J. D. Fitzgerald, J. S. Anderson, B. G. Hyde, J. Phys. C 21, 6067 (1988).ADSGoogle Scholar
  39. 40.
    P. Aebi, J. Osterwalder, P. Schwaller, L. Schlapbach, M. Shimoda, T. Mochiku and K. Kadowaki, Phys. Rev. Lett. 72, 2757 (1994); J. Osterwalder, P. Aebi, P. Schwaller, L. Schlapbach, M. Shimoda, T. Mochiku and K. Kadowaki, Appl. Phys. A 60, 247 (1995).ADSCrossRefGoogle Scholar
  40. 41.
    A. Kampfand J. R. Schrieffer, Phys. Rev. B 42, 7967 (1990).ADSGoogle Scholar
  41. 42.
    H. Ding, M.R. Norman, T. Yokoya, T. Takuechi, M. Randeria, J.C. Campuzano, T. Takahashi, T. Mochiku, and K. Kadowaki, Phys. Rev. Lett. 78, 2628 (1997).ADSCrossRefGoogle Scholar
  42. 43.
    A. A. Kordyuk, S. V. Borisenko, M. S. Golden, S. Legner, K. A. Nenkov, M. Knupfer, J. Fink, H. Berger, L. Forro, R. Follath, Phys. Rev. B 66, 014502 (2002).ADSCrossRefGoogle Scholar
  43. 44.
    This would allow us to understand (1) why polarization selection rules are obeyed for the Γ{ze268-01} mirror plane, and (2) qualitatively, why the intensities for odd and even polarizations along ΓX are comparable.Google Scholar
  44. 45.
    D. S. Dessau, Z.X. Shen, D. M. King, D. S. Marshall, L. W. Lombardo, P. H. Dickinson, A. G. Loeser, J. DiCarlo, C.H Park, A. Kapitulnik, and W. E. Spicer, Phys. Rev. Lett. 71, 2781 (1993).ADSCrossRefGoogle Scholar
  45. 46.
    M. R. Norman, M. Randeria, H. Ding, J. C. Campuzano, and A. F. Bellman, Phys. Rev. B 52, 15107 (1995).ADSCrossRefGoogle Scholar
  46. 47.
    T. Sato, T. Kamiyama, T. Takahashi, J. Mesot, A. Kaminski, J. C. Campuzano, H. M. Fretwell, T. Takeuchi, H. Ding, I. Chong, T. Terashima, M. Takano, Phys. Rev. B 64, 054502 (2001).ADSCrossRefGoogle Scholar
  47. 48.
    N. L. Saini, J. Avila, A. Bianconi and A. Lanzara, M. C. Asensio, S. Tajima, G. D. Gu, and N. Koshizuka, Phys. Rev. Lett. 79, 3467 (1997).ADSCrossRefGoogle Scholar
  48. 49.
    J. Mesot, M. R. Norman, H. Ding, J. C. Campuzano, Phys. Rev. Lett. 82, 2618 (1999); N. L. Saini, A. Bianconi, A. Lanzara, J. Avila, M. C. Asensio, S. Tajima, G. D. Gu, N. Koshizuka, ibid 2619 (1999).ADSCrossRefGoogle Scholar
  49. 50.
    Y.-D. Chuang, A. D. Gromko, D. S. Dessau, Y. Aiura, Y. Yamaguchi, K. Oka, A. J. Arko, J. Joyce, H. Eisaki, S. I. Uchida, K. Nakamura, and Yoichi Ando, Phys. Rev. Lett. 83, 3717 (1999).ADSCrossRefGoogle Scholar
  50. 51.
    H.M. Fretwell, A. Kaminski, J. Mesot, J. C. Campuzano, M. R. Norman, M. Randeria, T. Sato, R. Gatt, T. Takahashi, and K. Kadowaki, Phys. Rev. Lett. 84, 4449 (2000).ADSCrossRefGoogle Scholar
  51. 52.
