Skip to main content

Photoemission in the High-T c Superconductors

  • Chapter
The Physics of Superconductors

Abstract

Angle resolved photoemission spectroscopy (ARPES) has played a major role in the elucidation of the electronic excitations in the high temperature cuprate superconductors. Several reasons have contributed to this development. First, the great improvement in experimental resolution, both in energy and momentum, aided by the large energy scales present in the cuprates, allows one to see features on the scale of the superconducting gap. More recently the resolution has improved to such an extent, that now features in traditional superconductors like Nb and Pb, with energy scales of a meV, can be observed by ARPES [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Chainani, T. Yokoya, T. Kiss, S. Shin, Phys. Rev. Lett. 85, 1966 (2000).

    Article  ADS  Google Scholar 

  2. A. Damascelli, Z.-X. Shen, Z. Hussain, Rev. Mod. Phys. (2002), cond-mat/0208504.

    Google Scholar 

  3. D.L. Lynch and C.G Olson, Photoemission studies of high-temperature superconductors (Cambridge University Press, Cambridge, UK, 1999).

    Book  Google Scholar 

  4. S. Hüfner, Photoelectron Spectroscopy (Springer-Verlag, Berlin, 1996), and references therein.

    Google Scholar 

  5. C.N. Berglund and W.E. Spicer, Phys. Rev. 136, A1030 and A1044 (1964).

    Article  ADS  Google Scholar 

  6. J. Hermanson, Solid State Comm. 22, 9 (1977).

    Article  ADS  Google Scholar 

  7. For a review of the first five years of work on the cuprates, see Sec. 4 and 5 of Z. X. Shen and D. S. Dessau, Phys. Repts. 253, 1 (1995).

    Article  ADS  Google Scholar 

  8. J. Mesot, M. Randeria, M. R. Norman, A. Kaminski, H.M. Fretwell, J. C. Campuzano, H. Ding, T. Takeuchi, T. Sato, T. Yokoya, T. Takahashi, I. Chong, T. Terashima, M. Takano, T. Mochiku, and K. Kadowaki, Phys. Rev. B 63, 224516 (2001).

    Article  ADS  Google Scholar 

  9. H. Hertz, Ann. Physik 31, 983 (1887).

    Article  ADS  Google Scholar 

  10. W. L. Schaich and N. W. Ashcroft, Phys. Rev. B 3, 2452 (1971).

    Article  ADS  Google Scholar 

  11. C. Caroli, D. Lederer-Rozenblatt, B. Roulet, and D. Saint-James, Phys. Rev. B 8, 4552 (1973).

    Article  ADS  Google Scholar 

  12. J. B. Pendry, Surf. Sci. 57, 679 (1976). For a review of applications of these methods to the cuprates, see: A. Bansil and M. Lindroos, J. Phys. Chem. Solids 56, 1855 (1995).

    Article  ADS  Google Scholar 

  13. C.G. Larsson, Surface Science 152/153, 213 (1985); ibid 162, 19 (1985).

    Article  ADS  Google Scholar 

  14. P.A.P. Lindberg, L.I. Johansson and A.N. Christensen, Surface Science 197, 353 (1987).

    Article  Google Scholar 

  15. F.L. Hopkinson, J.B. Pendry, and D.J. Titterington, Comput. Phys. Comm. 26, 111 (1980).

    Google Scholar 

  16. A. Bansil, M. Lindroos, and J.C. Campuzano, Proc. Mater. Res. Soc. 253, 519 (1992); M. Lindroos, A. Bansil, K. Gofron, H. Ding, J.C. Campuzano, R. Liu, and B.W. Veal, Physica C 212, 347 (1993).

    Google Scholar 

  17. H.L. Edwards, J.T. Markert and A.L. de Lozanne, Phys. Rev. Lett. 69, 2967 (1992).

    Article  ADS  Google Scholar 

  18. N. V. Smith, P. Thiry, and Y. Petroff, Phys. Rev. B 47, 15476 (1993).

    Article  ADS  Google Scholar 

  19. See, e.g., L. Hedin and S. Lundquist, Solid State Physics 23, 1 (Academic, New York, 1969).

    Google Scholar 

  20. M. Randeria, H. Ding, J-C. Campuzano, A. Bellman, G. Jennings, T. Yokoya, T. Takahashi, H. Katayama-Yoshida, T. Mochiku, and K. Kadowaki, Phys. Rev. Lett. 74, 4951 (1995).

    Article  ADS  Google Scholar 

  21. H. Ding, J. C. Campuzano, A. F. Bellman, T. Yokoya, M. R. Norman, M. Randeria, T. Takahashi, H. Katayama-Yoshida, T. Mochiku, K. Kadowaki, G. Jennings, Phys. Rev. Lett. 74, 2784 (1995) and 75, 1425 (E) (1995).

    Article  ADS  Google Scholar 

  22. A. V. Federov, T. Valla, P. D. Johnson, Q. Li, G. D. Gu, N. Koshizuka, Phys. Rev. Lett. 82, 2179 (1999); T. Valla, A.V. Fedorov, P.D. Johnson, B.O. Wells, S.L. Hulbert, Q. Li, G.D. Gu, and N. Koshizuka, Science 285, 2110 (1999); T. Valla, A. V. Fedorov, P. D. Johnson, Q. Li, G. D. Gu, N. Koshizuka, Phys. Rev. Lett. 85, 828 (2000).

