Advertisement

Universal Properties of Cuprate Superconductors: Evidence and Implications

  • Toni Schneider
Chapter

Abstract

Establishing and understanding the phase diagram of cuprate superconductors in the temperature — dopant concentration plane is one of the major challenges in condensed matter physics. Superconductivity is derived from the insulating and antiferromagnetic parent compounds by partial substitution of ions or by adding or removing oxygen. For instance La2CuO4 can be doped either by alkaline earth ions or oxygen to exhibit superconductivity. The empirical phase diagram of La2−x Sr x CuO4 [1, 2, 3, 4, 5, 6, 7, 8, 9] depicted in Fig. 4.1 shows that after passing the so called underdoped limit (x u ≈ 0.047), T c reaches its maximum value T c m at x m ≈ 0.16. With further increase of x, T c decreases and finally vanishes in the overdoped limit x o ≈ 0.273. This phase transition line is thought to be a generic property of cuprate superconductors [10] and is well described by the empirical relation
$$ T_c (x) = T_c (xm)\left( {1 - 2\left( {\frac{x} {{xm}} - 1} \right)^2 } \right) = \frac{{2T_c (xm)}} {{x_m^2 }}(x - x_u )(x_o - x) $$
(4.1)
proposed by Presland et al. [11], with x m = 0.16. Approaching the endopints along the axis x, La2−x Sr x CuO4 undergoes at zero temperature doping tuned quantum phase transitions. As their nature is concerned, resistivity measurements reveal a quantum superconductor to insulator (QSI) transition in the underdoped limit [3, 12, 13, 14, 15] and in the overdoped limit a quantum superconductor to normal state (QSN) transition [15].
Fig. 4.1

Variation of T c (open circles [1]–[9] and γ T with x for La2−x Sr x CuO4. Filled circles correspond 1/γT c to [1], [2], [4], [6], [7] and filled triangles to 1/γ T=0 [8], [9]. The solid curve is Eq. (4.1) with T c m = 39K. The dashed and dotted lines follow from Eq. (4.2) with γT c ,0=2 and γT=0,0 = 1.63

Keywords

Correlation Length Critical Behavior Universal Property Quantum Phase Transition Quantum Critical Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Suzuki and M. Hikita, Phys. Rev. B 44, 249 (1991).ADSGoogle Scholar
  2. 2.
    Y. Nakamura and S. Uchida, Phys. Rev. B 47, 8369 (1993)).ADSGoogle Scholar
  3. 3.
    Y. Fukuzumi, K. Mizuhashi, K. Takenaka, and S. Uchida, Phys. Rev. Lett. 76, 684 (1996).ADSGoogle Scholar
  4. 4.
    M. Willemin, C. Rossel, J. Hofer, H. Keller, and A. Revcolevschi, Phys. Rev. B 59, 717 (1999).ADSGoogle Scholar
  5. 5.
    T. Kimura, K. Kishio, T. Kobayashi, Y. Nakayama, N. Motohira, K. Kitazawa, and K. Yamafuji, Physica C 192, 247 (1992).ADSGoogle Scholar
  6. 6.
    T. Sasagawa, Y. Togawa, J. Shimoyama, A. Kapitulnik, K. Kitazawa, and K. Kishio, Phys. Rev. B 61, 1610 (2000).ADSGoogle Scholar
  7. 7.
    J. Hofer, T. Schneider, J.M. Singer, M. Willemin, H. Keller, T. Sasagawa, K. Kishio, K. Conder, and J. Karpinski, Phys. Rev. B 62, 631 (2000).ADSGoogle Scholar
  8. 8.
    T. Shibauchi, H. Kitano, K. Uchinokura, A. Maeda, T. Kimura, and K. Kishio, Phys. Rev. Lett. 72, 2263 (1994).ADSGoogle Scholar
  9. 9.
    C. Panagopoulos, J.R. Cooper, T. Xiang, Y.S. Wang, and C.W. Chu, Phys. Rev. B 61, 3808 (2000).ADSGoogle Scholar
  10. 10.