    S. V. Borisenko, M. S. Golden, S. Legner, T. Pichler, C. Durr, M. Knupfer, J. Fink, G. Yang, S. Abell, H. Berger, Phys. Rev. Lett. 84, 4453 (2000); S. V. Borisenko, A. A. Kordyuk, S. Legner, C. Durr, M. Knupfer, M. S. Golden, J. Fink, K. Nenkov, D. Eckert, G. Yang, S. Abell, H. Berger, L. Forro, B. Liang, A. Mailouck, C. T. Lin, B. Keimer, Phys. Rev. B 64, 094514 (2001).ADSCrossRefGoogle Scholar
  52. 53.
    The data in A. Kaminski, J. Mesot, J. C. Campuzano, M. R. Norman, M. Randeria, T. Sato, R. Gatt, T. Takahashi, and K. Kadowaki, Phys. Rev. Lett. 84, 4449 (2000) Ref. [51]} is taken in the superconducting state (T = 40K) of the T c = 90K sample. We note that the integration range (±100 meV) employed for the intensity patterns is much larger than the gap energy scale, and the minimum gap locus (to be discussed below in Section 5.6) in the superconducting state is essentially identical to the normal state Fermi surface.ADSCrossRefGoogle Scholar
  53. 54.
    D.L. Feng, W.J. Zheng, K.M. Shen, D.H. Lu, F. Ronning, J.-I. Shimoyama, K. Kishio, G. Gu, D. Van der Marel, Z.-X. Shen, cond-mat/9908056.Google Scholar
  54. 55.
    J. C. Campuzano, H. Ding, M. R. Norman, M. Randeria, A. F. Bellman, T. Yokoya, T. Takahashi, H. Katayama-Yoshida, T. Mochiku, and K. Kadowaki, Phys. Rev. B 53, R14737 (1996).ADSCrossRefGoogle Scholar
  55. 56.
    Th. Straub, R. Ciaessen, P. Steiner, S. Hufner, V. Eyert, K. Friemelt and E. Bucher, Phys. Rev. B 55, 13473 (1997).ADSCrossRefGoogle Scholar
  56. 57.
    M. C. Schabel, C.-H. Park, A. Matsuura, Z.-X. Shen, D. A. Bonn, Ruixing Liang, and W. N. Hardy, Phys. Rev. B 57, 6107 (1998).ADSCrossRefGoogle Scholar
  57. 58.
    K. Gofron, J. C. Campuzano, H. Ding, C. Gu, R. Liu, B. Dabrowski, B. W. Veal, W. Cramer, G. Jennings, J. Phys. Chem. Sol. 54, 1193 (1993); K. Gofron, J. C. Campuzano, A. A. Abrikosov, M. Lindroos, A. Bansil, H. Ding, D. Koelling, B. Dabrowski, Phys. Rev. Lett. 73, 3302 (1994).ADSCrossRefGoogle Scholar
  58. 59.
    S. Massida, J. Yu, and A.J. Freeman, Physica C 152, 251 (1988); O. K. Andersen, O. Jepsen, A. I. Liechtenstein, I. I. Mazin, Phys. Rev. B 49, 4145 (1994).ADSGoogle Scholar
  59. 60.
    S. Chakravarty, A. Sudbo, P. W. Anderson and S. Strong, Science 261, 337 (1994).ADSCrossRefGoogle Scholar
  60. 61.
    M.R. Norman, H. Ding, J.C. Campuzano, T. Takeuchi, M. Randeria, T. Yokoya, T. Takahashi, T. Mochiku, and K. Kadowaki, Phys. Rev. Lett. 79, 3506 (1997).ADSCrossRefGoogle Scholar
  61. 62.
    J. C. Campuzano, H. Ding, M. R. Norman, H. M. Pretwell, M. Randeria, A. Kaminski, J. Mesot, T. Takeuchi, T. Sato, T. Yokoya, T. Takahashi, K. Kadowaki, P. Guptasarma, D. G. Hinks, Z. Konstantinovic, Z. Z. Li, and H. Raffy, Phys. Rev. Lett. 83, 3709 (1999).ADSCrossRefGoogle Scholar
  62. 63.