    Article  ADS  Google Scholar 

  23. P.V. Bogdanov, A. Lanzara, S.A. Kellar, X.J. Zhou, E.D. Lu, W.J. Zheng, G. Gu, J.-I. Shimoyama, K. Kishio, H. Ikeda, R. Yoshizaki, Z. Hussain, and Z. X. Shen, Phys. Rev. Lett. 85, 2581 (2000).

    Article  ADS  Google Scholar 

  24. A. Kaminski, M. Randeria, J. C. Campuzano, M. R. Norman, H. Fretwell, J. Mesot, T. Sato, T. Takahashi, and K. Kadowaki, Phys. Rev. Lett. 86, 1070 (2001).

    Article  ADS  Google Scholar 

  25. M. R. Norman, M. Eschrig, A. Kaminski, J. C. Campuzano, Phys. Rev. B 64, 184508 (2001).

    Article  ADS  Google Scholar 

  26. W. E. Pickett, Rev. Mod. Phys. 61, 433 (1989).

    Article  ADS  Google Scholar 

  27. P. W. Anderson, The Theory of Superconductivity in the High-T c Cuprates (Princeton Univ. Pr., Princeton, 1997).

    Google Scholar 

  28. O. K. Andersen A. I. Liechtenstein, O. Jepsen, F. Paulsen, J. Phys. Chem. Solids 56, 1573 (1995).

    Article  ADS  Google Scholar 

  29. P. W. Anderson, Science 235, 1196 (1987).

    Article  ADS  Google Scholar 

  30. C. G. Olson, R. Liu, D. W. Lynch, R. S. List, A. J. Arko, B. W. Veal, Y. C. Chang, P. Z. Jiang, and A. P. Paulikas, Phys. Rev. B 42, 381 (1990).

    Article  ADS  Google Scholar 

  31. The electronic structure of the insulator has been extensively studied by the Stanford group, confirming beautifully the predicted valence band maximum at (π/2, π/2), see B. O. Wells, Z.-X. Shen, A. Matsuura, D. M. King, M. A. Kastner, M. Greven, and R. J. Birgeneau, Phys. Rev. Lett. 74, 964 (1995).

    Article  ADS  Google Scholar 

  32. A. Kaminski, J. Mesot, H. Fretwell, J. C. Campuzano, M. R. Norman, M. Randeria, H. Ding, T. Sato, T. Takahashi, T. Mochiku, K. Kadowaki, and H. Hoechst, Phys. Rev. Lett. 84, 1788 (2000).

    Article  ADS  Google Scholar 

  33. J. C. Campuzano, G. Jennings, M. Faiz, L. Beaulaigue, B. W. Veal, J. Z. Liu, A. P. Paulikas, K. Vandervoort, H. Claus, Phys. Rev. Lett. 64, 2308 (1990).

    Article  ADS  Google Scholar 

  34. D. M. King, Z.-X. Shen, D. S. Dessau, B. O. Wells, W. E. Spicer, A. J. Arko, D. S. Marshall, J. DiCarlo, A. G. Loeser, C. H. Park, E. R. Ratner, J. L. Peng, Z. Y. Li, R. L. Greene, Phys. Rev. Lett. 70, 3159 (1993); R. O. Anderson, R. Claessen, J. W. Allen, C. G. Olson, C. Janowitz, L. Z. Liu, J.-H. Park, M. B. Maple, Y. Dalichaouch, M. C. de Andrade, R. F. Jardim, E. A. Early, S.-J. Oh, W. P. Ellis, ibid 70, 3163 (1993); N. P. Armitage, D. H. Lu, C. Kim, A. Damascelli, K. M. Shen, F. Ronning, D. L. Feng, P. Bogdanov, Z.-X. Shen, Y. Onose, Y. Taguchi, Y. Tokura, P. K. Mang, N. Kaneko, M. Greven, ibid 87, 147003 (2001); N. P. Armitage, F. Ronning, D. H. Lu, C. Kim, A. Damascelli, K. M. Shen, D. L. Feng, H. Eisaki, Z.-X. Shen, P. K. Mang, N. Kaneko, M. Greven, Y. Onose, Y. Taguchi, Y. Tokura, ibid 88, 257001 (2002).

    Article  ADS  Google Scholar 

  35. A. Ino, C. Kim, T. Mizokawa, Z.-X. Shen, A. Fujimori, M. Takaba, K. Tamasaku, H. Eisaki, S. Uchida, J. Phys. Soc. Japan 68, 1496 (1999); A. Ino, C. Kim, M. Nakamura, T. Mizokawa, Z.-X. Shen, A. Fujimori, T. Kakeshita, H. Eisaki, S. Uchida, Phys. Rev. B 62, 4137 (2000); A. Ino, C. Kim, M. Nakamura, T. Yoshida, T. Mizokawa, Z.-X. Shen, A. Fujimori, T. Kakeshita, H. Eisaki, S. Uchida, ibid 65, 094504 (2002); T. Yoshida, X. J. Zhou, M. Nakamura, S. A. Kellar, P. V. Bogdanov, E. D. Lu, A. Lanzara, Z. Hussain, A. Ino, T. Mizokawa, A. Fujimori, H. Eisaki, C. Kim, Z.-X. Shen, T. Kakeshita, S. Uchida, ibid, 63, 220501 (2001).