    J. L. Tallon, C. Bernhard, H. Shaked, R.L. Hitterman, and J.D. Jorgensen, Phys. Rev. B 51, 12911 (1995).ADSGoogle Scholar
  11. 11.
    M.R. Presland, J.L. Tallon, R.G. Buckley, R.S. Liu, and N.E. Flower, Physica C 176, 95 (1991).ADSGoogle Scholar
  12. 12.
    T. Schneider, Acta Physica Polonica A 91, 203 (1997).Google Scholar
  13. 13.
    T. Schneider and J. M. Singer, Phase Transition Approach To High Temperature Superconductivity, Imperial College Press, London, (2000).Google Scholar
  14. 14.
    T. Schneider and J.M. Singer, J. Supercond. 13, 789(2000).Google Scholar
  15. 15.
    N. Momono, M. Ido, T. Nakano, M. Oda, Y. Okajima, and K. Yamaya, Physica C 233, 395 (1994).ADSGoogle Scholar
  16. 16.
    L. Onsager, Phys. Rev. 65, 117 (1944).MathSciNetADSzbMATHGoogle Scholar
  17. 17.
    J. Hofer, J. Karpinski, M. Willemin, G.I. Meijer, E.M. Kopnin, R. Molinski, H. Schwer, C. Rossel, and H. Keller, Physica C 297, 103 (1998).ADSGoogle Scholar
  18. 18.
    G. Xiao, M.Z. Cieplak, J.Q. Xiao, and C.L. Chien, Phys. Rev. B 42, 8752 (1990).ADSGoogle Scholar
  19. 19.
    J.M. Tarascon, E. Wang, S. Kivelson, B.G. Bagley, G.W. Hull, and R. Ramesh, Phys. Rev. B 42, 218 (1990).ADSGoogle Scholar
  20. 20.
    S. Watauchi, H. Ikuta, H. Kobayashi, J. Shimoyama, and K. Kishio, Phys. Rev. B 64, 64520 (2001).ADSGoogle Scholar
  21. 21.
    T.R. Chien, W.R. Datars, B.W. Veal, A.P. Paulikas, P. Kostic, C. Gu, and Y. Jiang, Physica C 229, 273 (1994).ADSGoogle Scholar
  22. 22.
    T.R. Chien, W.R. Datars, M.D. Lan, J.Z. Liu, and R.N. Shelton, Phys. Rev. B 49, 1342 (1994).ADSGoogle Scholar
  23. 23.
    T.R. Chien, W.R. Datars, J.Z. Liu, M.D. Lan, and R.N. Shelton, Physica C 221, 428 (1994).ADSGoogle Scholar
  24. 24.
    X.F. Sun, X. Zhao, X.-G. Li, and H.C. Ku, Phys. Rev. B 59, 8978 (1999).ADSGoogle Scholar
  25. 25.
    C. Panagopoulos, J.R. Cooper, N. Athanassopoulou, and J. Chrosch, Phys. Rev. B 54, 12721 (1996).ADSGoogle Scholar
  26. 26.
    Guo-Meng Zhao et al., unpublished.Google Scholar
  27. 27.
    G. Blatter, M.V. Feigel’man, V.B. Geshkenbein, A.I. Larkin, and V.M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).ADSGoogle Scholar
  28. 28.
    See, e.g., T. Schneider, G.I. Meijer, J. Perret, J.-P. Locquet, and P. Martinoli, Phys. Rev. B 63, 144527 (2001).ADSGoogle Scholar
  29. 29.
    Y. Ando, G.S. Boebinger, A. Passner, T. Kimura, and K. Kishio, Phys. Rev. Lett. 75, 4662 (1995).ADSGoogle Scholar
  30. 30.
    G.S. Boebinger, Y. Ando, A. Passner, T. Kimura, M. Okuya, J. Shimoyama, K. Kishio, K. Tamasaku, N. Ichikawa, and S. Uchida, Phys. Rev. Lett. 77,5417 (1996).ADSGoogle Scholar
  31. 31.
    K. Segawa and Y. Ando, Phys. Rev. B 59, 3948 (1999).ADSGoogle Scholar
  32. 32.