    J. Zasadzinski, L. Ozyuzer, Z. Yusof, J. Chen, K. E. Gray, R. Mogilevsky, D. G. Hinks, J. L. Cobb, J. T. Markert, SPIE 2696, 338 (1996); See also J. Zasadzinski et al. (unpublished) in Fig. 1 of D. Coffey, J. Phys. Chem. Solids 54, 1369 (1993).ADSCrossRefGoogle Scholar
  63. 64.
    P. W. Anderson, Science 256, 1526 (1992).ADSCrossRefGoogle Scholar
  64. 65.
    D.L. Feng, N.P. Armitage, D.H. Lu, A. Damascelli, J.P Hu, P. Bogdanov, A. Lanzara, F. Ronning, K.M. Shen, H. Eisaki, C. Kim, and Z.-X. Shen, Phys. Rev. Lett. 86, 5550 (2001); D.L. Feng, C. Kim, H. Eisaki, D.H. Lu, A. Damascelli, K.M. Shen, F. Ronning, N. P. Armitage, N. Kaneko, M. Greven, J.-I. Shimoyama, K. Kishio, R. Yoshizaki, G.D. Gu, Z.-X. Shen, Phys. Rev. B 65, 220501 (2002).ADSCrossRefGoogle Scholar
  65. 66.
    Y. D. Chuang, A. D. Gromko, A. Fedorov, D. S. Dessau, Y. Aiura, K. Oka, Y. Ando, H. Eisaki, S. I. Uchida, Phys. Rev. Lett. 87, 117002 (2001); Y. D. Chuang, A. D. Gromko, A. Fedorov, Y. Aiura, K. Oka, Y. Ando, D. S. Dessau, cond-mat/0107002.ADSCrossRefGoogle Scholar
  66. 67.
    A. A. Kordyuk, S. V. Borisenko, T. K. Kim, K. Nenkov, M. Knupfer, M. S. Golden, J. Fink, H. Berger, R. Follath, Phys. Rev. Lett. 89, 077003 (2002).ADSCrossRefGoogle Scholar
  67. 68.
    D.L. Feng, A. Damascelli, K.M. Shen, N. Motoyama, D.H. Lu, H. Eisaki, K. Shimizu, J.-I. Shimoyama, K. Kishio, N. Kaneko, M. Greven, G.D. Gu, X.J. Zhou, C. Kim, F. Ronning, N. P. Armitage, and Z.-X. Shen, Phys. Rev. Lett. 88, 107001 (2002); D.L. Feng, H. Eisaki, K.M. Shen, A. Damascelli, C. Kim, D.H. Lu, Z.-X. Shen, K. Shimizu, J.-I. Shimoyama, K. Kishio, N. Motoyama, N. Kaneko, M. Greven, G.D. Gu, Intl. J. of Mod. Phys. 16, 1691 (2002); T. Sato, H. Matsui, S. Nishina, T. Takahashi, T. Fujii, T. Watanabe, and A. Matsuda, Phys. Rev. Lett. 89, 067005 (2002).ADSCrossRefGoogle Scholar
  68. 69.
    D. J. Van Harlingen, Rev. Mod. Phys 67, 515 (1995); C. C. Tsuei and J. R. Kirtley, ibid 72, 969 (2000).ADSCrossRefGoogle Scholar
  69. 70.
    Z. X. Shen, D. S. Dessau, B. O. Wells, D. M. King, W. E. Spicer, A. J. Arko, D. Marshall, L. W. Lombardo, A. Kapitulnik, P. Dickinson, S. Doniach, J. DiCarlo, A. G. Loeser, C. H. Park, Phys. Rev. Lett. 70, 1553 (1993).ADSCrossRefGoogle Scholar
  70. 71.