    Article  ADS  Google Scholar 

  36. H. Ding, A. F. Bellman, J. C. Campuzano, M. Randeria, M. R. Norman, T. Yokoya, T. Takahashi, H. Katayama-Yoshida, T. Mochiku, K. Kadowaki, G. Jennings, and G. P. Brivio, Phys. Rev. Lett. 76, 1533 (1996).

    Article  ADS  Google Scholar 

  37. M. R. Norman, M. Randeria, H. Ding, and J. C. Campuzano, Phys. Rev. B 52, 615 (1995).

    Article  ADS  Google Scholar 

  38. R. L. Withers, J. G. Thompson, L. R. Wallenberg, J. D. Fitzgerald, J. S. Anderson, B. G. Hyde, J. Phys. C 21, 6067 (1988).

    ADS  Google Scholar 

  39. P. Aebi, J. Osterwalder, P. Schwaller, L. Schlapbach, M. Shimoda, T. Mochiku and K. Kadowaki, Phys. Rev. Lett. 72, 2757 (1994); J. Osterwalder, P. Aebi, P. Schwaller, L. Schlapbach, M. Shimoda, T. Mochiku and K. Kadowaki, Appl. Phys. A 60, 247 (1995).

    Article  ADS  Google Scholar 

  40. A. Kampfand J. R. Schrieffer, Phys. Rev. B 42, 7967 (1990).

    ADS  Google Scholar 

  41. H. Ding, M.R. Norman, T. Yokoya, T. Takuechi, M. Randeria, J.C. Campuzano, T. Takahashi, T. Mochiku, and K. Kadowaki, Phys. Rev. Lett. 78, 2628 (1997).

    Article  ADS  Google Scholar 

  42. A. A. Kordyuk, S. V. Borisenko, M. S. Golden, S. Legner, K. A. Nenkov, M. Knupfer, J. Fink, H. Berger, L. Forro, R. Follath, Phys. Rev. B 66, 014502 (2002).

    Article  ADS  Google Scholar 

  43. This would allow us to understand (1) why polarization selection rules are obeyed for the Γ{ze268-01} mirror plane, and (2) qualitatively, why the intensities for odd and even polarizations along ΓX are comparable.

    Google Scholar 

  44. D. S. Dessau, Z.X. Shen, D. M. King, D. S. Marshall, L. W. Lombardo, P. H. Dickinson, A. G. Loeser, J. DiCarlo, C.H Park, A. Kapitulnik, and W. E. Spicer, Phys. Rev. Lett. 71, 2781 (1993).

    Article  ADS  Google Scholar 

  45. M. R. Norman, M. Randeria, H. Ding, J. C. Campuzano, and A. F. Bellman, Phys. Rev. B 52, 15107 (1995).

    Article  ADS  Google Scholar 

  46. T. Sato, T. Kamiyama, T. Takahashi, J. Mesot, A. Kaminski, J. C. Campuzano, H. M. Fretwell, T. Takeuchi, H. Ding, I. Chong, T. Terashima, M. Takano, Phys. Rev. B 64, 054502 (2001).

    Article  ADS  Google Scholar 

  47. N. L. Saini, J. Avila, A. Bianconi and A. Lanzara, M. C. Asensio, S. Tajima, G. D. Gu, and N. Koshizuka, Phys. Rev. Lett. 79, 3467 (1997).

    Article  ADS  Google Scholar 

  48. J. Mesot, M. R. Norman, H. Ding, J. C. Campuzano, Phys. Rev. Lett. 82, 2618 (1999); N. L. Saini, A. Bianconi, A. Lanzara, J. Avila, M. C. Asensio, S. Tajima, G. D. Gu, N. Koshizuka, ibid 2619 (1999).

    Article  ADS  Google Scholar 

  49. Y.-D. Chuang, A. D. Gromko, D. S. Dessau, Y. Aiura, Y. Yamaguchi, K. Oka, A. J. Arko, J. Joyce, H. Eisaki, S. I. Uchida, K. Nakamura, and Yoichi Ando, Phys. Rev. Lett. 83, 3717 (1999).

    Article  ADS  Google Scholar 

  50. H.M. Fretwell, A. Kaminski, J. Mesot, J. C. Campuzano, M. R. Norman, M. Randeria, T. Sato, R. Gatt, T. Takahashi, and K. Kadowaki, Phys. Rev. Lett. 84, 4449 (2000).

    Article  ADS  Google Scholar 

  51. S. V. Borisenko, M. S. Golden, S. Legner, T. Pichler, C. Durr, M. Knupfer, J. Fink, G. Yang, S. Abell, H. Berger, Phys. Rev. Lett. 84, 4453 (2000); S. V. Borisenko, A. A. Kordyuk, S. Legner, C. Durr, M. Knupfer, M. S. Golden, J. Fink, K. Nenkov, D. Eckert, G. Yang, S. Abell, H. Berger, L. Forro, B. Liang, A. Mailouck, C. T. Lin, B. Keimer, Phys. Rev. B 64, 094514 (2001).

