Advertisement

Proximity-Coupled Systems: Quasiclassical Theory of Superconductivity

  • Venkat Chandrasekhar
Chapter

Abstract

Although the physics of normal metals (N) in close proximity to superconductors (S) has been studied extensively for more than thirty years, it is only in the past decade that experiments have been able to probe directly the region close to the NS interface at temperatures far below the transition temperature T c of the superconductor. These experiments have been made possible by the availability of microlithography techniques that enable the fabrication of heterostructure devices with submicron scale features. This size scale is comparable to the relevant physical length scales of the problem, and consequently, a number of new effects have been observed. A variety of systems have been studied, the variation primarily being in the type of normal metal coupled to the superconductor. Canonical normal metals such as copper and gold, semiconductors, insulators, and ferromagnets have been employed. Although a variety of theoretical techniques have been used to describe proximity-coupled systems, the quasiclassical theory of superconductivity [1]–[12] has proved to be a remarkably powerful tool in understanding the microscopic basis for the remarkable effects observed in these systems.

Keywords

Normal Metal Thermal Current Mixed Representation Normal Reservoir Normal Wire 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Eilenberger, Z. Phys 214, 195 (1968).ADSCrossRefGoogle Scholar
  2. 2.
    A. Schmid and G. Schön, J. Low. Temp. Phys. 20, 207 (1972).ADSCrossRefGoogle Scholar
  3. 3.
    G.M. Eliashberg, Zh. Eksp. Teor. Fiz. 61, 1254 (1971), Sov. Phys. JETP 34, 668 (1972).Google Scholar
  4. 4.
    A.I. Larkin and Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 68, 1915 (1976), Sov. Phys. JETP 41, 960 (1976).Google Scholar
  5. 5.
    A.I. Larkin and Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 73, 299 (1977), Sov. Phys. JETP 46, 155 (1978).ADSGoogle Scholar
  6. 6.
    C.-R. Hu, Phys. Rev. B 21, 2775 (1980).ADSCrossRefGoogle Scholar
  7. 7.
    J.W. Serene and D. Rainer, Physics Reports 101, 221 (1983).ADSCrossRefGoogle Scholar
  8. 8.
    G. Schön, in Nonequilibrium Superconductivity, edited by D.N. Langenberg and A.I. Larkin, Elsevier, 1986.Google Scholar
  9. 9.
    A.G. Aronov, Yu.M. Gal’perin, V.L. Gurevich and V.I. Kozub, Nonequilibrium Properties of Superconductors (Transport Equation Approach), in Nonequilibrium Superconductivity, edited by D.N. Langenberg and A.I. Larkin, Elsevier, 1986; Advances in Physics 30, 539 (1981).Google Scholar
  10. 10.
    J. Beyer, C.J. Pethick and J. Rammer, Pair Breaking in Nonequilibrium Superconductors, in Nonequilibrium Superconductivity, edited by D.N. Langenberg and A.I. Larkin, Elsevier, 1986.Google Scholar
  11. 11.
    J. Rammer and H. Smith, Rev. Mod. Phys. 58, 323 (1986).ADSCrossRefGoogle Scholar
  12. 12.
    H. Smith and H.H. Jensen, Transport Phenomena, Clarendon, Oxford, 1989.Google Scholar
  13. 13.
    A.F. Volkov, A.V. Zaitsev and T.M Klapwijk, Physica C 210, 21 (1993).ADSCrossRefGoogle Scholar
  14. 14.
    C.J. Lambert and R. Raimondi, J. Phys.: Condens. Matter 10, 901 (1998).ADSCrossRefGoogle Scholar
  15. 15.
    A.F. Volkov and V.V. Pavlovskii, in Proceedings of the AIP conference: lectures on superconductivity in networks and mesoscopic systems, New York, 1998.Google Scholar
  16. 16.
    A.A. Golubov, F.K. Wilhelm, and A.D. Zaikin, Phys. Rev. B 55, 1123 (1997).ADSCrossRefGoogle Scholar
  17. 17.
    F.K. Wilhelm, A.D. Zaikin and G. Schön, J. Low Temp. Phys. 106, 305 (1997).ADSCrossRefGoogle Scholar
  18. 18.
    W. Beizig, F.K. Wilhelm, C. Bruder, G. Schön and A.D. Zaikin, Superlattices and Microstructures 25, 1251 (1999).ADSCrossRefGoogle Scholar