    H. Ding, M. R. Norman, J. C. Campuzano, M. Randeria, A. Bellman, T. Yokoya, T. Takahashi, T. Mochiku, and K. Kadowaki, Phys. Rev. B 54, R9678 (1996).ADSCrossRefGoogle Scholar
  71. 72.
    J.-M. Imer, F. Patthey, B. Dardel, W.-D. Schneider, Y. Baer, Y. Petroff, A. Zettl, Phys. Rev. Lett. 62, 336 (1989).ADSCrossRefGoogle Scholar
  72. 73.
    C. G. Olson, R. Liu, A.-B. Yang, D. W. Lynch, A. J. Arko, R. S. List, B. W. Veal, Y. C. Chang, P. Z. Jiang, A. P. Paulikus, Science 245, 731 (1989).ADSCrossRefGoogle Scholar
  73. 74.
    The large dispersion along ΓY, of about 60 meV within our momentum window δ k = 0.0457π/a*, makes it hard to locate accurately and to map out the nodal region. To this end the we use a step size of δ k/2 normal to the Fermi surface and (δ k) along it.Google Scholar
  74. 75.
    See: D. Pines and P. Monthoux, J. Phys. Chem. Solids 56, 1651 (1995) and D. J. Scalapino, Phys. Rep. 250, 329 (1995).ADSCrossRefGoogle Scholar
  75. 76.
    R. J. Kelley, J. Ma, C. Quitmann, G. Margaritondo, M. Onellion, Phys. Rev. B 50, 590 (1994).ADSCrossRefGoogle Scholar
  76. 77.
    J. M. Harris, Z.-X. Shen, P. J. White, D. S. Marshall, M. C. Schabel, J. N. Eckstein, I. Bozovic, Phys. Rev. B 54, R15665 (1996).ADSCrossRefGoogle Scholar
  77. 78.
    H. Ding, J. C. Campuzano, M. R. Norman, M. Randeria, T. Yokoya, T. Takahashi, T. Takeuchi, T. Mochiku, K. Kadowaki, P. Guptasarma, and D. G. Hinks, J. Phys. Chem. of Solids 59, 1888 (1998).ADSCrossRefGoogle Scholar
  78. 79.
    Ch. Renner, B. Revaz, J.-Y. Genoud, K. Kadowaki, O. Fischer, Phys. Rev. Lett. 80, 149 (1998); N. Miyakawa, P. Guptasarma, J. F. Zasadzinski, D. G. Hinks, K. E. Gray, ibid 80, 157 (1998).ADSCrossRefGoogle Scholar
  79. 80.
    A. J. Millis, S. M. Girvin, L. B. Ioffe, and A. I. Larkin, J. Phys. Chem. Solids 59, 1742 (1998).ADSCrossRefGoogle Scholar
  80. 81.
    A. C. Durst and P. A. Lee, Phys. Rev. 62, 1270 (2000).ADSCrossRefGoogle Scholar
  81. 82.
    M. Chiao, P. Lambert, R. W. Hill, C. Lupien, R. Gagnon, L. Taillefer, P. Fournier, Phys. Rev. 62, 3554 (2000).ADSCrossRefGoogle Scholar
  82. 83.
    J. Mesot, M. R. Norman, H. Ding, M. Randeria, J. C. Campuzano, A. Paramekanti, H. M. Fretwell, A. Kaminski, T. Takeuchi, T. Yokoya, T. Sato, T. Takahashi, T. Mochiku, and K. Kadowaki, Phys. Rev. Lett. 83, 840 (1999).ADSCrossRefGoogle Scholar
  83. 84.
    For penetration depth measurements on Bi2212, see: S.-F. Lee, D. C. Morgan, R. J. Ormeno, D. M. Broun, R. A. Doyle, J. R. Waldram, K. Kadowaki, Phys. Rev. Lett. 77, 735 (1996); T. Jacobs, S. Sridhar, Q. Li, G. D. Gu, N. Koshizuka, ibid75, 4516 (1995); O. Waldmann, F. Steinmeyer, P. Muller, J. J. Neumeier, F. X. Regi, H. Savary, J. Schneck, Phys. Rev. B 53, 11825 (1996).ADSCrossRefGoogle Scholar
  84. 85.