    S. Ono, Y. Ando, T. Murayama, F.F. Balakirev, J.B. Betts, and G.S. Boebinger, Phys. Rev. Lett. 85, 638 (2000).ADSGoogle Scholar
  33. 33.
    R. G. Goodrich, P..W. Adams, H. Lowndes and D. P. Norton, Phys. Rev. B 56, 14299 (1997).ADSGoogle Scholar
  34. 34.
    T. Schneider and D. Ariosa, Z. Phys. B Cond. Mat. 89, 267 (1992).ADSGoogle Scholar
  35. 35.
    T. Schneider and H. Keller, Int. J. Mod. Phys. B 8, 487 (1993).ADSGoogle Scholar
  36. 36.
    M. A. Hubbard et al., Physica C 259, 309 (1996).ADSGoogle Scholar
  37. 37.
    S. Kamal, D.A. Bonn, N. Goldenfeld, P.J. Hirschfeld, R. Liang, and W.N. Hardy, Phys. Rev. Lett. 73, 1845 (1994); S. Kamal, R. Liang, A. Hosseini, D.A. Bonn, and W.N. Hardy, Phys. Rev. B 58, 8933 (1998).ADSGoogle Scholar
  38. 38.
    V. Pasler, P. Schweiss, Ch. Meingast, B. Obst, H. Wuehl, A.I. Rykov, and S. Tajima, Phys. Rev. Lett. 81, 1094 (1998).ADSGoogle Scholar
  39. 39.
    T. Schneider et al., Eur. Phys. J. B 3, 413 (1998).ADSGoogle Scholar
  40. 40.
    T. Schneider and J. M. Singer, Physica C 341–348, 87 (2000).Google Scholar
  41. 41.
    K. Kim and P.B. Weichman, Phys. Rev. B 43, 13583 (1991).ADSGoogle Scholar
  42. 42.
    S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992).ADSGoogle Scholar
  43. 43.
    P. Monthoux and D. Pines, Phys. Rev. B 50, 16015 (1994).ADSGoogle Scholar
  44. 44.
    C. Castellani, C. Di Castro, and M. Grilli, Phys. Rev. Lett. 75, 4650 (1995).ADSGoogle Scholar
  45. 45.
    C. M. Varma, Acta Physica Polonica A 91, 191 (1997).Google Scholar
  46. 46.
    S.C. Zhang, Science 275, 1089 (1997).MathSciNetzbMATHGoogle Scholar
  47. 47.
    S. Kivelson, E. Fradkin and V.J. Emery, Nature 393, 550 (1998).ADSGoogle Scholar
  48. 48.
    M. Randeria, in Proceedings of the tenth International School of Physics “Enrico Fermi” Varenna, edited by G. Iadonisi and J.R. Schrieffer (IOS Press Amsterdam, 1998).Google Scholar
  49. 49.
    S. Caprara, M. Sulpizi, A. Bianconi, C. Di Castro, and M. Grilli, Phys. Rev. B 59, 14980 (1999).ADSGoogle Scholar
  50. 50.
    S. Chakravarty, R.B. Laughlin, D.K. Morr, and Ch. Nayak, Phys. Rev. B 63, 094503 (2001).ADSGoogle Scholar
  51. 51.
    M. Voijta, Y. Zhang and S. Sachdev, Phys. Rev. Lett. 85, 4940 (2000).ADSGoogle Scholar
  52. 52.
    P.W. Anderson, Science 288, 480 (2000).Google Scholar
  53. 53.
    M.P.A. Fisher, G. Grinstein, and S.M. Girvin, Phys. Rev. Lett. 64, 587 (1990).ADSGoogle Scholar
  54. 54.
    I.F. Herbut, Phys. Rev. B 61, 14723 (2000).ADSGoogle Scholar
  55. 55.
    I.F. Herbut, Phys. Rev. Lett. 85, 1532 (2000).ADSGoogle Scholar
  56. 56.
    L.I. Glazman and A.E. Koshelev, Phys. Rev. B 43, 2835 (1991).ADSGoogle Scholar
  57. 57.
    P.C. Hohenberg, A. Aharony, B.I. Halperin, and E.D. Siggia, Phys. Rev. B 13, 2986 (1976).ADSGoogle Scholar
  58. 58.
    D.S. Fisher, M.P.A. Fisher, and D.A. Huse, Phys. Rev. B 43, 130 (1991).ADSGoogle Scholar
  59. 59.
    M.E. Fisher, M.N. Barberm and D. Jasnow, Phys. Rev. A 8, 1111 (1973).ADSGoogle Scholar
  60. 60.
    I.F. Herbut and Z. Tesanovic, Phys. Rev. Lett. 76, 4588 (1996).ADSGoogle Scholar
  61. 61.
    W. F. Vinen, in Superconductivity II, edited by R. D. Parks (Marcel Dekker, INC., New York, 1969).Google Scholar
  62. 62.
    M. Charalambous, O. Riou, P. Gandit, B. Billon, P. Lejay, J. Chaussy, W.N. Hardy, D.A. Bonn, and R. Liang, Phys. Rev. Lett. 83, 2042 (1999).ADSGoogle Scholar
  63. 63.
    E. Schultka and E. Manusakis, Phys. Rev. Lett. 75, 2710 (1995).ADSGoogle Scholar
  64. 64.
    E. S. Bozin, G. H. Kwei, H. Takagi and S. J. L. Billinge, Phys. Rev. Lett. 84, 5856 (2000).ADSGoogle Scholar
  65. 65.
    K. M. Lang, V. Madhavan, J.E. Hoffman, E.W. Hudson, H. Eisaki, S. Uchida, J.C. Davis, cond-mat/0112232.Google Scholar
  66. 66.
    A.W. Hunt, P.M. Singer, A.F. Cederstrom, and T. Imai, cond-mat/0011380.Google Scholar
  67. 67.
    A. Singsaas and G. Ahlers, Phys. Rev. B 30, 5103 (1994).ADSGoogle Scholar
  68. 68.
    S. Mehta et al., J. Low Temp. Phys. 114, 467 (1999).Google Scholar
  69. 69.
    see, e.g. M. Ma, Modern Theory of Critical Phenomena, (Benjamin, Reading, 1976).Google Scholar
  70. 70.
    A. Junod, M. Roulin, B. Revaz, and A. Erb, Physica B 280, 214 (2000).ADSGoogle Scholar
  71. 71.
    S.L. Lee, P. Zimmermann, H. Keller, M. Warden, I.M. Savic, R. Schauwecker, D. Zech, R. Cubitt, E.M. Forgan, P.H. Kes, T.W. Li, A.A. Menovsky, and Z. Tarnawski, Rev. Lett. 71, 3862 (1993).ADSGoogle Scholar
  72. 72.
    A. Schilling, R.A. Fisher, N.E. Phillips, U. Welp, W.K. Kwok, and G.W. Crabtree, Phys. Rev. Lett. 78, 4833 (1997).ADSGoogle Scholar
  73. 73.
    R. Liang, D.A. Bonn, and W.N. Hardy, Phys. Rev. Lett. 76, 835 (1996).ADSGoogle Scholar
  74. 74.
    M. Roulin, A. Junod, and E. Walker, Physica C 296, 137 (1998).ADSGoogle Scholar
  75. 75.
    M. Willemin, A. Schilling, H. Keller, C. Rossel, J. Hofer, U. Welp, W.K. Kwok, R.J. Olsson, and G.W. Crabtree, Phys. Rev. Lett. 81, 4236 (1998).ADSGoogle Scholar
  76. 76.
    A. Schilling, R.A. Fisher, N.E. Phillips, U. Welp, W.K. Kwok, and G.W. Crabtree, Phys. Rev. B 58, 11157 (1998).ADSGoogle Scholar
  77. 77.
    X. Hu, S. Miyashita, and M. Tachiki, Phys. Rev. Lett. 79, 3498 (1997).ADSGoogle Scholar
  78. 78.
    A. K. Nguyen and A. Sudbo, Phys. Rev. B 58, 2802 (1998).ADSGoogle Scholar
  79. 79.
    M. Tinkham, Introduction to Superconductivity (Mc Graw Hill, New York, 1975).Google Scholar
  80. 80.
    L. N. Bulaevskii, Sov. Phys. JETP 37, 1133 (1973).ADSGoogle Scholar
  81. 81.
    V. Ambegaokar and A. Baratoff, Phys. Rev. Lett. 10, 486 (1963).ADSGoogle Scholar
  82. 82.
    G. Deutscher and O. Entin-Wohlman, J. Phys. C 10, L433 (1977).ADSGoogle Scholar
  83. 83.
    P.A. Crowell, F.W van Keuls, and J. R. Reppy, Phys. Rev. B 55, 12620 (1997).ADSGoogle Scholar
  84. 84.
    Y.J. Uemura, V.J. Emery, A.R. Moodenbaugh, M. Suenaga, D.C. Johnston, A.J. Jacobson, J.T. Lewandowski, J.H. Brewer, R.F. Kien, S.R. Kreitzman, G.M. Luke, T. Riseman, C.E. Stronach, W.J. Kossler, J.R. Kempton, X.H. Yu, D. Opie, and H.E. Schone, Phys. Rev. B 38, 909 (1988), Y.J. Uemura, G.M. Luke, B.J. Sternlieb, J.H. Brewer, J.F. Carolan, W.N. Hardy, R. Kadono, J.R. Kempton, R.F. Kiefl, S.R. Kreitzman, P. Mulhern, T.M. Riseman, D. LI. Williams, B.X. Yang, S. Uchida, H. Takagi, J. Gopalakrishnan, A.W. Sleight, M.A. Subramanian, C.L. Chien, M.Z. Cieplak, G. Xiao, V.Y. Lee, B.W. Statt, C.E. Stronach, W.J. Kossler, and X.H. Yu, Rev. Lett. 62, 2317 (1989).ADSGoogle Scholar
  85. 85.
    J. Perret, Thesis, University of Neuchatel (1999).Google Scholar
  86. 86.
    P. Zimmermann, H. Keller, S.L. Lee, I.M. Savic, M. Warden, D. Zech, R. Cubitt, E. M. Forgan, E. Kaldis, J. Karpinski, and C. Krueger, Phys.Rev. B 52, 541 (1995).ADSGoogle Scholar
  87. 87.
    C.L. Seaman, J.J. Neumeier, M.B. Maple, L.P. Le, G.M. Luke, B.J. Sternlieb, Y.J. Uemura, J.H. Brewer, R. Kadono, R.F. Kiefl, S.R. Krietzman, and T.M. Riseman, Phys. Rev. B 42, 6801 (1990).ADSGoogle Scholar
  88. 88.
    T. Schneider and J. M. Singer, Physica C 313, 188 (1999).ADSGoogle Scholar
  89. 89.
    K. Semba and A. Matsuda, Phys. Rev. Lett. 86, 496 (2000).ADSGoogle Scholar
  90. 90.
    G.M. Zhao et al., J. Phys. Condens. Matter 10, 9055 (1998).ADSGoogle Scholar
  91. 91.
    J. Hofer, K. Conder, T. Sasagawa, G. Zhao, M. Willemin, H. Keller, and K. Kishio, Phys. Rev. Lett. 84, 4192 (2000).ADSGoogle Scholar
  92. 92.
    R. Khasanov, A. Shengelaya, K. Conder, E. Morenzoni, I.M. Savic, and H. Keller, cond-mat/0201165.Google Scholar
  93. 93.
    P. Franck et al, Physica C 162–164, 733 ((1989), ibid. 185–189 (1991), Phys. Rev. B 44, 5318 (1991).Google Scholar
  94. 94.
    N. Babushkina, A. Inyushkin, V. Ozhogin, A. Taldenkov, I. Kobrin, T. Vorob’eva, L. Molchanova, L. Damyanets, T. Uvarova, and A. Kuzakov, Physica C 185–189, 901 (1991).Google Scholar
  95. 95.
    H.J. Bornemann and D.E. Morris, Phys. Rev. B 44, 5322 (1991).ADSGoogle Scholar
  96. 96.
    T. Schneider and H. Keller, Phys. Rev. Lett. 86, 4899 (2001).ADSGoogle Scholar
  97. 97.
    S. J. Chen, C.F. Chang, H.L. Tsay, H.D. Yang, and J.-Y. Lin, Phys. Rev. B 58, 14753 (1998).ADSGoogle Scholar
  98. 98.
    G. E. Volovik, JETP Lett. 58, 469 (1993).ADSGoogle Scholar
  99. 99.
    H. Won and K. Maki, Europhys. Lett. 73, 2744 (1995).Google Scholar
  100. 100.
    J.W. Loram et al., 10th Ann. HTS Workshop (World Scientifique 1996) p.341.Google Scholar
  101. 101.
    C. Panagopoulos, B.D. Rainford, J.R. Cooper, W. Lo, J.L. Tallon, J. W. Loram, J. Betouras, Y.S. Wang, and C.W. Chu, Phys. Rev. B 60, 14617 (1999).ADSGoogle Scholar
  102. 102.
    T. Jacobs, S. Sridhar, Q. Li, G.D. Gu, and N. Koshizuka, Phys. Rev. Lett. 75, 4516 (1995).ADSGoogle Scholar
  103. 103.
    A. Shengelaya, CM. Aegerter, S. Romer, H. Keller, P.W. Klamut, R. Dybzinski, B. Dabrowski, I.M. Savic, and J. Klamut, Phys. Rev. B 58, 3457 (1998).ADSGoogle Scholar
  104. 104.
    C. Bernhard, J. L. Tallon, Th. Blasius, A. Golnik, and Ch. Niedermayer, Phys. Rev. Lett. 86, 1614 (2001).ADSGoogle Scholar
  105. 105.
    C. Niedermayer, C. Bernhard, U. Binninger, and H. Glueckler, J.L. Tallon, E.J. Ansaldo, J.I. Budnick, Phys. Rev. Lett. 71, 1764 (1993).ADSGoogle Scholar
  106. 106.
    J. L. Tallon and J. W. Loram, Physica C 349, 53 (2001).ADSGoogle Scholar
  107. 107.
    D.N. Basov, T. Timusk, B. Dabrowski, J.D. Jorgensen, Phys. Rev. B 50, 3511 (1994).ADSGoogle Scholar
  108. 108.
    S. Uchida and K. Tamasaku, Physica C 293, 1 (1997).ADSGoogle Scholar
  109. 109.
    H. Shibata and A. Matsuda, Phys. Rev. B 59, 11672 (1999).ADSGoogle Scholar
  110. 110.
    A. A. Abrikosov and L.P. Gor’kov, Zh. Eksp. Teor. Fiz. 39, 1781 (1969) [Sov.Phys.-JETP 12, 1243 (1961)].Google Scholar
  111. 111.
    J. L. Tallon, C. Bernhard, G.V.M. Williams, and J.W. Loram, Phys. Rev. Lett., 79, 5294 (1997).ADSGoogle Scholar
  112. 112.
    J. L. Tallon, Phys. Rev. B 58, 5956 (1998).ADSGoogle Scholar
  113. 113.
    K. Karpinska, A. Malinowski, M.Z. Cieplak, S. Guha, S. Gershman, G. Kotliar, T. Skoskiewicz, W. Plesiewicz, M. Berkowski, and P. Lindenfeld, Phys. Rev. Lett. 77, 3033 (1996).ADSGoogle Scholar
  114. 114.
    S.V. Dordevic, E.J. Singley, D. N.Basov, S. Komiya, Y. Ando, E. Bucher, C.C. Homes, and M. Strongin, Phys. Rev. B 65, 134511 (2002).ADSGoogle Scholar
  115. 115.
    D.N. Basov, T. Timusk, B. Dabrowski, and J.D. Jorgensen, Phys. Rev. B 50, 3511 (1994).ADSGoogle Scholar
  116. 116.
    C.C. Homes et al., Physica C 254, 1 1995.ADSGoogle Scholar
  117. 117.
    S. Uchida and K. Tamasaku, Physica C 293, 1 1997.ADSGoogle Scholar
  118. 118.
    J. Schutzmann, S. Tajima, S. Miyamoto, and S. Tanaka, Phys. Rev. Lett. 73, 174 (1994).ADSGoogle Scholar
  119. 119.
    C. Bernhard, D. Munzar, A. Wittlin, W. Koenig, A. Golnik, C.T. Lin, M. Klaeser, Th. Wolf, G. Mueller-Vogt, and M. Cardona, Phys. Rev. B 59, 6631 (1999).ADSGoogle Scholar
  120. 120.
    D.N. Basov, H.A. Mook, B. Dabrowski, and T. Timusk, Phys. Rev. B 52, 13141 (1995).ADSGoogle Scholar
  121. 121.
    S. Uchida, K. Tamasaku, and S. Tajima, Phys. Rev. B 53, 14558 (1996).ADSGoogle Scholar
  122. 122.
    J.R. Kirtley, K. A. Moler, G. Villard, and A. Maignan, Phys. Rev. Lett. 81, 2140 (1998).ADSGoogle Scholar
  123. 123.
    D. N. Basov et al., Science 288, 468 (2000).Google Scholar
  124. 124.
    K. A. Moler et al., Science 279, 1193 (1998).ADSGoogle Scholar
  125. 125.
    A.S. Katz, S.I. Woods, E.J. Singley, T.W. Li, M. Xu, D.G. Hinks, R.C. Dynes, and D.N. Basov, Phys. Rev. B 61, 5930 (2000).ADSGoogle Scholar
  126. 126.
    J. R. Cooper et al., Nature 343, 444 (1990).ADSGoogle Scholar
  127. 127.
    T. Motohashi, J. Shimoyama, K. Kitazawa, K. Kishio, K.M. Kojima, S. Uchida, and S. Tajima, Phys. Rev. B 61, 9269 (2000).ADSGoogle Scholar
  128. 128.
    A. Pimenov, A.V. Pronin, A. Loidl, U. Michelucci, A.P. Kampf, S.I. Krasnosvobodtsev, V.S. Nozdrin, and D. Rainer, Phys. Rev. B 62, 9822 (2000).ADSGoogle Scholar
  129. 129.
    P. Garoche et al., Sol. Stat. Comm. 19, 455 (1976).ADSGoogle Scholar
  130. 130.
    L.P. Le, G.M. Luke, B.J. Sternlieb, W.D. Wu, Y.J. Uemura, J.W. Brill, and H. Drulis, Physica C 185–189, 2715 (1991).Google Scholar
  131. 131.
    J.J. Finley and B.S. Deaver, Solid Stat. Commun. 36, 493 (1980).ADSGoogle Scholar
  132. 132.
    P. de Trey et al., J. Low Temp. Phys. 11, 421 (1973).ADSGoogle Scholar
  133. 133.
    K. Onabe et al, J. Phys. Soc. Jap. 45, 50 (1978).ADSGoogle Scholar
  134. 134.
    R. J. Kennedy et al., Can. J. Phys. 62, 776 (1984).ADSGoogle Scholar
  135. 135.
    A.H. Thompson, F.R. Gamble, and R.F. Koehler, Phys. Rev. B 5, 2811 (1972).ADSGoogle Scholar
  136. 136.
    X. Su, F. Zuo, J.A. Schlueter, A.M. Kini, and J.M. Williams, Phys. Rev. B 58, 2944 (1998).ADSGoogle Scholar
  137. 137.
    A. Carrington, I.J. Bonalde, R. Prozorov, R.W. Giannetta, A.M. Kini, J. Schlueter, H.H. Wang, U. Geiser, and J.M. Williams, Phys. Rev. Lett. 83, 4172 (1999).ADSGoogle Scholar
  138. 138.
    T. Shibauchi et al., Phys. Rev. B 55, 11979 (1997).ADSGoogle Scholar
  139. 139.
    M. Dressel, O. Klein, G. Gruener, K.D. Carlson, H.H. Wang, and J.M. Williams, Phys. Rev. B 50, 13603 (1994).ADSGoogle Scholar
  140. 140.