  19. 19.
    Yu.V. Nazarov, Superlattices and Microstructures 25, 1221 (1999).ADSCrossRefGoogle Scholar
  20. 20.
    K.E. Nagaev, Phys. Lett. A 169, 103 (1992); Phys. Rev. B 52, 4740 (1995).ADSCrossRefGoogle Scholar
  21. 21.
    See, for example, F. Pierre, H. Pothier, D. Esteve, M.H. Devoret, A.B. Gougam, and N.O. Birge, in Kondo effect and dephasing in low-dimensional metallic systems, edited by V. Chandrasekhar, C. Van Haesendonck and A. Zawadowski, NATO Science Series, vol. 11/50, Kluwer Academic Publishers, Dordrecht, 2001.Google Scholar
  22. 22.
    J.M. Ziman, Principles of the theory of solids, 2nd edition, Cambridge University Press, Cambridge, 1972.Google Scholar
  23. 23.
    E.M. Lifshitz and L.P. Pitaevskii, Physical Kinetics, vol. 10 of the Landau and Lifshitz Course of Theoretical Physics, Pergamon Press, Oxford, 1981.Google Scholar
  24. 24.
    L.P. Kadanoff and G. Baym, Quantum Statistical Mechanics, Addison-Wesley, Redwood City, 1962.zbMATHGoogle Scholar
  25. 25.
    J.B. Ketterson and S.N. Song, Superconductivity, Cambridge University Press, Cambridge 1999.Google Scholar
  26. 26.
    A.A. Abrikosov, L.P. Gor’kov and I.E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics, Dover, New York, 1975.Google Scholar
  27. 27.
    M. Tinkham, Phys. Rev. B 6, 1747 (1972).ADSCrossRefGoogle Scholar
  28. 28.
    A.L. Shelankov, J. Low Temp. Phys. 60, 29 (1985).ADSCrossRefGoogle Scholar
  29. 29.
    K.D. Usadel, Phys. Rev. Lett. 25, 507 (1970).ADSCrossRefGoogle Scholar
  30. 30.
    A.V. Zaitsev, Zh. Eksp. Teor. Fiz. 86, 1742 (1984), Sov. Phys. JETP 59, 1015 (1985).Google Scholar
  31. 31.
    M.Yu. Kuprianov and V.F. Lukichev, Zh. Eksp. Teor. Fiz. 94, 139 (1988), Sov. Phys. JETP 67, 1163 (1988).Google Scholar
  32. 32.
    B.L. Altshuler, P.A. Lee and R.A. Webb, Mesoscopic Phenomena in Solids, North-Holland, Amsterdam, 1991.Google Scholar
  33. 33.
    See, for example, P. Charlat, H. Courtois, Ph. Gandit, D. Mailly, A.F. Volkov and B. Pannetier, Phys. Rev. Lett. 77, 4950 (1996).ADSCrossRefGoogle Scholar
  34. 34.
    P.G. de Gennes, Superconductivity of Metals and Alloys, Addison-Wesley, Redwood City, 1966.zbMATHGoogle Scholar
  35. 35.
    S. Gueron, H. Pothier, N.O. Birge, D. Esteve, and M.H. Devoret, Phys. Rev. Lett. 77, 3025 (1996).ADSCrossRefGoogle Scholar
  36. 36.
    A.F. Andreev, Zh. Eksp. Teor. Fiz. 46, 1823 (1964), Sov. Phys. JETP 19, 1228 (1964).Google Scholar
  37. 37.
    J.M. Martinis, G.C. Hilton, K.D. Irwin and D.A. Wollman, Nuclear Instruments and Methods in Physics Research A 444, 23 (2000).ADSCrossRefGoogle Scholar
  38. 38.
    S. Gueron, PhD thesis, Universite Paris 6, (1997).Google Scholar
  39. 39.
    S.-K. Yip, Phys. Rev. B 58, 5803 (1998).ADSCrossRefGoogle Scholar
  40. 40.
    F.K. Wilhelm, G. Schön and A.D. Zaikin, Phys. Rev. Lett. 81, 1682 (1998).ADSCrossRefGoogle Scholar
  41. 41.
    J.J.A. Baselmans, A.F. Morpugo, B.J. van Wees and T.M Klapwijk, Nature 397, 43 (1999).ADSCrossRefGoogle Scholar
  42. 42.
    H. Pothier, S. Gueron, D. Esteve, and M.H. Devoret, Phys. Rev. Lett. 73, 2488 (1994).ADSCrossRefGoogle Scholar
  43. 43.
    V.T. Petrashov, V.N. Antonov, P. Delsing, and T. Claeson, Phys. Rev. Lett. 74, 5268 (1995).ADSCrossRefGoogle Scholar
  44. 44.
    S.G. den Hartog, B.J. van Wees, T.M. Klapwijk, Yu.V. Nazarov and G. Borghs, Phys. Rev. B 56, 13738 (1997).ADSCrossRefGoogle Scholar
  45. 45.
    J. Eom, C-J Chien and V. Chandrasekhar, Phys. Rev. Lett. 81, 437 (1998).ADSCrossRefGoogle Scholar
  46. 46.
    F. Wilhelm, PhD thesis, Universität Karlsruhe, 2000.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Venkat Chandrasekhar
    • 1
  1. 1.Dept. of Physics and AstronomyNorthwestern UniversityEvanstonUSA

Personalised recommendations