    Article  ADS  Google Scholar 

  52. The data in A. Kaminski, J. Mesot, J. C. Campuzano, M. R. Norman, M. Randeria, T. Sato, R. Gatt, T. Takahashi, and K. Kadowaki, Phys. Rev. Lett. 84, 4449 (2000) Ref. [51]} is taken in the superconducting state (T = 40K) of the T c = 90K sample. We note that the integration range (±100 meV) employed for the intensity patterns is much larger than the gap energy scale, and the minimum gap locus (to be discussed below in Section 5.6) in the superconducting state is essentially identical to the normal state Fermi surface.

    Article  ADS  Google Scholar 

  53. D.L. Feng, W.J. Zheng, K.M. Shen, D.H. Lu, F. Ronning, J.-I. Shimoyama, K. Kishio, G. Gu, D. Van der Marel, Z.-X. Shen, cond-mat/9908056.

    Google Scholar 

  54. J. C. Campuzano, H. Ding, M. R. Norman, M. Randeria, A. F. Bellman, T. Yokoya, T. Takahashi, H. Katayama-Yoshida, T. Mochiku, and K. Kadowaki, Phys. Rev. B 53, R14737 (1996).

    Article  ADS  Google Scholar 

  55. Th. Straub, R. Ciaessen, P. Steiner, S. Hufner, V. Eyert, K. Friemelt and E. Bucher, Phys. Rev. B 55, 13473 (1997).

    Article  ADS  Google Scholar 

  56. M. C. Schabel, C.-H. Park, A. Matsuura, Z.-X. Shen, D. A. Bonn, Ruixing Liang, and W. N. Hardy, Phys. Rev. B 57, 6107 (1998).

    Article  ADS  Google Scholar 

  57. K. Gofron, J. C. Campuzano, H. Ding, C. Gu, R. Liu, B. Dabrowski, B. W. Veal, W. Cramer, G. Jennings, J. Phys. Chem. Sol. 54, 1193 (1993); K. Gofron, J. C. Campuzano, A. A. Abrikosov, M. Lindroos, A. Bansil, H. Ding, D. Koelling, B. Dabrowski, Phys. Rev. Lett. 73, 3302 (1994).

    Article  ADS  Google Scholar 

  58. S. Massida, J. Yu, and A.J. Freeman, Physica C 152, 251 (1988); O. K. Andersen, O. Jepsen, A. I. Liechtenstein, I. I. Mazin, Phys. Rev. B 49, 4145 (1994).

    ADS  Google Scholar 

  59. S. Chakravarty, A. Sudbo, P. W. Anderson and S. Strong, Science 261, 337 (1994).

    Article  ADS  Google Scholar 

  60. M.R. Norman, H. Ding, J.C. Campuzano, T. Takeuchi, M. Randeria, T. Yokoya, T. Takahashi, T. Mochiku, and K. Kadowaki, Phys. Rev. Lett. 79, 3506 (1997).

    Article  ADS  Google Scholar 

  61. J. C. Campuzano, H. Ding, M. R. Norman, H. M. Pretwell, M. Randeria, A. Kaminski, J. Mesot, T. Takeuchi, T. Sato, T. Yokoya, T. Takahashi, K. Kadowaki, P. Guptasarma, D. G. Hinks, Z. Konstantinovic, Z. Z. Li, and H. Raffy, Phys. Rev. Lett. 83, 3709 (1999).

    Article  ADS  Google Scholar 

  62. J. Zasadzinski, L. Ozyuzer, Z. Yusof, J. Chen, K. E. Gray, R. Mogilevsky, D. G. Hinks, J. L. Cobb, J. T. Markert, SPIE 2696, 338 (1996); See also J. Zasadzinski et al. (unpublished) in Fig. 1 of D. Coffey, J. Phys. Chem. Solids 54, 1369 (1993).

    Article  ADS  Google Scholar 

  63. P. W. Anderson, Science 256, 1526 (1992).

    Article  ADS  Google Scholar 

  64. D.L. Feng, N.P. Armitage, D.H. Lu, A. Damascelli, J.P Hu, P. Bogdanov, A. Lanzara, F. Ronning, K.M. Shen, H. Eisaki, C. Kim, and Z.-X. Shen, Phys. Rev. Lett. 86, 5550 (2001); D.L. Feng, C. Kim, H. Eisaki, D.H. Lu, A. Damascelli, K.M. Shen, F. Ronning, N. P. Armitage, N. Kaneko, M. Greven, J.-I. Shimoyama, K. Kishio, R. Yoshizaki, G.D. Gu, Z.-X. Shen, Phys. Rev. B 65, 220501 (2002).

    Article  ADS  Google Scholar 

  65. Y. D. Chuang, A. D. Gromko, A. Fedorov, D. S. Dessau, Y. Aiura, K. Oka, Y. Ando, H. Eisaki, S. I. Uchida, Phys. Rev. Lett. 87, 117002 (2001); Y. D. Chuang, A. D. Gromko, A. Fedorov, Y. Aiura, K. Oka, Y. Ando, D. S. Dessau, cond-mat/0107002.

    Article  ADS  Google Scholar 

  66. A. A. Kordyuk, S. V. Borisenko, T. K. Kim, K. Nenkov, M. Knupfer, M. S. Golden, J. Fink, H. Berger, R. Follath, Phys. Rev. Lett. 89, 077003 (2002).

    Article  ADS  Google Scholar 

  67. D.L. Feng, A. Damascelli, K.M. Shen, N. Motoyama, D.H. Lu, H. Eisaki, K. Shimizu, J.-I. Shimoyama, K. Kishio, N. Kaneko, M. Greven, G.D. Gu, X.J. Zhou, C. Kim, F. Ronning, N. P. Armitage, and Z.-X. Shen, Phys. Rev. Lett. 88, 107001 (2002); D.L. Feng, H. Eisaki, K.M. Shen, A. Damascelli, C. Kim, D.H. Lu, Z.-X. Shen, K. Shimizu, J.-I. Shimoyama, K. Kishio, N. Motoyama, N. Kaneko, M. Greven, G.D. Gu, Intl. J. of Mod. Phys. 16, 1691 (2002); T. Sato, H. Matsui, S. Nishina, T. Takahashi, T. Fujii, T. Watanabe, and A. Matsuda, Phys. Rev. Lett. 89, 067005 (2002).

    Article  ADS  Google Scholar 

  68. D. J. Van Harlingen, Rev. Mod. Phys 67, 515 (1995); C. C. Tsuei and J. R. Kirtley, ibid 72, 969 (2000).

    Article  ADS  Google Scholar 

  69. Z. X. Shen, D. S. Dessau, B. O. Wells, D. M. King, W. E. Spicer, A. J. Arko, D. Marshall, L. W. Lombardo, A. Kapitulnik, P. Dickinson, S. Doniach, J. DiCarlo, A. G. Loeser, C. H. Park, Phys. Rev. Lett. 70, 1553 (1993).

    Article  ADS  Google Scholar 

  70. H. Ding, M. R. Norman, J. C. Campuzano, M. Randeria, A. Bellman, T. Yokoya, T. Takahashi, T. Mochiku, and K. Kadowaki, Phys. Rev. B 54, R9678 (1996).

    Article  ADS  Google Scholar 

  71. J.-M. Imer, F. Patthey, B. Dardel, W.-D. Schneider, Y. Baer, Y. Petroff, A. Zettl, Phys. Rev. Lett. 62, 336 (1989).

    Article  ADS  Google Scholar 

  72. C. G. Olson, R. Liu, A.-B. Yang, D. W. Lynch, A. J. Arko, R. S. List, B. W. Veal, Y. C. Chang, P. Z. Jiang, A. P. Paulikus, Science 245, 731 (1989).

    Article  ADS  Google Scholar 

  73. The large dispersion along ΓY, of about 60 meV within our momentum window δ k = 0.0457π/a*, makes it hard to locate accurately and to map out the nodal region. To this end the we use a step size of δ k/2 normal to the Fermi surface and (δ k) along it.

    Google Scholar 

  74. See: D. Pines and P. Monthoux, J. Phys. Chem. Solids 56, 1651 (1995) and D. J. Scalapino, Phys. Rep. 250, 329 (1995).

    Article  ADS  Google Scholar 

  75. R. J. Kelley, J. Ma, C. Quitmann, G. Margaritondo, M. Onellion, Phys. Rev. B 50, 590 (1994).

    Article  ADS  Google Scholar 

  76. J. M. Harris, Z.-X. Shen, P. J. White, D. S. Marshall, M. C. Schabel, J. N. Eckstein, I. Bozovic, Phys. Rev. B 54, R15665 (1996).

    Article  ADS  Google Scholar 

  77. H. Ding, J. C. Campuzano, M. R. Norman, M. Randeria, T. Yokoya, T. Takahashi, T. Takeuchi, T. Mochiku, K. Kadowaki, P. Guptasarma, and D. G. Hinks, J. Phys. Chem. of Solids 59, 1888 (1998).

    Article  ADS  Google Scholar 

  78. Ch. Renner, B. Revaz, J.-Y. Genoud, K. Kadowaki, O. Fischer, Phys. Rev. Lett. 80, 149 (1998); N. Miyakawa, P. Guptasarma, J. F. Zasadzinski, D. G. Hinks, K. E. Gray, ibid 80, 157 (1998).

    Article  ADS  Google Scholar 

  79. A. J. Millis, S. M. Girvin, L. B. Ioffe, and A. I. Larkin, J. Phys. Chem. Solids 59, 1742 (1998).

    Article  ADS  Google Scholar 

  80. A. C. Durst and P. A. Lee, Phys. Rev. 62, 1270 (2000).

    Article  ADS  Google Scholar 

  81. M. Chiao, P. Lambert, R. W. Hill, C. Lupien, R. Gagnon, L. Taillefer, P. Fournier, Phys. Rev. 62, 3554 (2000).

    Article  ADS  Google Scholar 

  82. J. Mesot, M. R. Norman, H. Ding, M. Randeria, J. C. Campuzano, A. Paramekanti, H. M. Fretwell, A. Kaminski, T. Takeuchi, T. Yokoya, T. Sato, T. Takahashi, T. Mochiku, and K. Kadowaki, Phys. Rev. Lett. 83, 840 (1999).

    Article  ADS  Google Scholar 

  83. For penetration depth measurements on Bi2212, see: S.-F. Lee, D. C. Morgan, R. J. Ormeno, D. M. Broun, R. A. Doyle, J. R. Waldram, K. Kadowaki, Phys. Rev. Lett. 77, 735 (1996); T. Jacobs, S. Sridhar, Q. Li, G. D. Gu, N. Koshizuka, ibid75, 4516 (1995); O. Waldmann, F. Steinmeyer, P. Muller, J. J. Neumeier, F. X. Regi, H. Savary, J. Schneck, Phys. Rev. B 53, 11825 (1996).

    Article  ADS  Google Scholar 

  84. A. Paramekanti and M. Randeria, Physica C 341–348, 827 (2000).

    Article  Google Scholar 

  85. W. N. Hardy, D. A. Bonn, D. C. Morgan, R. Liang, K. Zhang, Phys. Rev. Lett. 70, 3999 (1993); D. A. Bonn, S. Kamal, A. Bonakdarpour, R. Liang, W. N. Hardy, C. C. Homes, D. N. Basov, T. Timusk, Czech. J. Phys. 46, 3195 (1996).

    Article  ADS  Google Scholar 

  86. S. Haas, A. V. Balatsky, M. Sigrist and T. M. Rice, Phys. Rev. B 56, 5108 (1997).

    Article  ADS  Google Scholar 

  87. R. Fehrenbacher and M. R. Norman, Phys. Rev. B 50, 3495 (1994).

    Article  ADS  Google Scholar 

  88. T. Timusk and B. W. Statt, Rept. Prog. Phys. 62, 61 (1999).

    Article  ADS  Google Scholar 

  89. M. Randeria, in Proceedings of the International School of Physics “Enrico Fermi” Course CXXXVI on High Temperature Superconductors, ed. G. Iadonisi, J. R. Schrieifer, and M. L. Chiafalo, (IOS Press, 1998), p. 53–75; [Varenna Lectures, 1997] cond-mat/9710223.

    Google Scholar 

  90. D.S. Marshall, D.S. Dessau, A.G. Loeser, C-H. Park, A.Y. Matsuura, J.N. Eckstein, I. Bozovic, P. Fournier, A. Kapitulnik, W.E. Spicer, and Z.-X. Shen, Phys. Rev. Lett. 76, 4841 (1996).

    Article  ADS  Google Scholar 

  91. A. G. Loeser, Z.-X. Shen, D. S. Dessau, D. S. Marshall, C. H. Park, P. Fournier, A. Kapitulnik, Science 273, 325 (1996).

    Article  ADS  Google Scholar 

  92. H. Ding, T. Yokoya, J.C. Campuzano, T. Takahashi, M. Randeria, M.R. Norman, T. Mochiku, K. Kadowaki, and J. Giapintzakis, Nature 382, 51 (1996).

    Article  ADS  Google Scholar 

  93. M. R. Norman, H. Ding, M. Randeria, J. C. Campuzano, T. Yokoya, T. Takeuchi, T. Takahashi, T. Mochiku, K. Kadowaki, P. Guptasarma, and D. G. Hinks, Nature 392, 157 (1998).

    Article  ADS  Google Scholar 

  94. M.R. Presland, J.L. Tallon, R.G. Buckley, R.S. Liu, and N.E. Flower, Physica C 176, 95 (1991).

    Article  ADS  Google Scholar 

  95. D.L. Feng, D.H. Lu, K.M. Shen, C. Kim, H. Eisaki, A. Damascelli, R. Yoshizaki, J.-I. Shimoyama, K. Kishio, G.D. Gu, S. Oh, A. Andrus, J. O’Donell, J.N. Eckstein, Z.-X. Shen, Science 289, 277 (2000).

    Article  ADS  Google Scholar 

  96. H. Ding, J.R. Engelbrecht, Z. Wang, J.C. Campuzano, S.-C. Wang, H.-B. Yang, R. Rogan, T. Takahashi, K. Kadowaki, and D. G. Hinks, Phys. Rev. Lett. 87, 227001 (2001).

    Article  ADS  Google Scholar 

  97. Y. J. Uemura, G. M. Luke, B. J. Sternlieb, J. H. Brewer, J. F. Carolan, W. N. Hardy, R. Kadono, J. R. Kempton, R. F. Kiefl, S. R. Kreitzman, P. Mulhern, T. M. Riseman, D. L. Williams, B. X. Yang, S. Uchida, H. Takagi, J. Gopalakrishnan, A. W. Sleight, M. A. Subramanian, C. L. Chien, M. Z. Cieplak, G. Xiao, V. Y. Lee, B. W. Statt, C. E. Stronach, W. J. Kossler, X. H. Yu, Phys. Rev. Lett. 62, 2317 (1989).

    Article  ADS  Google Scholar 

  98. For a review, see: P. A. Lee, Normal state properties of the oxide superconductors: a review, in High Temperature Superconductivity, ed. K. S. Bedell, D. Coffey, D. E. Meitzer, D. Pines, J. R. Schrieffer, p. 96–116 (Addison-Wesley, New York, 1990).