    A. Paramekanti and M. Randeria, Physica C 341–348, 827 (2000).CrossRefGoogle Scholar
  85. 86.
    W. N. Hardy, D. A. Bonn, D. C. Morgan, R. Liang, K. Zhang, Phys. Rev. Lett. 70, 3999 (1993); D. A. Bonn, S. Kamal, A. Bonakdarpour, R. Liang, W. N. Hardy, C. C. Homes, D. N. Basov, T. Timusk, Czech. J. Phys. 46, 3195 (1996).ADSCrossRefGoogle Scholar
  86. 87.
    S. Haas, A. V. Balatsky, M. Sigrist and T. M. Rice, Phys. Rev. B 56, 5108 (1997).ADSCrossRefGoogle Scholar
  87. 88.
    R. Fehrenbacher and M. R. Norman, Phys. Rev. B 50, 3495 (1994).ADSCrossRefGoogle Scholar
  88. 89.
    T. Timusk and B. W. Statt, Rept. Prog. Phys. 62, 61 (1999).ADSCrossRefGoogle Scholar
  89. 90.
    M. Randeria, in Proceedings of the International School of Physics “Enrico Fermi” Course CXXXVI on High Temperature Superconductors, ed. G. Iadonisi, J. R. Schrieifer, and M. L. Chiafalo, (IOS Press, 1998), p. 53–75; [Varenna Lectures, 1997] cond-mat/9710223.Google Scholar
  90. 91.
    D.S. Marshall, D.S. Dessau, A.G. Loeser, C-H. Park, A.Y. Matsuura, J.N. Eckstein, I. Bozovic, P. Fournier, A. Kapitulnik, W.E. Spicer, and Z.-X. Shen, Phys. Rev. Lett. 76, 4841 (1996).ADSCrossRefGoogle Scholar
  91. 92.
    A. G. Loeser, Z.-X. Shen, D. S. Dessau, D. S. Marshall, C. H. Park, P. Fournier, A. Kapitulnik, Science 273, 325 (1996).ADSCrossRefGoogle Scholar
  92. 93.
    H. Ding, T. Yokoya, J.C. Campuzano, T. Takahashi, M. Randeria, M.R. Norman, T. Mochiku, K. Kadowaki, and J. Giapintzakis, Nature 382, 51 (1996).ADSCrossRefGoogle Scholar
  93. 94.
    M. R. Norman, H. Ding, M. Randeria, J. C. Campuzano, T. Yokoya, T. Takeuchi, T. Takahashi, T. Mochiku, K. Kadowaki, P. Guptasarma, and D. G. Hinks, Nature 392, 157 (1998).ADSCrossRefGoogle Scholar
  94. 95.
    M.R. Presland, J.L. Tallon, R.G. Buckley, R.S. Liu, and N.E. Flower, Physica C 176, 95 (1991).ADSCrossRefGoogle Scholar
  95. 96.
    D.L. Feng, D.H. Lu, K.M. Shen, C. Kim, H. Eisaki, A. Damascelli, R. Yoshizaki, J.-I. Shimoyama, K. Kishio, G.D. Gu, S. Oh, A. Andrus, J. O’Donell, J.N. Eckstein, Z.-X. Shen, Science 289, 277 (2000).ADSCrossRefGoogle Scholar
  96. 97.
    H. Ding, J.R. Engelbrecht, Z. Wang, J.C. Campuzano, S.-C. Wang, H.-B. Yang, R. Rogan, T. Takahashi, K. Kadowaki, and D. G. Hinks, Phys. Rev. Lett. 87, 227001 (2001).ADSCrossRefGoogle Scholar
  97. 98.
    Y. J. Uemura, G. M. Luke, B. J. Sternlieb, J. H. Brewer, J. F. Carolan, W. N. Hardy, R. Kadono, J. R. Kempton, R. F. Kiefl, S. R. Kreitzman, P. Mulhern, T. M. Riseman, D. L. Williams, B. X. Yang, S. Uchida, H. Takagi, J. Gopalakrishnan, A. W. Sleight, M. A. Subramanian, C. L. Chien, M. Z. Cieplak, G. Xiao, V. Y. Lee, B. W. Statt, C. E. Stronach, W. J. Kossler, X. H. Yu, Phys. Rev. Lett. 62, 2317 (1989).ADSCrossRefGoogle Scholar
  98. 99.
    For a review, see: P. A. Lee, Normal state properties of the oxide superconductors: a review, in High Temperature Superconductivity, ed. K. S. Bedell, D. Coffey, D. E. Meitzer, D. Pines, J. R. Schrieffer, p. 96–116 (Addison-Wesley, New York, 1990).Google Scholar
  99. 100.
    M. Randeria, N. Trivedi, A. Moreo, and R.T. Scalettar, Phys. Rev. Lett. 69, 2001 (1992); N. Trivedi and M. Randeria, Phys. Rev. Lett. 75, 312 (1995).ADSCrossRefGoogle Scholar
  100. 101.
    V. Emery and S. Kivelson, Nature 374, 434 (1995).ADSCrossRefGoogle Scholar
  101. 102.
    G. Baskaran, Z. Zou and P. W. Anderson, Solid St. Comm. 63, 973 (1987); G. Kotliar and J. Liu, Phys. Rev. B 38, 5142 (1988); H. Fukuyama, Prog. Theor. Phys. Suppl. 108, 287 (1992).ADSCrossRefGoogle Scholar
  102. 103.
    P. A. Lee and X. G. Wen, Phys. Rev. Lett. 76, 503 (1996) and Phys. Rev. B 63, 224517 (2001).ADSCrossRefGoogle Scholar
  103. 104.
    J. Tallon and J. Loram, Physica C 349, 53 (2001).ADSCrossRefGoogle Scholar
  104. 105.
    S. Chakravarty, R. B. Laughlin, D. K. Morr and C. Nayak, Phys. Rev. B 63, 094503 (2001).ADSCrossRefGoogle Scholar
  105. 106.
    C. M. Varma, Phys. Rev. Lett. 83, 3538 (1999).ADSCrossRefGoogle Scholar
  106. 107.
    A. Kaminski, S. Rosenkranz, H. Fretwell, J. C. Campuzano, Z. Li, H. Raffy, W. G. Cullen, H. You, C. G. Olson, H. Hoechst, Nature 416, 610 (2002).ADSCrossRefGoogle Scholar
  107. 108.
    S. H. Pan, J. P. O’Neal, R. L. Badzey, C. Chamon, H. Ding, J. R. Engelbrecht, Z. Wang, H. Eisaki, S. Uchida, A. K. Gupta, K.-W. Ng, E. W. Hudson, K. M. Lang, J. C. Davis, Nature 413, 282 (2001).ADSCrossRefGoogle Scholar
  108. 109.
    L. Perfetti, C. Rojas, A. Reginelli, L. Gavioli, H. Berger, G. Margaritondo, M. Grioni, R. Gaal, L. Forro, F. Rullier Albenque, Phys. Rev. B 64, 115102 (2001).ADSCrossRefGoogle Scholar
  109. 110.
    M. R. Norman, H. Ding, H. Fretwell, M. Randeria, and J. C. Campuzano, Phys. Rev. B 60, 7585 (1999).ADSCrossRefGoogle Scholar
  110. 111.
    M. R. Norman, A. Kaminski, J. Mesot, J. C. Campuzano, Phys. Rev. B 63, 140508 (2001).ADSCrossRefGoogle Scholar
  111. 112.
    M. R. Norman, M. Randeria, H. Ding, and J. C. Campuzano, Phys. Rev. B 57, R11093 (1998).ADSCrossRefGoogle Scholar
  112. 113.
    D.S. Dessau, B.O. Wells, Z.-X. Shen, W.E. Spicer, A.J. Arko, R.S. List, D.B. Mitzi, and A. Kapitulnik, Phys. Rev. Lett. 66, 2160 (1991); D.S. Dessau, Z.-X. Shen, B.O. Wells, D. M. King, W.E. Spicer, A.J. Arko, L. W. Lombardo, D.B. Mitzi, and A. Kapitulnik, Phys. Rev. B 45, 5095 (1992).ADSCrossRefGoogle Scholar
  113. 114.
    Q. Huang, J.F. Zasadzinski, K.E. Gray, J.Z. Liu, and H. Claus, Phys. Rev. B 40, 9366 (1989).ADSCrossRefGoogle Scholar
  114. 115.
    Bilayer splitting is discussed in Section 5.4.5.Google Scholar
  115. 116.
    Y. Kuroda and C. M. Varma, Phys. Rev. B 42, 8619 (1990).ADSCrossRefGoogle Scholar
  116. 117.
    S. Engelsberg and J. R. Schrieffer, Phys. Rev. 131, 993 (1963).ADSCrossRefGoogle Scholar
  117. 118.
    D. J. Scalapino, in Superconductivity, ed. R. D. Parks (Marcel Decker, New York, 1969), Vol 1, p. 449.Google Scholar
  118. 119.
    Z.-X. Shen and J. R. Schrieffer, Phys. Rev. Lett. 78, 1771 (1997).ADSCrossRefGoogle Scholar
  119. 120.
    P. B. Littlewood and C. M. Varma, Phys. Rev. B 46, 405 (1992).ADSCrossRefGoogle Scholar
  120. 121.
    M. R. Norman and H. Ding, Phys. Rev. B 57, R11089 (1998).ADSCrossRefGoogle Scholar
  121. 122.
    S. M. Quinlan, P. J. Hirschfeld, and D. J. Scalapino, Phys. Rev. B. 53, 8575 (1996).ADSCrossRefGoogle Scholar
  122. 123.
    J. Rossat-Mignot, L.P. Regnault, C. Vettier, P. Bourges, P. Burlet, J. Bossy, JY. Henry, and G. Lapertot, Physica C 185–189, 86 (1991); H.A. Mook, M. Yethiraj, G. Aeppli, T. E. Mason, T. Armstrong, Phys. Rev. Lett. 70, 3490 (1993); Hung Fai Fong, B. Keimer, P.W. Anderson, D. Reznik, F. Dogan and I.A. Aksay, Phys. Rev. Lett. 75, 316 (1995).CrossRefGoogle Scholar
  123. 124.
    H.F. Fong, P. Bourges, Y. Sidis, L.P. Regnault, A. Ivanov, G.D. Gu, N. Koshizuka, and B. Keimer, Nature 398, 588 (1999).ADSCrossRefGoogle Scholar
  124. 125.
    Neutron results are reviewed by P. Bourges, in The gap symmetry and fluctuations in high Tc superconductors, ed. au]J. Bok, G. Deutscher, D. Pavuna, and S.A. Wolf (Plenum, New York, 1998), p. 349.Google Scholar
  125. 126.
    J.F. Zasadzinski, L. Ozyuzer, N. Miyakawa, K.E. Gray, D.G. Hinks, C. Kendziora, Phys. Rev. Lett. 87, 067005 (2001).ADSCrossRefGoogle Scholar
  126. 127.
    P. Dai, M. Yethiraj, H. A. Mook, T. B. Lindemer, and F. Dogan, Phys. Rev. Lett. 77, 5425 (1996).ADSCrossRefGoogle Scholar
  127. 128.
    R. Preuss, W. Hanke, C. Grober, and H. G. Evertz, Phys. Rev. Lett. 79, 1122 (1997); J. Schmalian, D. Pines, and B. Stojkovic, ibid. 80, 3839 (1998); X.-G. Wen and P. A. Lee, ibid. 76, 503 (1996).ADSCrossRefGoogle Scholar
  128. 129.
    E. Dernier and S.-C. Zhang, Phys. Rev. Lett. 75, 4126 (1995).ADSCrossRefGoogle Scholar
  129. 130.
    P. Dai, H. A. Mook, S. M. Hayden, G. Aeppli, T. G. Perring, R. D. Hunt, and F. Doğan, Science 284, 1344 (1999).ADSCrossRefGoogle Scholar
  130. 131.
    M. Hengsberger, D. Purdie, P. Segovia, M. Gamier, Y. Baer, Phys. Rev. Lett. 83, 592 (1999); T. Valla, A. V. Fedorov, P. D. Johnson, S. L. Hulbert, ibid., 2085 (1999).ADSCrossRefGoogle Scholar
  131. 132.
    A. Lanzara, P.V. Bogdanov, X.J. Zhou, S.A. Kellar, D.L. Feng, E.D. Lu, T. Yoshida, H. Eisaki, A. Fujimori, K. Kishio, J.-I. Shimoyama, T. Nöda, S. Uchida, Z. Hussain, and Z.-X. Shen, Nature 412, 510 (2001).ADSCrossRefGoogle Scholar
  132. 133.
    P.D. Johnson, T. Valla, A.V. Fedorov, Z. Yusof, B.O. Wells, Q. Li, A.R. Moodenbaugh, G.D. Gu, N. Koshizuka, C. Kendziora, Sha Jian, and D.G. Hinks, Phys. Rev. Lett. 87, 177007 (2001).ADSCrossRefGoogle Scholar
  133. 134.
    M. Eschrig and M. R. Norman, Phys. Rev. Lett. 85, 3261 (2000) and cond-mat/0202083.ADSCrossRefGoogle Scholar
  134. 135.
    M. Eschrig and M. R. Norman, cond-mat/0206544.Google Scholar
  135. 136.
    A. D. Gromko, A. V. Federov, Y.-D. Chuang, J. D. Koralek, Y. Aiura, Y Yamaguchi, K. Oka, Y. Ando, D. S. Dessau, cond-mat/0202329; A. D. Gromko, Y.-D. Chuang, A. V. Federov, Y. Aiura, Y. Yamaguchi, K. Oka, Y. Ando, D. S. Dessau, cond-mat/0205385.Google Scholar
  136. 137.
    M. R. Norman, M. Randeria, B. Janko, J. C. Campuzano, Phys. Rev. B 61, 14742 (2000).ADSCrossRefGoogle Scholar
  137. 138.
    J. C. Campuzano, H. Ding, H. Fretwell, J. Mesot, A. Kaminski, T. Sato, T. Takahashi, T. Mochiku, and K. Kadowaki, cond-mat/9811349.Google Scholar
  138. 139.
    A. Bansil and M. Lindroos, Phys. Rev. Lett. 83, 5154 (1999).ADSCrossRefGoogle Scholar
  139. 140.
    M. R. Norman and C. Pepin, Phys. Rev. B 66, 100506 (2002).ADSCrossRefGoogle Scholar
  140. 141.
    H. J. A. Molegraaf, C. Presura, D. van der Marel, P. H. Kes, M. Li, Science 295, 2239 (2002); A. F. Santander-Syro, R. P. S. M. Lobo, N. Bontemps, Z. Konstantinovic, Z. Z. Li, H. Raffy, cond-mat/0111539.ADSCrossRefGoogle Scholar
  141. 142.
    P. W. Anderson, Phys. Rev. B 42, 2624 (1990).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • J. C. Campuzano
    • 1
    • 2
  • M. R. Norman
    • 2
  • M. Randeria
    • 3
  1. 1.Dept. of PhysicsUniversity of Illinois at ChicagoUSA
  2. 2.Materials Science DivisionArgonne Nat. Lab.USA
  3. 3.Tata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations