Advertisement

Recent Developments

  • K. H. Bennemann
  • J. B. Ketterson
Chapter

Abstract

In 1911 Kamerling-Onnes discovered superconductivity in mercury at 4.2K, in 1933 the fundamental Meissner-Ochsenfeld effect (j s A) has been discovered and in 1957 Bardeen, Cooper, Schrieffer explained superconductivity using an electronic theory as resulting from the electron-phonon coupling (B.C.S.-theory). In many metals this interaction caused singlet Cooperpairing (k ↑, −k ↓) of electrons within an energy-shell of the order of 2ω D around the Fermi-energy ε F (ω D = Debye energy). The resultant superconductivity was described by an order-parameter Δ k having s-symmetry (Δ k = Δ). Most metals exhibited superconductivity below a relatively low transition-temperature T c and T c ≤ 20K [1]. In Fig. 1.1 we illustrate the occurence of superconductivity in the periodic table.
Fig. 1.1

The occurrence of superconductivity in the periodic table is illustrated. Clearly as the history of superconductivity shows alloys and compounds of the elements play a most important role

Keywords

External Magnetic Field Superconducting State Quantum Critical Point Conventional Superconductor Granular Superconductor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.D. Parks: Superconductivity, Vol 1,2 (Marcel Dekker Inc., New York, 1969); J.R. Schrieffer: Theory of Superconductivity (Benjamin, New York, 1964).Google Scholar
  2. 2.
    J.G. Bednorz and K.A Müller, Z. Phys. B 64 189 (1986); K.H Bennemann and J.B. Ketterson: The Physics of Superconductors, Vol. 1 (Springer, 2002).ADSCrossRefGoogle Scholar
  3. 3.
    Y. Maeno et al, Nature 372, 532 (1994); T.M. Rice, Nature 396, 627 (1998); Y. Maeno, T.M. Rice, M. Sigrist, Physics Today 54, 42, Physica C 341–348 695 (2000).ADSCrossRefGoogle Scholar
  4. 4.
    J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature 410 63 (2001); D.K. Finnemore, J.E. Ostenson, S.L. Bud’ko, G. Lapertot, and P.C. Canfield, Phys. Rev. Lett. 86 2420 (2001).ADSCrossRefGoogle Scholar
  5. 5.
    M. Vojta, Phys. Bl. 55, March 2002; S. Sachdev: Quantum Phase Transitions (Cambridge Univ. Press, 1999); J. Flouquet and A. Buzdin, Phys. World 15 41(2002).Google Scholar
  6. 6.
    W. Belzig and C. Bruder, Phys. Bl. 56 (No.5) 35 (2000); C.W.J. Beenakker, in Mesocopic Quantum Physics (North Holland, Amsterdam 1995); B. Mühschlegel, Surface Rev. and Lett. 3 (No.l) 115 (1996), W.P. Halperin, Rev. Mod. Phys. 58, 533 (1986); B. Janko, L. Smith, V. Ambegaokar, Phys. Rev. B 50, 1152; M.T. Tuominen, J.M. Hergenrother, T.S. Tighe, and M. Tinkham, Phys Rev. Lett. 69 (1992) 1997; Mesoscopic Superconductivity Physica B 203, 201 (1994); Y. Imry: Introduction to Mesoscopic Physics (Oxford Univ. Press, 1997); B.L. Altshuler et al.: Mesoscopic Phenomena in Solids (North Holland, Amsterdam 1991).Google Scholar
  7. 7.
    J.P. Carbotte and F. Marsiglio, in The Physics of Superconductors (Edts. K. Bennemann, J. Ketterson, Springer 2002).Google Scholar
  8. 8.
    B.D. Josephson, Phys. Lett 1 251 (1962); P.W. Anderson in Lectures on Many Body Problem (Edt. E.R. Caionello, Academic Press, New York 1964).ADSzbMATHCrossRefGoogle Scholar
  9. 9.
    H.J. Choi, D. Roundy, H. Sun, M.L. Cohen, and S.G. Louie, Nature 418, 758 (2002).ADSCrossRefGoogle Scholar
  10. 10.
    D. Manske, I. Eremin, and K.H. Bennemann, Phys. Rev. B 62, 13922 (2000).ADSCrossRefGoogle Scholar
  11. 11.
    D. Manske, I. Eremin, and K.H. Bennemann, in The Physics of Superconductors, Vol 2 (Springer 2003).Google Scholar
  12. 12.
    A. Mackenzie, Y. Maeno and S. Julian, Phys. World 15 (No4) 33 (2002).Google Scholar
  13. 13.
    I. Eremin, D. Manske and K.H. Bennemann, Phys. Rev. B 65, 220502(R).Google Scholar
  14. 14.
    H.R. Ott in The Physics of Superconductors Vol.1 (Edts. K.H. Bennemann, J.B. Ketterson, Springer 2002).Google Scholar
  15. 15.
    L. Degiorgi, Rev. Mod. Phys. 71 687 (1999); F. Steglich et al. J. Phys. Chem. Sol. 59, 2190 (1998); M.B. Maple, Physica C 341–348, 47 (2000); C.R. Stewart, Rev. of Mod. Physics 73, 797 (2001); R. Joynt and L. Taillefer, Rev. Mod. Phys. 74, 235 (2002).ADSCrossRefGoogle Scholar
  16. 16.
    A.I. Larkin, Yu.N. Ovchinnikov, JETP 20, 762 (1965).MathSciNetGoogle Scholar
  17. 17.
    J. Singleton and C. Mielke, Phys. World 15 (Nol) 35 (2002), T. Ishiguo et al.: Organic Superconductors (Springer 1998), M. Lang in The Physics of Superconductors Vol.2 (Edt. K.H. Bennemann, J.B. Ketterson, Springer 2003).Google Scholar
  18. 18.
    J.W. Garland, K.H. Bennemann, F.M. Mueller, Phys. Rev. Lett. 21, 1315 (1968); W. Buckel, and R. Hilsch, Z. Phys. 138, 109 (1954).ADSCrossRefGoogle Scholar
  19. 19.
    J.B. Ketterson and S.N. Long: Superconductivity (Cambridge Univ. Press 1999).Google Scholar
  20. 20.
    F.S. Nogueira and K.H. Bennemann, to be published cond-mat/0302528Google Scholar
  21. 21.
    L.B. Ioffe and M.V. Feigerman, cond-mat /0203011; B. Doucot, M.V. Feigel’man and L.B. Ioffe, Phys. Rev. Lett. 90, 107003 (2003).Google Scholar
  22. 22.
    I. Baladić, A. Buzdin, N. Ryzhanova and A. Vedyayev, Phys. Rev. B 63, 54518 (2001); Y. Asano, Y. Tanaka, M. Sigrist, and S. Kashiwaya, cond-mat /0212353vl.ADSCrossRefGoogle Scholar
  23. 23.
    K.H. Bennemann, Z. Physik 260, 367 (1973).ADSCrossRefGoogle Scholar
  24. 24.
    T. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R.A. Dilanian, and T. Sasaki, Nature 422, 53 (2003).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • K. H. Bennemann
    • 1
  • J. B. Ketterson
    • 2
  1. 1.Dept. of PhysicsFreie Universität BerlinGermany
  2. 2.Dept. of Physic and Astronomy Northwestern UniversityEvanstonUSA

Personalised recommendations