    Google Scholar 

  99. M. Randeria, N. Trivedi, A. Moreo, and R.T. Scalettar, Phys. Rev. Lett. 69, 2001 (1992); N. Trivedi and M. Randeria, Phys. Rev. Lett. 75, 312 (1995).

    Article  ADS  Google Scholar 

  100. V. Emery and S. Kivelson, Nature 374, 434 (1995).

    Article  ADS  Google Scholar 

  101. G. Baskaran, Z. Zou and P. W. Anderson, Solid St. Comm. 63, 973 (1987); G. Kotliar and J. Liu, Phys. Rev. B 38, 5142 (1988); H. Fukuyama, Prog. Theor. Phys. Suppl. 108, 287 (1992).

    Article  ADS  Google Scholar 

  102. P. A. Lee and X. G. Wen, Phys. Rev. Lett. 76, 503 (1996) and Phys. Rev. B 63, 224517 (2001).

    Article  ADS  Google Scholar 

  103. J. Tallon and J. Loram, Physica C 349, 53 (2001).

    Article  ADS  Google Scholar 

  104. S. Chakravarty, R. B. Laughlin, D. K. Morr and C. Nayak, Phys. Rev. B 63, 094503 (2001).

    Article  ADS  Google Scholar 

  105. C. M. Varma, Phys. Rev. Lett. 83, 3538 (1999).

    Article  ADS  Google Scholar 

  106. A. Kaminski, S. Rosenkranz, H. Fretwell, J. C. Campuzano, Z. Li, H. Raffy, W. G. Cullen, H. You, C. G. Olson, H. Hoechst, Nature 416, 610 (2002).

    Article  ADS  Google Scholar 

  107. S. H. Pan, J. P. O’Neal, R. L. Badzey, C. Chamon, H. Ding, J. R. Engelbrecht, Z. Wang, H. Eisaki, S. Uchida, A. K. Gupta, K.-W. Ng, E. W. Hudson, K. M. Lang, J. C. Davis, Nature 413, 282 (2001).

    Article  ADS  Google Scholar 

  108. L. Perfetti, C. Rojas, A. Reginelli, L. Gavioli, H. Berger, G. Margaritondo, M. Grioni, R. Gaal, L. Forro, F. Rullier Albenque, Phys. Rev. B 64, 115102 (2001).

    Article  ADS  Google Scholar 

  109. M. R. Norman, H. Ding, H. Fretwell, M. Randeria, and J. C. Campuzano, Phys. Rev. B 60, 7585 (1999).

    Article  ADS  Google Scholar 

  110. M. R. Norman, A. Kaminski, J. Mesot, J. C. Campuzano, Phys. Rev. B 63, 140508 (2001).

    Article  ADS  Google Scholar 

  111. M. R. Norman, M. Randeria, H. Ding, and J. C. Campuzano, Phys. Rev. B 57, R11093 (1998).

    Article  ADS  Google Scholar 

  112. D.S. Dessau, B.O. Wells, Z.-X. Shen, W.E. Spicer, A.J. Arko, R.S. List, D.B. Mitzi, and A. Kapitulnik, Phys. Rev. Lett. 66, 2160 (1991); D.S. Dessau, Z.-X. Shen, B.O. Wells, D. M. King, W.E. Spicer, A.J. Arko, L. W. Lombardo, D.B. Mitzi, and A. Kapitulnik, Phys. Rev. B 45, 5095 (1992).

    Article  ADS  Google Scholar 

  113. Q. Huang, J.F. Zasadzinski, K.E. Gray, J.Z. Liu, and H. Claus, Phys. Rev. B 40, 9366 (1989).

    Article  ADS  Google Scholar 

  114. Bilayer splitting is discussed in Section 5.4.5.

    Google Scholar 

  115. Y. Kuroda and C. M. Varma, Phys. Rev. B 42, 8619 (1990).

    Article  ADS  Google Scholar 

  116. S. Engelsberg and J. R. Schrieffer, Phys. Rev. 131, 993 (1963).

    Article  ADS  Google Scholar 

  117. D. J. Scalapino, in Superconductivity, ed. R. D. Parks (Marcel Decker, New York, 1969), Vol 1, p. 449.

    Google Scholar 

  118. Z.-X. Shen and J. R. Schrieffer, Phys. Rev. Lett. 78, 1771 (1997).

    Article  ADS  Google Scholar 

  119. P. B. Littlewood and C. M. Varma, Phys. Rev. B 46, 405 (1992).

    Article  ADS  Google Scholar 

  120. M. R. Norman and H. Ding, Phys. Rev. B 57, R11089 (1998).

    Article  ADS  Google Scholar 

  121. S. M. Quinlan, P. J. Hirschfeld, and D. J. Scalapino, Phys. Rev. B. 53, 8575 (1996).

    Article  ADS  Google Scholar 

  122. J. Rossat-Mignot, L.P. Regnault, C. Vettier, P. Bourges, P. Burlet, J. Bossy, JY. Henry, and G. Lapertot, Physica C 185–189, 86 (1991); H.A. Mook, M. Yethiraj, G. Aeppli, T. E. Mason, T. Armstrong, Phys. Rev. Lett. 70, 3490 (1993); Hung Fai Fong, B. Keimer, P.W. Anderson, D. Reznik, F. Dogan and I.A. Aksay, Phys. Rev. Lett. 75, 316 (1995).

