Superfluid 3He and the Cuprate Superconductors

  • A. J. Leggett


This chapter is devoted to a comparison of two apparently very different physical systems, superfluid liquid 3He and the cuprate superconductors. What these two systems have in common-at least according to almost universal belief-is that they are systems of Fermi particles, already very degenerate, in which not only are the “quasi-dielectronic molecules” which we call Cooper pairs formed, but once formed are automatically forced to occupy a single two-particle state, as regards both their center-of-mass motion and their internal structure. This phenomenon is very reminiscent of the phenomenon of Bose condensation which is almost universally believed to occur in the boson system liquid 4He below the λ-point, and has in the last few years been spectacularly demonstrated in a second Bose system, trapped ultracold monatomic alkali gases. It is therefore appropriate to start this chapter with a brief discussion of the more easily understood phenomenon of simple Bose condensation and its relationship to the apparently more complex behavior associated with Cooper pairing in degenerate Fermi systems.


Cooper Pair Fermi Liquid Bose Condensation Cuprate Superconductor Spin Susceptibility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.J. Leggett, Rev. Mod. Phys. 73, 307 (2001).ADSCrossRefGoogle Scholar
  2. 2.
    O. Penrose and L. Onsager, Phys. Rev. 104, 576 (1956).ADSzbMATHCrossRefGoogle Scholar
  3. 3.
    P. Gavoret and P. Nozières, Ann. Phys. 28, 349 (1964).ADSCrossRefGoogle Scholar
  4. 4.
    C.N. Yang, Rev. Mod. Phys. 34, 694 (1952).ADSCrossRefGoogle Scholar
  5. 5.
    A.J. Leggett, in Electron, ed. M. Springford, Cambridge University Press, Cambridge 1997.Google Scholar
  6. 6.
    A.J. Leggett, in Bose-Einstein Condensation, ed. A. Griffin, D.W. Snoke, and S. Stringain, Cambridge University Press, Cambridge 1995.Google Scholar
  7. 7.
    W.F. Vinen, in R. D. Parks, ed., Superconductivity, (Marcel Dekker, New York 1969), Vol. II., p. 1167.Google Scholar
  8. 8.
    L.D. Landau, Zh. Eksp. Teor. Fiz. 30, 1058 (1956): translation, Soviet Physics JETP 3, 920 (1957).Google Scholar
  9. 9.
    D. Vollhardt and P. Wölfle, The Superfluid Phases of 3 He, Taylor and Francis, London (1990).Google Scholar
  10. 10.
    V.P. Silin, Zh. Eksp. Teor. Fiz. 33, 495 (1957): translation, Soviet Physics JETP 6, 387 (1958).Google Scholar
  11. 11.
    B.L. Jones and J.W. McClure, Phys. Rev. 143, 133 (1966).MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    G.S. Boebinger et al., Phys. Rev. Letters 77, 5417 (1996).ADSCrossRefGoogle Scholar
  13. 13.
    T. Timusk and D.B. Tanner, in D.M. Ginsberg (ed.), Physical Properties of High-Temperature Superconductors, Vol. I. (World Scientific, Singapore 1989), p. 339.Google Scholar
  14. 14.
    M.J. Holcomb, C.L. Perry, J.P. Collman and W.A. Little, Phys. Rev. B53, 6739 (1996).Google Scholar
  15. 15.
    M. Rübhausen, A. Gozar, M.V. Klein, P. Guptasarma and D.G. Hinks, Phys. Rev. B63, 224514 (2001).CrossRefGoogle Scholar
  16. 16.
    H.J. Molegraaf, C. Presura, D. van der Marel, P.H. Kes and M. Li, Science 295 2239 (2002).ADSCrossRefGoogle Scholar
  17. 17.
    D. Pines and P. Nozières, The Theory of Quantum Liquids, W.A. Benjamin, New York 1966.Google Scholar
  18. 18.
    A.J. Leggett, Phys. Rev. 140 A, 1869 (1965).MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    J.C. Wheatley, Revs. Mod. Phys. 47, 415 (1975).ADSCrossRefGoogle Scholar
  20. 20.
    P.W. Anderson and P. Morel, Phys. Rev. 123, 1911 (1961).MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    P.W. Anderson and W.F. Brinkman, Phys. Rev. 30, 1108 (1973).ADSGoogle Scholar
  22. 22.
    J.W. Serene and D. Rainer, Phys. Rep. 101, 221 (1983).ADSCrossRefGoogle Scholar
  23. 23.
    M. Chiao, R.W. Hill, C. Lupien, L. Taillaer, P. Lambert, R. Gagnon and P. Fournier, Phys. Rev. B62, 3554 (2000).ADSCrossRefGoogle Scholar
  24. 24.
    A.C. Durst and P.A. Lee, Phys. Rev. B 62, 1270 (2000).ADSCrossRefGoogle Scholar
  25. 25.
    M. Randeria and N. Trivedi, J. Phys. Chem. Solids 59, 1754 (1998).ADSCrossRefGoogle Scholar
  26. 26.
    J.P. Bouchand and C. Lhuillier, Z. Phys. B 75, 283 (1989).ADSCrossRefGoogle Scholar
  27. 27.
    C.C. Tsuei and J.R. Kirtley, Rev. Mod. Phys. 72, 969 (2000).ADSCrossRefGoogle Scholar
  28. 28.
    J.F. Annett, N. D. Goldenfeld and A.J. Leggett, in D.M. Ginsberg, ed., Physical Properties of High Temperature Superconductors, World Scientific, Vol. V, Singapore 1996.Google Scholar
  29. 29.
    A.J. Leggett, Rev. Mod. Phys. 47, 331 (1975).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • A. J. Leggett
    • 1
  1. 1.Department of PhysicsUniversity of IllinoisUSA

Personalised recommendations