Advertisement

Numerische Methoden

  • B. A. T. Petersson

Zusammenfassung

Numerische Akustik — ein kummervolles Konzept! Es ist nicht eine Frage von Supercomputern, vielmehr besteht die Aufgabe darin, das Wissen über diesen Zweig der klassischen Physik — die Akustik — in quantitative Resultate zu übersetzen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 3.1
    Zienkiewicz OC (1977) The Finite Element Method. 3rd edn. MacGraw-Hill, LondonzbMATHGoogle Scholar
  2. 3.2
    Bathe K-J, Wilson EL (1976) Numerical methods in Finite Element Method Analysis. Prentice-Hall, Englewood Cliffs, NJ (USA)Google Scholar
  3. 3.3
    Bathe K-J (1982) Finite Element procedures in engineering analysis. Prentice-Hall, Englewood Cliffs, NJ (USA)Google Scholar
  4. 3.4
    Huebner KH (1975) The Finite Element Method for engineers. Wiley, New YorkGoogle Scholar
  5. 3.5
    Lysmer J, Kuhlemeyer RL (1969) Finite dynamic model for infinite media. Proc. ASCE 95, 859–876Google Scholar
  6. 3.6
    Bettess P (1980) More on Finite Elements. Int. J. Numerical Methods in Engineering 15, 1613–1626MathSciNetzbMATHCrossRefGoogle Scholar
  7. 3.7
    Lazan B (1968) Damping of materials and members in structural mechanics. Pergamon Press, New YorkGoogle Scholar
  8. 3.8
    Nashif AD, Jones DIG, Henderson JP (1985) Vibration damping. Wiley, New YorkGoogle Scholar
  9. 3.9
    Bishop RED, Gladwell GML, Michaelson S (1965) The matrix analysis of vibration. Cambridge University Press, Cambridge (England)zbMATHGoogle Scholar
  10. 3.10
    Gourlay AR, Watson GA (1973) Computational methods for matrix eigenproblems. Wiley, Chichester (GB)Google Scholar
  11. 3.11
    Jennings A (1977) Matrix computation for engineers and scientists. Wiley, Chichester (GB)zbMATHGoogle Scholar
  12. 3.12
    Vermeulen R, de Jong C (2001) Hybrid modelling of machine foundations. Proc. Inter-Noise, Den Haag (Niederlande)Google Scholar
  13. 3.13
    Brebbia CA (1978) The Boundary Element Method for engineers. Pentech Press, LondonGoogle Scholar
  14. 3.14
    Schenk HA (1968) Improved integral formulation of acoustic radiation problem. J. Acoustical Society of America 44, 41–58zbMATHCrossRefGoogle Scholar
  15. 3.15
    Press WH, Flannery BP et al. (1986) Numerical recipes. Cambridge University Press, Cambridge (England)Google Scholar
  16. 3.16
    Burton AJ, Miller GF (1971) The application of integral equation methods to the numerical solution of some exterior boundary-value problems. Proc. Royal Society A323, 201–210MathSciNetCrossRefGoogle Scholar
  17. 3.17
    Filippi PT (1977) Layer potentials an acoustic diffraction. J. Sound and Vibration 54, 473–500zbMATHCrossRefGoogle Scholar
  18. 3.18
    SYSNOISE Reference Manual (1993) Numerical Integration Technologies N.V., Leuven (Belgien)Google Scholar
  19. 3.19
    Zienkiewicz OC, Kelly DW, Bettess P (1977) The coupling of the Finite Element Method and boundary solution procedures. Int. J. Numerical Methods in Engineering 11, 355–375MathSciNetzbMATHCrossRefGoogle Scholar
  20. 3.20
    Kohnke P (1999) ANSYS Theory Reference. 11th edn. Ansys Inc., Canonsburg, PA (USA)Google Scholar
  21. 3.21
    Lyons R, Macey PC, Homer JL (1999) Acoustic performance of finite length apertures using Finite Element Analysis. Proc. 137th ASA Meeting and Forum Acusticum, Berlin, 5ApAA 3Google Scholar
  22. 3.22
    Lyon RH (1975) Statistical energy analysis of dynamical systems: Theory and applications. The MIT Press, Cambridge, MA (USA)Google Scholar
  23. 3.23
    Lyon RH, DeJong RG (1995) Theory and application of statistical energy analysis. 2nd edn. Butterworth-Heinemann, Newton, MA (USA)Google Scholar
  24. 3.24
    Hsu KH, Nefske DJ, Akay A (eds) (1987) Statistical energy analysis. Winter Annual Meeting of the American Society of Mechanical Engineers, NCA-Vol 3Google Scholar
  25. 3.25
    Fahy F (1974) Statistical energy analysis: A critical review. Shock and Vibration Digest 6, 14–33CrossRefGoogle Scholar
  26. 3.26
    Plunt J (1980) Methods for predicting noise levels in ships. Chalmers University of Technology, Dept. of Engineering Acoustics, Report 80-07Google Scholar
  27. 3.27
    Cremer L, Heckl M, Ungar EE (1988) Structure-borne sound. 2nd edn. Springer, BerlinGoogle Scholar
  28. 3.28
    Plunt J (1991) The power injection method for vibration daming determination of body panels with applied damping treatments and trim. Proc. 1991 Noise & Vibration Conference, SAE technical paper series 911085, P224, 417–425Google Scholar
  29. 3.29
    Dowell EH, Kubota Y (1985) Asymptotic modal analysis and statistical energy analysis of dynamical systems. Trans. ASME, J. Applied Mechanics 52, 53–68Google Scholar
  30. 3.30
    Skudrzyk E (1980) The mean-value method of predicting the dynamic response of complex vibrators. J. Acoustical Society of America 67, 1105–1135zbMATHCrossRefGoogle Scholar
  31. 3.31
    Langley RS (1994) Spatially averaged frequency response envelopes for one-and two-dimensional structural components. J. Sound and Vibration 178, 483–500CrossRefGoogle Scholar
  32. 3.32
    Girard A, Defosse H (1990) Frequency response smoothing, matrix assembly and structural paths: A new approach for structural dynamics up to high frequencies. J. Sound and Vibration 137, 53–68CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • B. A. T. Petersson

There are no affiliations available

Personalised recommendations