    H. Taniguchi, H. Sato, Y. Nakazawa, and K. Kanoda, Phys. Rev. B 53, 8879 (1996).ADSGoogle Scholar
  141. 141.
    S. Wanka, D. Beckmann, J. Wosnitza, E. Balthes, D. Schweitzer, W. Strunz, and H.J. Keller, Phys. Rev. B 53, 9301 (1996).ADSGoogle Scholar
  142. 142.
    K. Kajita, Y. Nishio, S. Moriyama, W. Sasaki, R. Kato, H. Kobayashi, and A. Kobayashi, Sol. Stat. Comm. 64, 1279 (1987).ADSGoogle Scholar
  143. 143.
    X. Su, F. Zuo, J.A. Schlueter, J.M. Williams, P.G. Nixon, R.W. Winter, and G.L. Gard, Phys. Rev. B 59, 4376 (1999).ADSGoogle Scholar
  144. 144.
    R. Prozorov, R.W. Giannetta, J. Schlueter, A.M. Kini, J. Mohtasham, R.W. Winter, and G.L. Gard, Phys. Rev. B 63, 052506 (2001).ADSGoogle Scholar
  145. 145.
    H. Schwenk, K. Andres, F. Wudl, and E. Aharon-Shalom, Solid State Commun. 45, 767 (1983).ADSGoogle Scholar
  146. 146.
    K. Murata et al., J. Phys. Soc. Jpn. 50, 3529 (1981).ADSGoogle Scholar
  147. 147.
    Y. Maeno et al., Nature 372, 532 (1994).ADSGoogle Scholar
  148. 148.
    K. Yoshida, Y. Maeno, T. Fujita, and S. Nishizaki, Physica C 263, 519 (1996).ADSGoogle Scholar
  149. 149.
    C. Panagopoulos, B.D. Rainford, T. Xiang, C.A. Scott, M. Kambara, and I.H. Inoue, Phys. Rev. B 64, 094514 (2001).ADSGoogle Scholar
  150. 150.
    M. Angst, R. Puzniak, A. Wisniewski, J. Jun, S.M. Kazakov, J. Karpinski, J. Roos, and H. Keller, Phys. Rev. Lett. 88, 167004 (2002).ADSGoogle Scholar
  151. 151.
    D.K. Finnemore, J.E. Ostenson, S.L. Bud’ko, G. Lapertot, and P.C. Canfield, Phys. Rev. Lett. 86, 2420 (2001).ADSGoogle Scholar
  152. 152.
    A.V. Pronin, M. Dressel, A. Pimenov, A. Loidl, I.V. Roshchin, and L.H. Greene, Phys. Rev. B 57, 14416 (1998).ADSGoogle Scholar
  153. 153.
    O. Klein, E.J. Nicol, K. Holczer, and G. Gruener, Phys. Rev. B 50, 6307 (1994).ADSGoogle Scholar
  154. 154.
    E. Goldobin, MYu. Kupriyanov, I.P. Nevirkovets, A.V. Ustinov, M.G. Blamire, and J.E. Evetts, Phys. Rev. B 58, 15078 (1998).ADSGoogle Scholar
  155. 155.
    S.J. Turneaure, Th.R. Lemberger, J.M. Graybeal, Phys. Rev. Lett. 84, 987 (2000).ADSGoogle Scholar
  156. 156.
    Y. Nakazawa, H. Taniguchi, A. Kawamoto, and K. Kanoda, Phys. Rev. B 61, 16295 (2000).ADSGoogle Scholar
  157. 157.
    S. Kawamata et al., J. Low. Temp. Phys. 105, 1721 (1996).ADSGoogle Scholar
  158. 158.
    C. Bergemann, S.R. Julian, A.P. Mackenzie, S. Nishizaki, and Y. Maeno, Phys. Rev. Lett. 84, 2662 (2000), and references therein.ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Toni Schneider
    • 1
  1. 1.Physik-Institut der Universität ZürichSwitzerland

Personalised recommendations