    Article  Google Scholar 

  123. H.F. Fong, P. Bourges, Y. Sidis, L.P. Regnault, A. Ivanov, G.D. Gu, N. Koshizuka, and B. Keimer, Nature 398, 588 (1999).

    Article  ADS  Google Scholar 

  124. Neutron results are reviewed by P. Bourges, in The gap symmetry and fluctuations in high Tc superconductors, ed. au]J. Bok, G. Deutscher, D. Pavuna, and S.A. Wolf (Plenum, New York, 1998), p. 349.

    Google Scholar 

  125. J.F. Zasadzinski, L. Ozyuzer, N. Miyakawa, K.E. Gray, D.G. Hinks, C. Kendziora, Phys. Rev. Lett. 87, 067005 (2001).

    Article  ADS  Google Scholar 

  126. P. Dai, M. Yethiraj, H. A. Mook, T. B. Lindemer, and F. Dogan, Phys. Rev. Lett. 77, 5425 (1996).

    Article  ADS  Google Scholar 

  127. R. Preuss, W. Hanke, C. Grober, and H. G. Evertz, Phys. Rev. Lett. 79, 1122 (1997); J. Schmalian, D. Pines, and B. Stojkovic, ibid. 80, 3839 (1998); X.-G. Wen and P. A. Lee, ibid. 76, 503 (1996).

    Article  ADS  Google Scholar 

  128. E. Dernier and S.-C. Zhang, Phys. Rev. Lett. 75, 4126 (1995).

    Article  ADS  Google Scholar 

  129. P. Dai, H. A. Mook, S. M. Hayden, G. Aeppli, T. G. Perring, R. D. Hunt, and F. Doğan, Science 284, 1344 (1999).

    Article  ADS  Google Scholar 

  130. M. Hengsberger, D. Purdie, P. Segovia, M. Gamier, Y. Baer, Phys. Rev. Lett. 83, 592 (1999); T. Valla, A. V. Fedorov, P. D. Johnson, S. L. Hulbert, ibid., 2085 (1999).

    Article  ADS  Google Scholar 

  131. A. Lanzara, P.V. Bogdanov, X.J. Zhou, S.A. Kellar, D.L. Feng, E.D. Lu, T. Yoshida, H. Eisaki, A. Fujimori, K. Kishio, J.-I. Shimoyama, T. Nöda, S. Uchida, Z. Hussain, and Z.-X. Shen, Nature 412, 510 (2001).

    Article  ADS  Google Scholar 

  132. P.D. Johnson, T. Valla, A.V. Fedorov, Z. Yusof, B.O. Wells, Q. Li, A.R. Moodenbaugh, G.D. Gu, N. Koshizuka, C. Kendziora, Sha Jian, and D.G. Hinks, Phys. Rev. Lett. 87, 177007 (2001).

    Article  ADS  Google Scholar 

  133. M. Eschrig and M. R. Norman, Phys. Rev. Lett. 85, 3261 (2000) and cond-mat/0202083.

    Article  ADS  Google Scholar 

  134. M. Eschrig and M. R. Norman, cond-mat/0206544.

    Google Scholar 

  135. A. D. Gromko, A. V. Federov, Y.-D. Chuang, J. D. Koralek, Y. Aiura, Y Yamaguchi, K. Oka, Y. Ando, D. S. Dessau, cond-mat/0202329; A. D. Gromko, Y.-D. Chuang, A. V. Federov, Y. Aiura, Y. Yamaguchi, K. Oka, Y. Ando, D. S. Dessau, cond-mat/0205385.

    Google Scholar 

  136. M. R. Norman, M. Randeria, B. Janko, J. C. Campuzano, Phys. Rev. B 61, 14742 (2000).

    Article  ADS  Google Scholar 

  137. J. C. Campuzano, H. Ding, H. Fretwell, J. Mesot, A. Kaminski, T. Sato, T. Takahashi, T. Mochiku, and K. Kadowaki, cond-mat/9811349.

    Google Scholar 

  138. A. Bansil and M. Lindroos, Phys. Rev. Lett. 83, 5154 (1999).

    Article  ADS  Google Scholar 

  139. M. R. Norman and C. Pepin, Phys. Rev. B 66, 100506 (2002).

    Article  ADS  Google Scholar 

  140. H. J. A. Molegraaf, C. Presura, D. van der Marel, P. H. Kes, M. Li, Science 295, 2239 (2002); A. F. Santander-Syro, R. P. S. M. Lobo, N. Bontemps, Z. Konstantinovic, Z. Z. Li, H. Raffy, cond-mat/0111539.

    Article  ADS  Google Scholar 

  141. P. W. Anderson, Phys. Rev. B 42, 2624 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Campuzano, J.C., Norman, M.R., Randeria, M. (2004). Photoemission in the High-T c Superconductors. In: Bennemann, K.H., Ketterson, J.B. (eds) The Physics of Superconductors. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18914-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18914-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62352-3

  • Online ISBN: 978-3-642-18914-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics