Advertisement

Fluglärm

  • J. Delfs
  • W. Dobrzynski
  • H. Heller
  • U. Isermann
  • U. Michel
  • W. Splettstösser
  • F. Obermeier

Zusammenfassung

Die Flugzeugindustrie steht unter einem wachsenden gesellschaftlichen Druck, die Geräßuschpegel ihrer Flugzeuge erheblich unter die bereits erreichten Werte zu senken. Dies ist nicht nur zur Kompensation des Einflusses eines weiter steigenden Luftverkehrs erforderlich, sondern wird auch zur Verbesserung der Lebensqualität in der Umgebung der Flughäfen erwartet. Dazu ist vor allem eine Minderung der Lärmemission erforderlich, die Thema des Abschn. 18.1 ist. Während beim Start die Triebwerksgeräusche (Abschn. 18.1.1 und 18.1.2) dominieren, spielen die Umströmungsgeräusche bei der Landung moderner Flugzeuge eine bedeutende Rolle (Abschn. 18.1.4). Hubschrauber stören wegen ihrer typischerweise niedrigeren Flughöhen und geringeren Fluggeschwindigkeiten und des von ihnen emittierten Knattergeräusches erheblich. Ihre Geräuschemission wird in Abschn. 18.1.3 behandelt. Raumordnungsplanung und Lärmschutzgesetzgebung erfordern im Zusammenhang mit Flughafenaus- und -neubauten die Vorhersage der Lärmbelastung im Flughafenbereich (Lärmimmission). Dieses Problem wird in Abschn. 18.2 behandelt. Das kontroverse Thema der Fluglärmbeurteilung ist Thema des Abschn. 18.3. Wenn ein Flugzeug mit Überschallgeschwindigkeit fliegt, wird es von einer Druckwelle begleitet, die von einem Beobachter am Boden als Knall registriert wird. Physik und Wirkungen des Überschallknalls werden in Abschn.18.4 dargestellt.
Abb. 18.2

Schallquellen eines modernen Nebenstromtriebwerkes

Abb. 18.3

Typisches Terzspektrum der Freistrahlgeräusche eines Unterschallfreistrahls [18.198] für den Winkelbereich 0° bis 90°und für 150°relativ zum Triebwerkseinlauf. Es ist die Differenz zwischen Terzpegel und Gesamtpegel als Funktion der Strouhalzahl fD/U aufgetragen. Für Winkel näher zur Strahlachse (→180°) sinkt die Frequenz des Pegelmaximums erheblich. Außerdem fällt das Spektrum mit steigender Frequenz steiler ab, wie das für den Winkel 150°gezeigt ist. Das VerhÄltnis der Gesamttemperaturen von Freistrahl und Umgebung ist 2

Abb. 18.4

Gezahnte Triebwerksdüse zur Strahllärmminderung

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 18.1
    Ahuja KK, Tanna HK, Tester BJ (1979) Effects of simulated forward flight on jet noise, shock noise and internal noise. AIAA Paper 79-0615Google Scholar
  2. 18.2
    Amiet RK (1975) Acoustic radiation from an airfoil in a turbulent stream. Journal of Sound & Vibration 41, 407–420zbMATHCrossRefGoogle Scholar
  3. 18.3
    Amiet RK (1976) Noise due to turbulent flow past a trailing edge. Journal of Sound & Vibration 47, 387–393CrossRefGoogle Scholar
  4. 18.4
    Amiet RK (1978) Effect of incident surface pressure field on noise due to turbulent flow past a trailing edge. Journal of Sound & Vibration 57, 305–306zbMATHCrossRefGoogle Scholar
  5. 18.5
    Anton-Guirgis H, Culver BD et al. (1986) Exploratory study of the potential effects of exposure to sonic boom on human health, Volume 2: Epidemiological study. Wyle Labs, El Segundo, California, Report AAMRL-TR-86-020-Vol-2Google Scholar
  6. 18.6
    Atkins HL (1999) A high-order method using unstructured grids for the aeroacoustic analysis of realistic aircraft configurations. AIAA Paper No 99-1945Google Scholar
  7. 18.7
    Atvars J, Schubert LK et al. (1965/1966) Refraction of sound by jet flow or jet temperature. University of Toronto, Institute for Aerospace Studies, TN 109 (1965) NASA CR-494Google Scholar
  8. 18.8
    Baeder JD (1990) Euler solution to non-linear acoustics of non-lifting hovering rotor blades. Paper No II, 3.3, 16th European Rotorcraft Forum, GlasgowGoogle Scholar
  9. 18.9
    Baeder JD (1994) The role and status of euler solvers in impulsive rotor noise computations. AGARD Symposium on Aerodynamics and Aeroacoustics of Rotorcraft, BerlinGoogle Scholar
  10. 18.10
    Baeder JD, McCroskey WJ, Srinivasan GR (1986) Acoustic propagation using computational fluid dynamics. Proceedings 42nd Annual Forum of the American Helicopter Society, Volume 1. Washington DC, 551–562Google Scholar
  11. 18.11
    Bailly C, Juvé D (1999) A stochastic approach to compute subsonic noise using linearized Euler’s equations. AIAA-Paper No 99-1872Google Scholar
  12. 18.12
    Ballmann, Kocaaydin (1990) Some aerodynamic mechanisms of impulsive noise during blade/vortex interaction. Paper No II 10, 16th European Rotorcraft Forum, GlasgowGoogle Scholar
  13. 18.13
    Battis JC (1983) Seismo-acoustic effects of sonic booms on archaeological sites, Valentine military operations area. Air Force Geophysics Lab, Hanscom AFB, MA (USA), Report AFGL-TR-83-0304Google Scholar
  14. 18.14
    Beaumier P, Spiegel P (1995) Validation of the ONERA aeroacoustic prediction methods for blade-vortex interaction using HART test results. 51st Annual Forum of the American Helicopter Society, Fort Worth, TXGoogle Scholar
  15. 18.15
    Bechert D, Pfizenmaier E (1975) On the amplification of jet noise by a pure tone excitation. Journal of Sound & Vibration 43, 581–587CrossRefGoogle Scholar
  16. 18.16
    Bennett RL, Pearsons KS (1981) Handbook of aircraft noise metrics. NASA CR-3406Google Scholar
  17. 18.17
    de Bernardis E, Tarica D (1992) Surface and volume quadrupoles in the prediction of propeller noise. DGLR/AIAA Paper No 92-02-0651992Google Scholar
  18. 18.18
    Block PJW, Gentry Jr GL (1986) Directivity and trends of noise generated by a propeller in a wake. NASA TP-2609Google Scholar
  19. 18.19
    Bohn A (1976) Edge noise attenuation by porous-edge extensions. AIAA-76-80Google Scholar
  20. 18.20
    Borchers IU, Scholten R, Gehlhar B (1986) Experimental results of the noise radiation of propellers in non-uniform flows. AIAA-86-1928, Seattle,WAGoogle Scholar
  21. 18.21
    Borsky PN (1965) Community reactions to sonic booms in the Oklahoma city area. USAF AMRL-TR-65-37Google Scholar
  22. 18.22
    Boxwell DA, Schmitz FH (1982) Full-scale measurements of blade/vortex interaction noise. Journal of the American Helicopter Society 27, auch (1980) Preprint 8061, Proceedings 36th Annual Forum, American Helicopter SocietyGoogle Scholar
  23. 18.23
    Boxwell DA, Schmitz FH et al. (1983) Model helicopter rotor high speed impulsive noise-measured acoustics and blade pressures. NASA TM-85850 and USAAVRADCOM Technical Report-83-A-14Google Scholar
  24. 18.24
    Boxwell DA, Schmitz FH et al. (1986) A comparison of the acoustic and aerodynamic measurements of a model rotor tested in two anechoic wind tunnels. Paper No 38, 12th European Rotorcraft Forum, Garmisch-PartenkirchenGoogle Scholar
  25. 18.25
    Bradley J, Stephens RWB (1973) Seismic vibrations induced by Concorde sonic booms. Acustica 28, 191–192Google Scholar
  26. 18.26
    Brentner K S (1997) An efficient and robus method for predicting helicopter rotor high-speed impulsive noise. Journal of Sound & Vibration 203(1) 87–100CrossRefGoogle Scholar
  27. 18.27
    Brooks TF (1981) Trailing edge noise prediction using Amiet’s method. Journal of Sound & Vibration 77, 437–439CrossRefGoogle Scholar
  28. 18.28
    Brooks TF (1993) Studies of blade-vortex interaction noise reduction by rotor blade modification. Proceedings Noise-Con 93, Noise Control in Aeroacoustics, Williamsburg, VA(USA)Google Scholar
  29. 18.29
    Brooks TF, Booth ER (1993) The effects of higher harmonic control on blade-vortex interaction noise and vibration. Journal of the American Helicopter Society 35(3)Google Scholar
  30. 18.30
    Brooks TF, Hodgson TH (1981) Trailing edge noise prediction using measured surface pressures. Journal of Sound & Vibration 78, 69–117CrossRefGoogle Scholar
  31. 18.31
    Brooks T, Humphreys Jr W (2000) Flap edge aeroacoustic measurements. AIAA/CEAS-2000-1975Google Scholar
  32. 18.32
    Brooks TF, Schlinker RH (1983) Progress in rotor broadband noise research. VERTICA 7, 287–307Google Scholar
  33. 18.33
    Brooks TF, Jolly RJ, Marcolini MA (1988) Determination of noise source contributions using scaled model rotor acoustic data. NASA TP-2825Google Scholar
  34. 18.34
    Brooks TF, Marcolini MA, Pope DS (1989) Main rotor broadband noise study in the DNW. Journal of the American Helicopter Society 34(2), 3–12Google Scholar
  35. 18.35
    Brooks TF, Pope DS, Marcolini MA (1989) Airfoil self noise prediction. NASA RP-1218Google Scholar
  36. 18.36
    Brooks TF, Boyd DD et al. (1996) Aeroacoustic codes for rotor harmonic and BVI noise — CAMRAD.Mod1/HIRES. 2nd AIAA/CEAS Aeroacoustics Conference, State College, PA (USA)Google Scholar
  37. 18.37
    Bund (1971) Gesetz zum Schutz gegen Fluglärm. Bundesgesetzblatt, Jahrgang 1971, Teil I, Nr 28, S 282–287, BonnGoogle Scholar
  38. 18.38
    Der Bundesminister des Innern (1975) Bekanntmachung vom 27.2.75, Durchführung des Gesetzes zum Schutz gegen Fluglärm, ier: Bekanntmachung der Datenerfassungssysteme für die Ermittlung von Lärmschutzbereichen an zivilen (DES) und militärischen Flugplätzen (DES-MIL) sowie einer Anleitung zur Berechnung (AzB). Gemäß Ministerialblatt 26, Ausgabe A, Nr 8, S 126–227, Bonn, 10.3.1975, Ergänzung der Anleitung zur Berechnung von Lärmschutzbereichen an zivilen und militärischen Flugplätzen — AzB vom 27. Februar 1975, U II 4-560 120/43, Bonn, 20.2.1984Google Scholar
  39. 18.39
    Caradonna F et al. (2000) Methods for the prediction of blade-vortex-interaction noise. Journal of the American Helicopter Society 45(4) 303–317CrossRefGoogle Scholar
  40. 18.40
    Chang SC (1995) The method of space-time conservation element and solution element — a new approach for solving the Navier-Stokes and Euler-equations. Journal of Computational Physics 119, 295MathSciNetzbMATHCrossRefGoogle Scholar
  41. 18.41
    Cocking BJ, Bryce WD (1975) Subsonic jet noise in flight based on some recent wind-tunnel tests. AIAA Paper 75-462Google Scholar
  42. 18.42
    Commission of European Communities, Directorate General XI. Working Group on Noise Indicators (1999) Position Paper on EU noise indicatorsGoogle Scholar
  43. 18.43
    Crighton D (1991) Airframe Noise. In: Hubbard HH (ed.) Aeroaoustics of flight vehicles: theory and practice, Volume 1: noise sources. NASA RP-1258, S 391–447Google Scholar
  44. 18.44
    Dahl MD (Hrsg) (2000) Third computational aeroacoustics (CAA) workshop on benchmark problems. NASA CP 2000-209790Google Scholar
  45. 18.45
    Dahlen H, Dobrzynski W, Heller H (1988) Aeroakustische Untersuchungen zum Lärm von Ultraleichtflugzeugen. DFVLR-FB 88-03Google Scholar
  46. 18.46
    Darden CM, Powell CA et al. (1989) Status of sonic boom methodology and understanding. NASA CP-3027Google Scholar
  47. 18.47
    Davy R et al. (1998) Airframe noise characteristics of a 1/11 scale airbus model. AIAA/CEAS-98-2335Google Scholar
  48. 18.48
    Delfs J (2001) An overlapped grid technique for high resolution CAA schemes for complex geometries. AIAA-Paper No 2001-2199Google Scholar
  49. 18.49
    DIN 45643: Messung und Beurteilung von Flugzeuggeräuschen (1984)Google Scholar
  50. 18.50
    DIN 18005: Schallschutz im Städtebau, Teil 1 (1987)Google Scholar
  51. 18.51
    DIN 4109: Schallschutz im Hochbau, Anforderungen und Nachweise (1989)Google Scholar
  52. 18.52
    DIN 45645: Ermittlung von Beurteilungspegeln aus Messungen, Teil 1: Geräuschimmissionen in der Nachbarschaft (1996)Google Scholar
  53. 18.53
    Doak PE (1998) Fluctuating total enthalpy as the basic generalized acoustic field. Theoretical and Computational Fluid Dynamics 10, 115–133zbMATHCrossRefGoogle Scholar
  54. 18.54
    Dobrzynski W (1986) The effect on radiated noise of non-zero propeller rotational plane attitude. AIAA Paper 86-1926, Seattle, WA (USA)Google Scholar
  55. 18.55
    Dobrzynski W(1993) Propeller noise reduction by means of unsymmetrical blade-spacing. Journal of Sound & Vibration 163(1) 123–136CrossRefGoogle Scholar
  56. 18.56
    Dobrzynski W (1994) Ermittlung von Emissionskennwerten für Schallimmissionsrechnungen an Landeplätzen. DLR-IB 129-94/17Google Scholar
  57. 18.57
    Dobrzynski W, Gehlhar B (1993) Untersuchungen zur Propellerlärmminderung durch kleineren Durchmesser bei höherer Blattzahl. DLRFB 93-48Google Scholar
  58. 18.58
    Dobrzynski W, Gehlhar B (1997) The noise from piston engine driven propellers on general aviation airplanes. AIAA/CEAS Paper No 97-1708Google Scholar
  59. 18.59
    Dobrzynski W, Pott-Pollenske M (2001) Slat noise source studies for farfield noise prediction. AIAA/CEAS Paper No 2001-2158Google Scholar
  60. 18.60
    Dobrzynski W, Heller H et al. (1986) DFVLR/FAA propeller noise tests in the German-Dutch wind tunnel DNW. DFVLR-IB 129-86/3 or FAA Report No AEE 86-3Google Scholar
  61. 18.61
    Dobrzynski W et al. (1997) Full scale noise testing on airbus landing gears in the German Dutch Wind Tunnel. AIAA/CEAS-97-1597Google Scholar
  62. 18.62
    Dobrzynski W et al. (1998) Airframe noise studies on wings with deployed high-lift devices. AIAA/CEAS-98-2337Google Scholar
  63. 18.63
    Dobrzynski W, Chow LC et al. (2000) A European study on landing gear airframe noise sources. AIAA/CEAS Paper No 2000-1971, Lahaina, HI (USA)Google Scholar
  64. 18.64
    Dobrzynski W, Gehlhar B, Buchholz H (2000) Model-and full scale high-lift wing wind tunnel experiments dedicated to airframe noise reduction. 7th International Congress on Sound and Vibration, 4–7 Juli, Garmisch-PartenkirchenGoogle Scholar
  65. 18.65
    Dong ThZ (1999) Direct numerical simulations of flap side edge noise. AIAA-Paper No 99-1803Google Scholar
  66. 18.66
    Drevet P, Duponchel JP, Jacques JR (1977) The effect of flight on jet noise as observed on the Bertin Aérotrain. Journal of Sound & Vibration 54, 173–201CrossRefGoogle Scholar
  67. 18.67
    Enghardt L, Tapken U et al. (2001) Turbine blade/vane interaction noise: acoustic mode analysis using in-duct sensor rakes. AIAA-Paper 2001-2153Google Scholar
  68. 18.68
    Enghardt L, Tapken U et al. (2002) Active control of fan noise from high-bypass ratio aeroengines: Experimental results. Erscheint in The Aeronautical JournalGoogle Scholar
  69. 18.69
    Envia E (1992) An asymptotic theory of supersonic propeller noise. DGLR/AIAA Paper No 92-02-064Google Scholar
  70. 18.70
    Eversman W (1971) Energy flow criteria for acoustic propagation in ducts with flow. Journal of Acoustic Society of America 49, 1717–1721zbMATHCrossRefGoogle Scholar
  71. 18.71
    Eversman W (1991) Theoretical models for duct acoustic propagation and radiation. In: Hubbard H (ed.) Aeroacoustics of flight vehicles: Theory and practice: Volume 2: Noise control. NASA Reference Publication 1258, Volume 2, NASA, 101–163Google Scholar
  72. 18.72
    Evertz E et al. (1976) Noise generation by interaction between subsonic jets and blown flaps. DLR-FB 76-20Google Scholar
  73. 18.73
    Farassat F (1975) Theory of noise generation from moving bodies with an application to helicopter rotors. NASA TR R-451Google Scholar
  74. 18.74
    Farassat F (1981) Linear acoustic formulas for calculation of rotating blade noise. AIAA Journal 19, 1122–1130zbMATHCrossRefGoogle Scholar
  75. 18.75
    Farassat F (1982) Rotor noise prediction technology — Theoretical approach. NASA CP-2234Google Scholar
  76. 18.76
    Farassat F (1983) The prediction of the noise of supersonic propellers in time domain — New theoretical results. AIAAPaper 83-0743, Atlanta, GA (USA)Google Scholar
  77. 18.77
    Farassat F, Brentner KS (1987) The uses and abuses of the acoustic analogy in helicopter rotor noise prediction. Paper, AHS National Specialists’ Meeting on Aerodynamics and Aeroacoustics, Arlington, TX (USA)Google Scholar
  78. 18.78
    Farassat F, Brentner KS (1998) Supersonic quadrupole noise theory for high-speed helicopter noise. Journal of Sound & Vibration 218(3) 481–500CrossRefGoogle Scholar
  79. 18.79
    Farassat F, Succi GP (1980) A review of propeller discrete frequency noise prediction technology with emphasis on two current methods for time domain calculations. Journal of Sound & Vibration 71, 399–419CrossRefGoogle Scholar
  80. 18.80
    Ffowcs-Williams JE (1963) Noise from turbulence convected at high speed. Transactions of the Royal Society A225, 469–503Google Scholar
  81. 18.81
    Ffowcs-Williams JE (1969) Hydrodynamic noise. Annual Review of Fluid Mechanics (1) 197–222Google Scholar
  82. 18.82
    Ffowcs-Williams JE (1984) Acoustic analogy. IMA Journal of Applied Mathematics 31, 113–124CrossRefGoogle Scholar
  83. 18.83
    Ffowcs-Williams JE, Hall LH (1970) Aerodynamic sound generation by turbulent flow in the vicinity of a scattering half plane. Journal of Fluid Mechanics 40, 657–670CrossRefGoogle Scholar
  84. 18.84
    Ffowcs-Williams JE, Hawkings DL (1969) Sound generation by turbulence and surfaces in arbitrary motion. Philosophical Transactions of the Royal Society London 264A, 321–342Google Scholar
  85. 18.85
    Ffowcs-Williams JE, Simpson J, Virchis VJ (1975) Crackle — an annoying component of jet noise. Journal of Fluid Mechanics 71Google Scholar
  86. 18.86
    Fink MR (1977) Airframe noise prediction method. FAA RD-77-29Google Scholar
  87. 18.87
    Fisher MJ, Preston GA, Bryce WD (1998) A modelling of the noise from simple coaxial jets. Part I: With unheated primary flow. Journal of Sound & Vibration 209, 385–403CrossRefGoogle Scholar
  88. 18.88
    Fisher MJ, Preston GA, Bryce WD (1998) A modelling of the noise from simple coaxial jets. Part II: With heated primary flow. Journal of Sound & Vibration 209, 405–417CrossRefGoogle Scholar
  89. 18.89
    Fitzgerald J, Kohlhepp F (1988) Research investigation of helicopter main rotor/tail rotor interaction noise. NASA CR-4143Google Scholar
  90. 18.90
    Fitz Simmons RD et al. (1980) Flight and wind tunnel test results of a mechanical jet noise suppressor nozzle. AIAA-80-0165Google Scholar
  91. 18.91
    Fleming GG, Olmstead JR et al. (1997) Integrated noise model (INM). Version 5.1 Technical Manual, Department of Transportation, Federal Aviation Administration, Report No FAAAEE-97-04Google Scholar
  92. 18.92
    Frota J, Lempereur P, Roger M (1998) Computation of the noise of a subsonic propeller at an angle of attack. AIAA/CEAS Paper No 98-2282Google Scholar
  93. 18.93
    George AR (1977) Helicopter noise state of the art. AIAA-Paper 77-1337, Atlanta, GA (USA)Google Scholar
  94. 18.94
    George AR, Chang SB (1983) Noise due to blade/vortex interactions. Paper No A-83-39, Proceedings 39th Annual Forum, American Helicopter SocietyGoogle Scholar
  95. 18.95
    George AR, Chou S-T (1984) Broadband rotor noise analysis. NASA CR-3797Google Scholar
  96. 18.96
    Gladwin DN, Manci KM, Villella R (1988) Effects of aircraft noise and sonic booms on domestic animals and wildlife: Bibliographic abstracts. Air Force Engineering and Services Center, Tyndall AFB, FL, Report AFESC-TR-88-14Google Scholar
  97. 18.97
    Glegg SAL, Jochault C (1997) Broadband self noise from a ducted fan. 3rd AIAA/CEAS Aeroacoustics Conference, Paper No 97-1612, Atlanta, GA (USA)Google Scholar
  98. 18.98
    Gliebe PR, Brausch JF et al. (1991) Jet noise suppression. In: Hubbard H (ed.) Aeroacoustics of flight vehicles: Theory and practice. Volume 2: Noise control. NASA Reference Publication 1258, Volume 2, NASA, 207–269Google Scholar
  99. 18.99
    Gounet H, Lewy S (1988) Prediction of propfan noise by a frequency-domain scheme. Journal of Aircraft 25, 428–435CrossRefGoogle Scholar
  100. 18.100
    Groeneweg JF, Sofrin TG et al. (1991) Turbomachinery noise. In: Hubbard H (ed.) Aeroacoustics of flight vehicles: Theory and practice. Volume 1: Noise sources. NASA Reference Publication 1258, Volume 1, NASA, 151–209Google Scholar
  101. 18.101
    Grogger HA, Lummer M, Lauke Th (2001) Simulating the interaction of a three-dimensional vortex with airfoils using CAA. AIAA Paper No AIAA-2001-2137Google Scholar
  102. 18.102
    Guiraud JP (1969) Focalisation dans les ondes courtes non linéaires; application au bruit balistique de focalisation. AGARD Conference Proceedings No 42, Aircraft Engine Noise and Sonic Boom, Paper 12Google Scholar
  103. 18.103
    Gulding JM, Olmstead JR, Fleming GG (1999) Integrated noise model (INM). Version 6.0 User’s Guide. Department of Transportation, Federal Aviation Administration, Report No FAA-AEE-99-03Google Scholar
  104. 18.104
    Guo YP (1997) A model for slat noise generation. AIAA/CEAS-97-1647Google Scholar
  105. 18.105
    Guo YP (1999) Modeling of noise reduction by flap side edge fences. NASA CR CRAD-9402-TR-5767Google Scholar
  106. 18.106
    Guo YP (1999) Prediction of flap side edge noise. AIAA/CEAS-99-1804Google Scholar
  107. 18.107
    Guo YP (2000) Modeling of noise reduction by flap side edge fences. AIAA/CEAS-2000-2065Google Scholar
  108. 18.108
    Guo YP, Hardy BA et al. (1998) Noise characteristics of DC-10 aircraft high lift system. NASA CR CRAD-9310-TR-4893Google Scholar
  109. 18.109
    Hamilton-Standard Inc (1971) Generalized propeller noise estimating procedure — Revision D. Windsor Locks, CT (USA)Google Scholar
  110. 18.110
    Hanson DB (1980) Influence of propeller design parameters on farfield harmonic noise in forward flight. AIAA Journal 18, 1313–1319, see also AIAA Paper 79-0609-1979MathSciNetCrossRefGoogle Scholar
  111. 18.111
    Hanson DB (1983) Compressible helicoidal surface theory for propeller aerodynamics and noise. AIAA Journal 21, 881–889zbMATHCrossRefGoogle Scholar
  112. 18.112
    Hanson DB (1999) Influence of lean and sweep on noise of cascades with turbulent inflow. AIAA-Paper 99-1863Google Scholar
  113. 18.113
    Hardin JC (1980) Noise radiation from the side edge of flaps. AIAA Journal 18(5) 549–552CrossRefGoogle Scholar
  114. 18.114
    Hardin JC, Martin JE (1996) Flap side-edge noise: Acoustic analysis of Sen’s model. AIAA-96-1674Google Scholar
  115. 18.115
    Hardin JC, Ristorcelli JR, Tam CKW (ed.) (1995) ICASE/LaRC Workshop on benchmark problems in computational aeroacoustics (CAA). NASA CP 3300Google Scholar
  116. 18.116
    Hayes JA, Horne WC et al. (1997) Airframe noise characteristics of a 4.7% scale DC-10 model. AIAA/CEAS-97-1594Google Scholar
  117. 18.117
    Hilton DA, Huckel V et al. (1964) Sonic boom exposures during FAA community-response studies over a 6-month period in the Oklahoma city area. NASA TN D-2539Google Scholar
  118. 18.118
    Hoad DR (1980) Helicopter model scale results of blade/vortex interaction impulsive noise as affected by tip modification. Paper No 80-62, 36th Annual Forum, American Helicopter SocietyGoogle Scholar
  119. 18.119
    Hoad DR (1987) Helicopter blade/vortex interaction locations: scale-model acoustics and free-wake analysis results. NASA TP-2658Google Scholar
  120. 18.120
    Holste F, Neise W (1997) Noise source identification in a propfan model by means of acoustical near field measurements. Journal of Sound & Vibration 203(4) 641–665CrossRefGoogle Scholar
  121. 18.121
    Howe MS (1975) Contributions to the theory of aerodynamic sound, with application to excess jet noise and the theory of the flute. Journal of Fluid Mechanics 71, 625–673MathSciNetzbMATHCrossRefGoogle Scholar
  122. 18.122
    Howe MS (1980) Aerodynamic sound generated by a slotted trailing edge. Proceedings Royal Society London, A373, 235–252MathSciNetCrossRefGoogle Scholar
  123. 18.123
    On absorbing boundary conditions for linearized Euler equations by a perfectly matched layer. Journal of Computational Physics 129, 201–219Google Scholar
  124. 18.124
    Hu FQ, Hussaini MY, Manthey J (1995) Low-dissipation and-dispersion Runge-Kutta schemes for Computational Aeroacoustics. Journal of Computational Physics 124(1) 177–191MathSciNetCrossRefGoogle Scholar
  125. 18.125
    Hubbard H (ed.) (1991) Aeroacoustics of flight vehicles: theory and practice: Volume 1: noise sources. NASA Reference Publication 1258, Volume 1, NASAGoogle Scholar
  126. 18.126
    Hubbard H (ed.) (1991) Aeroacoustics of flight vehicles: theory and practice: Volume 2: noise control. NASA Reference Publication 1258, Volume 2, NASAGoogle Scholar
  127. 18.127
    Hubbard JE, Leighton JE (1983) A comparison of model helicopter rotor primary and secondary blade/vortex interaction blade slap. AIAA 8th Aeroacoustics Conference, Paper AIAA-83-0723Google Scholar
  128. 18.128
    Hubbard HH, Maglieri DJ, Stephens DG (1986) Sonic-boom research: selected bibliography with annotation. NASA TM-87685Google Scholar
  129. 18.129
    Ianniello S (1999) An algorithm to integrate the FW-H equation on a supersonic rotating domain. AIAA Journal 37(9) 1040–1047CrossRefGoogle Scholar
  130. 18.130
    Ianniello S (1999) Quadrupole noise predictions through the Ffowcs Williams-Hawkings equation. AIAA Journal 37(9) 1048–1054CrossRefGoogle Scholar
  131. 18.131
    Ianniello S (2001) Acoustic analysis of high tip-speed rotating blades. Aerospace Science Technology 5, 179–192zbMATHCrossRefGoogle Scholar
  132. 18.132
    International Civil Aviation Organization (ICAO) (1981) Environmental protection. Annex 16 to the Convention on International Civil Aviation, Volume 1, Aircraft noise, 1st editionGoogle Scholar
  133. 18.133
    International Civil Aviation Organization (ICAO) (1988) Recommended method for computing noise contours around airports. ICAO Circular 205-AN/1/25Google Scholar
  134. 18.134
    International Civil Aviation Organization (ICAO) (1988) International standards and recommended practices. Environmental protection. ICAO, ANNEX 16 to the Convention on International Civil Aviation. Volume I, 2nd editionGoogle Scholar
  135. 18.135
    Isermann U (1988) Berechnung der Fluglärmimmission in der Umgebung von Verkehrsflughäfen mit Hilfe eines Simulationsverfahrens. MPI für Strömungsforschung, Bericht 7/1988, GöttingenGoogle Scholar
  136. 18.135
    Isermann U, Schmid R (1999) Bewertung und Berechnung von Fluglärm. Im Auftrag des Bundesministeriums für Verkehr, FE-Bericht Nr L-2/96-50144/96, DLR Institut für Strömungsmechanik, GöttingenGoogle Scholar
  137. 18.137
    International Standard ISO 2249-1973 (E) Acoustics description and measurement of physical properties of sonic booms (1973)Google Scholar
  138. 18.138
    International Standard ISO 3891-1978 (E) Acoustics — procedure for describing aircraft noise heard on the ground (1978)Google Scholar
  139. 18.139
    International Standard ISO Acoustics — description and measurement of environmental noise (1996). Part 1: Basic quantities and procedures (1982). Part 2: Acquisition of data pertinent to land use (1987). Part 3: Application to noise limits (1987)Google Scholar
  140. 18.140
    Isom MP (1980) Acoustic shock waves generated by a transonic helicopter blade. Paper 63, 36th Annual National Forum of the American Helicopter SocietyGoogle Scholar
  141. 18.141
    Jacklin SA, Blaas A et al. (1995) Reduction of helicopter BVI noise, vibration and power consumption through individual blade control. Proceedings 51st Annual Forum of the American Helicopter SocietyGoogle Scholar
  142. 18.142
    Jacobs EW, Prillwitz RD et al. (1997) The development and flight test demonstration of noise abatement approach procedures for the Sikorsky S-76. AHS Technical Specialists Meeting for Rotorcraft Acoustics and Aerodynamics, Williamsburg, VA (USA)Google Scholar
  143. 18.143
    Janardan BA, Gliebe PR (1989) Acoustic characteristics of counterrotating fans from model scale tests. AIAA Paper 89-1142, San Antonio, TX (USA)Google Scholar
  144. 18.144
    Jansen G, Linnemeier A, Nitsche M (1995) Methodenkritische Überlegungen und Empfehlungen zur Bewertung von Nachtfluglärm. Zeitschrift für Lärmbekämpfung 42, 91–106Google Scholar
  145. 18.145
    Johnson W (1995) A general free wake geometry calculation for wings and rotors. 51st Annual Forum of the American Helicopter Society, Forth Worth, TX (USA)Google Scholar
  146. 18.146
    Johnson DR, Robinson DW (1967) The subjective evaluation of sonic bangs. Acustica 18, 241–258Google Scholar
  147. 18.147
    Johnson DR, Robinson DW (1969) Procedure for calculating the loudness of sonic bangs. Acustica 21, 307–318Google Scholar
  148. 18.148
    Jonkouski GJ, Home WC, Soderman PT (1983) The acoustic response of a propeller subjected to gusts incident from various inflow angles. AIAA-83-0692, Atlanta, GA (USA)Google Scholar
  149. 18.149
    Joshi MC, Lin SR, Boxwell DA (1987) Prediction of blade/vortex interaction noise. Proceedings 43rd Annual Forum, American Helicopter Society, 405–420Google Scholar
  150. 18.150
    Julliard J, Antoine H, Riou G (2001) Development of a three degree of freedom liner. AIAA Paper 2001-2203Google Scholar
  151. 18.151
    Kameier F, Neise W(1997) Rotating blade flow instability as a source of noise in axial turbomachines. Journal of Sound & Vibration 203, 833–853CrossRefGoogle Scholar
  152. 18.152
    Kane EJ, Palmer TY (1964) Meterological aspects of the sonic boom. FAA SPDS Report RD 64-180Google Scholar
  153. 18.153
    Kellner A (1980) Experimentelle und theoretische Untersuchungen über den Einfluß inhomogener Geschwindigkeitsverteilung in der Zuströmung auf die Lärmerhöhung von Mantelschrauben. Dissertation RWTH AachenGoogle Scholar
  154. 18.154
    Klöppel V (1976) Schallabstrahlung durch akustische Rückkopplung bei rechtwinklig umgelenkten Luftstrahlen. Dissertation RWTH AachenGoogle Scholar
  155. 18.155
    Koch HW, Weber G (1970) Flugzeugknalle und ihre Wirkung auf Gebäude. Die Bautechnik 7, 238–244Google Scholar
  156. 18.156
    Kroll N (1986) Comparison of the flow field of propellers and hovering rotors using Eulerequations. Paper 28, 12th European Rotorcraft Forum, Garmisch-PartenkirchenGoogle Scholar
  157. 18.157
    Kroll N, Lohmann D, Schöne J (1987) Numerical methods for propeller aerodynamics and acoustics at DFVLR. 69th AGARD-Symposium on Gasturbine Components, ParisGoogle Scholar
  158. 18.158
    Kryter KD, Pearsons KS (1963) Some effects of spectral content and duration on perceived noise level. Journal of Acoustic Society of America 35, 866–883CrossRefGoogle Scholar
  159. 18.159
    Laur MN, Squires RL, Nagel RT (1992) Forward rotor vortex location effects on counter rotating propeller noise. DGLR/AIAA Paper No 92-02-153Google Scholar
  160. 18.160
    Laurence JH, Woodward RP (1989) Unsteady blade pressure measurements on a model counterrotation propeller. AIAA Paper 89-1144, San Antonio (USA)Google Scholar
  161. 18.161
    Lavrich PL, Simonich JC, McCormick DC (1992) An assessment of wake structure behind forward swept and aft swept propfans at high loading. DGLR/AIAA Paper No 92-02-154Google Scholar
  162. 18.162
    Lele SK (1992) Compact finite difference schemes with spectral-like resolution. Journal of Computational Physics 103, 16–42MathSciNetzbMATHCrossRefGoogle Scholar
  163. 18.163
    Leverton JW (1980) Reduction of helicopter noise by use of a quiet tail rotor. Paper No 24, 6th European Rotorcraft ForumGoogle Scholar
  164. 18.164
    Lighthill MJ (1952) On sound generated aerodynamically. Part I: General theory. Proceedings Royal Society (London) A 211, 564–587MathSciNetzbMATHCrossRefGoogle Scholar
  165. 18.165
    Lighthill MJ (1954) On sound generated aerodynamically. Part II: Turbulence as a source of sound. Proceedings Royal Society (London) A 222, 1–32MathSciNetzbMATHCrossRefGoogle Scholar
  166. 18.166
    Lighthill MJ (1954) On the sound generated aerodynamically. Proceedings of the Royal Society, Volume 211Google Scholar
  167. 18.167
    Lilley GM (1969) The generation and propagation of shock waves leading to the sonic boom. Report in 5 parts on the sonic boom, prepared for the OECD Conference on Sonic Boom Research, Part 1Google Scholar
  168. 18.168
    Lilley GM (1974) On the noise from jets. In: Noise mechanisms. AGARD-CP 131, 13.1–13.12Google Scholar
  169. 18.169
    Lilley GM (1991) Jet noise classical theory and experiments. In: Hubbard H (ed.) Aeroacoustics of Flight Vehicles: Theory and practice. Volume 1: Noise sources. NASA Reference Publication 1258, Volume 1, NASA, 211–289Google Scholar
  170. 18.170
    Lowson MV (1965) The sound field for singularities in motion. Proceedings of the Royal Society A 286, 559–572MathSciNetCrossRefGoogle Scholar
  171. 18.171
    Lowson MV, Ollerhead JB (1969) A theoretical study of helicopter noise. Journal of Sound & Vibration, 187–222Google Scholar
  172. 18.172
    Luftfahrthandbuch Deutschland (1984) Überschallflüge militärischer Strahlflugzeuge. RAC-3-3-1Google Scholar
  173. 18.173
    Luftverkehrs-Ordnung (1986) §11a, §11bGoogle Scholar
  174. 18.174
    Lyrintzis AS (1994) Review, the use of Kirchhoff’s method in computational aeroacoustics. Journal of Fluid Eng-T ASME 116, 665–676CrossRefGoogle Scholar
  175. 18.175
    Maglieri DJ (1967) Sonic boom flight research: some effects of airplane operations and the atmosphere on sonic boom signatures. NASA SP-147, 25–48Google Scholar
  176. 18.176
    Mahan JR, Karchmer A (1991) Combustion and core noise. In: Hubbard H (ed.) Aeroacoustics of flight vehicles: Theory and practice. Volume 1: Noise sources. NASA Reference Publication 1258, Volume 1, NASA, 483–517Google Scholar
  177. 18.177
    Mani R (1971) Noise due to interaction of inlet turbulence with isolated stators and rotors. Journal of Sound & Vibration 17, 251–260CrossRefGoogle Scholar
  178. 18.178
    Martin RM, Splettstoesser WR et al. (1998) Advancing side directivity and retreating side interactions of model rotor blade/vortex interaction noise. NASA TP 2784, AVSCOM TR 87-B3Google Scholar
  179. 18.179
    Martin RM, Burley CL, Elliott JW (1989) Acoustic test of a model rotor and tail rotor. Results for the isolated rotors and combined configuration. NASA TM-101550Google Scholar
  180. 18.180
    Martin RM, Marcolini MA et al. (1990) Wake geometry effects on rotor blade/vortex interaction noise directivity. NASA TP-3015Google Scholar
  181. 18.181
    Matschat K, Müller E-A (1979) Effektivpegel und Geräuschdauer bei Flugzeugvorbeiflügen. Festschrift zum 100-jährigen Bestehen der Versuchs-und Forschungsanstalt Wien, Stadtbaudirektion Wien, 145–147Google Scholar
  182. 18.182
    Matschat K, Müller E-A (1981) Vergleich nationaler und internationaler Fluglärmbewertungsverfahren. Aufstellung von Näherungsbeziehungen zwischen den Bewertungsmaßen. Umweltforschungsplan des Bundesministers des Innern, Forschungsbericht 81-10501307, UBA-FB 82-025, Umweltbundesamt BerlinGoogle Scholar
  183. 18.183
    Matschat K, Müller E-A, Obermeier F (1970) On the assessment of the annoyance of a series of sonic boom exposures. Acustica 23, 49–50Google Scholar
  184. 18.184
    May DN (1971) The loudness of sonic booms heard outdoors as simple functions of overpressure and rise time. Journal of Sound & Vibration 18, 31–43CrossRefGoogle Scholar
  185. 18.185
    McAlpine A, Fisher MJ (2000) On the prediction of ‘buzz-saw’ noise generated by an aeroengine. AIAA Paper 2000-2095Google Scholar
  186. 18.186
    McAlpine A, Fisher MJ (2001) On the prediction of ‘buzz-saw’ noise generated in aero-engine inlet ducts. Erscheint in Journal of Sound & VibrationGoogle Scholar
  187. 18.187
    McKennell AC (1963) Aircraft noise annoyance around London (Heathrow) airport. Central Office of Information, London, 337Google Scholar
  188. 18.188
    Meier GEA, Lenth H-M, Löhr KF (1988) Sound generation flow interaction of vortices with an airfoil and a flat plate in transonic flow. Fluid Dynamics Research 3, 344–348CrossRefGoogle Scholar
  189. 18.189
    Michalke A (1977) On the effect of spatial source coherence on the radiation of jet noise. Journal of Sound & Vibration 55, 377–394CrossRefGoogle Scholar
  190. 18.190
    Michalke A, Michel U (1979) Prediction of jet noise in flight from static tests. Journal of Sound & Vibration 67, 341–367zbMATHCrossRefGoogle Scholar
  191. 18.191
    Morin BL (1999) Broadband fan noise prediction system for gas turbine engines. AIAA-Paper 99-1889Google Scholar
  192. 18.192
    Motsigner RE, Kraft RE (1991) Design and performance of duct acoustic treatment. In: Hubbard H (ed.) Aeroacoustics of flight vehicles: Theory and practice. Volume 2: Noise control. NASA Reference Publication 1258, Volume 2, NASA, 165–205Google Scholar
  193. 18.193
    Munjal ML (1987) Acoustics of ducts and mufflers. John Wiley & SonsGoogle Scholar
  194. 18.194
    Nakamura Y (1981) Prediction of blade/vortex interaction noise from measured blade pressure. Paper 32, 7th European Rotorcraft and Powered Lift Aircraft Forum, Garmisch-PartenkirchenGoogle Scholar
  195. 18.195
    Neuwerth G (1972) (Deutscher Titel unbekannt) Deutsche Luft-und Raumfahrt, DLR-FB 72-72.Google Scholar
  196. 18.195a
    Englische Übersetzung: (1974) Acoustic feedback of a subsonic and supersonic free jet which impinges on an obstacle. Royal Aircraft Establishment, Library Translation 1739Google Scholar
  197. 18.196
    Neuwerth G (1982) Flowfield and noise of jet impingement on flaps and ground surface. AGARD-CP-308, 13.1–13.7Google Scholar
  198. 18.197
    Niedzwieki A, Ribner HS (1978) a. Journal of the Acoustical Society of America (JASA) 64, 1617–1621CrossRefGoogle Scholar
  199. 18.198
    NN (1985) Gas turbine jet exhaust noise prediction. SAE ARP 876CGoogle Scholar
  200. 18.199
    NN (1985) Gas turbine coaxial exhaust flow noise prediction. SAE AIR 1905Google Scholar
  201. 18.200
    NN (1990) Airframe noise prediction. ESDU-pac A9023Google Scholar
  202. 18.201
    Norum TD, Seiner JM (1982) Broadband shock noise from supersonic jets. AIAA Journal 20, 68–73CrossRefGoogle Scholar
  203. 18.202
    Norum TD, Seiner JM (1984) Measurement of mean static pressure and far-field acoustics of shock-containing jets. NASA TM 84521Google Scholar
  204. 18.203
    National Sonic Boom Evaluation Office (1967) Sonic boom experiments at Edwards Air Force Base. Interim Report NSBEO-1-67Google Scholar
  205. ]18.204
    NTIS (National Technical Information Service Data Base) (1988) Aircraft sonic boom. „Biological effects“. Jan 1970–Mar 1988, Springfield, VA (USA)Google Scholar
  206. ]18.205
    NTIS (National Technical Information Service Data Base) (1988) Aircraft sonic boom. „Effects on buildings“. Jan 1970–Mar 1988, Springfield, VA (USA)Google Scholar
  207. 18.206
    Obermeier F (1979) On a new representation of aeroacoustic source distribution. I. General theory. Acustica 42, 56–61MathSciNetzbMATHGoogle Scholar
  208. 18.207
    Obermeier F (1989) Ausbreitung schwacher Stoßwellen — Stoßfokussierung und Stoßreflexion. Zeitschrift für Flugwissenschaften, Weltraumforschung 13, 219–232Google Scholar
  209. 18.208
    Obermeier F, Zimmermann G (1971) Das Streuverhalten eines Überschallknalles beim Durchgang durch eine turbulente Schicht. Proceedings 7th International Congress on Acoustics, Budapest, 457–460Google Scholar
  210. 18.209
    Ostertag JSD, Guidati S et al. (2000) Prediction and measurement of airframe noise on a generic body. AIAA Paper No AIAA-2000-2063Google Scholar
  211. 18.210
    Parry AB, Crighton DG (1989) Asymptotic theory of propeller noise. Part I: Subsonic singlerotation propeller. AIAA Journal 27, 1184–1990CrossRefGoogle Scholar
  212. 18.211
    Pérennès S et al. (1998) Aerodynamic noise of a two-dimensional wing with high-lift devices. AIAA/CEAS-98-2338Google Scholar
  213. 18.212
    Phillips OM (1960) On the generation of sound by supersonic shear flows. Journal of Fluid Mechanics 9, 1–28MathSciNetzbMATHCrossRefGoogle Scholar
  214. 18.213
    Piet JF et al. (1997) Airframe noise source localization using a microphone array. 3rd AIAA/CEAS-97-47Google Scholar
  215. 18.214
    Piet J et al. (1999) Localization of acoustic source from a landing aircraft with a microphone array. AIAA/CEAS-99-1811Google Scholar
  216. 18.215
    Pietrzko S, Hofmann RF (1988) Prediction of A-weighted aircraft noise based on measured directivity patterns. Applied Acoustics 23, 29–44CrossRefGoogle Scholar
  217. 18.216
    Plotkin KJ (1989) Review of sonic boom theory. AIAA Paper No 89-1105Google Scholar
  218. 18.217
    Polacsec C, Spiegel P et al. (2000) Noise computation of high-speed propeller-driven aircraft. AIAA/CEAS Paper No 2000-2086Google Scholar
  219. 18.218
    Powell A (1964) Theory of vortex sound. 36, 177–195Google Scholar
  220. 18.219
    Prieur J (1987) Calculations of transonic rotor noise using a frequency domain formulation. 43rd AHS-Forum Proceedings, 469–479, St. Louis, MI (USA)Google Scholar
  221. 18.220
    Prieur J, Splettstoesser WR (1999) ERATOan ONERA-DLR cooperative programme on aeroacoustic rotor optimisation. Proceedings, 25th European Rotorcraft Forum, RomGoogle Scholar
  222. 18.221
    Purcell T (1989) A prediction of high-speed rotor noise. AIAA, 12th Aeroacoustics Conference, San Antonio, TX (USA)Google Scholar
  223. 18.222
    Radezrsky RH, Singer BA, Khorrami MR (1998) Detailed measurements of a flap side-edge flow field. AIAA/CEAS-98-0700Google Scholar
  224. 18.223
    Rahier G, Prieur J (1997) An efficient Kirchhoff integration method for rotor noise prediction starting indifferently from subsonically or supersonically rotating meshes. American Helicopter Society 53rd Annual Forum, Virginia Beach, VA, USAGoogle Scholar
  225. 18.224
    Reinis S, Weiss DS et al. (1987) Long-term effects of simulated sonic booms on hearing in rhesus monkeys. Journal of Sound & Vibration 113, 355–363CrossRefGoogle Scholar
  226. 18.225
    Revell JD, Kuntz HL et al. (1997) Trailing-edge flap noise reduction by porous acoustic treatment. AIAA/CEAS-97-1646Google Scholar
  227. 18.226
    Ribner HS 1959 New theory of jet-ise generation directionality and spectra. 31 245–246Google Scholar
  228. 18.227
    Ribner HS (1981) Perspectives in jet noise (Dryden lectureship in research). AIAA Paper 81-0428Google Scholar
  229. 18.228
    Ribner HS, Balazard J et al. (1970) Report on the sonic boom phenomenon, the ranges of sonic boom values likely to be produced by planned SSTs and the effects of sonic boom on humans, property, animals and terrain. Sonic Boom Panel 2nd Meeting, Montreal, ICAO Doc 8894, SBP/IIGoogle Scholar
  230. 18.229
    Rice CG (1972) Sonic boom exposure effects II.2: Sleep effects. Journal of Sound & Vibration 20, 511–517CrossRefGoogle Scholar
  231. 18.230
    Roger M, Pérennès S (2000) Low-frequency noise sources in two-dimensional high-lift devices. AIAA/CEAS-2000-1972Google Scholar
  232. 18.231
    Rose GE, Jeracki RJ (1989) Effect of reduced aft diameter and increased blade number on high-speed counter-rotation propeller performance. NASA TM-102077Google Scholar
  233. 18.232
    Ross JC, Storms BL, Kumagai H (1995) Aircraft flyover noise reduction using lower-surface flap-tip fences. NASA CDTM-21006Google Scholar
  234. 18.233
    Rudnik R, Ronzheimer A et al. (1996) Berechnung von 2-und 3-dimensionalen Hochauftriebskonfigurationen durch Lösung der Navier-Stokes-Gleichungen. DGLR-Jahrestagung, DresdenGoogle Scholar
  235. 18.234
    Rylander R, Dancer A (1978) Startle reactions to simulated sonic booms: Influence of habituation, boom level and background noise. Journal of Sound & Vibration 61, 235–243CrossRefGoogle Scholar
  236. 18.235
    Saiyed HN, Mikkelsen KL, Bridges JE (2000) Acoustics and thrust of separate-flow exhaust nozzles with mixing devices for high-bypassratio engines. NASA/TM-2000-209948Google Scholar
  237. 18.236
    Sarin SL, Donelly RP (1992) Angle of incidence effects on the far-field noise of an isolated propeller. DGLR/AIAA Paper No 92-02-050Google Scholar
  238. 18.237
    Schaffar M, Haertig J, Gnemmi P (1990) Effect of non-rectangular blade tips on BVI noise for a two-bladed rotor. 16th European Rotorcraft Forum, GlasgowGoogle Scholar
  239. 18.238
    Schmitz FH, Boxwell DA (1976) In-flight farfield measurement of helicopter impulsive noise. Journal of the American Helicopter Society 21(4)Google Scholar
  240. 18.239
    Schmitz FH, Yu YH (1981) Transonic rotor noise — theoretical and experimental comparisons. Vertica 5, 55–74Google Scholar
  241. 18.240
    Schmitz FH, Yu YH (1983) Helicopter impulsive noise: theoretical and experimental status. NASA TM-84390Google Scholar
  242. 18.241
    Schmitz FH, Boxwell DA et al. (1984) Model rotor high speed impulsive noise: Full scale comparisons and parametric variations. VERTICA 8(4)Google Scholar
  243. 18.242
    Schulten JBHM (1987) A spectral method for the computation of propeller acoustics. AIAA Paper 87-2674, Palo-Alto, CA (USA)Google Scholar
  244. 18.243
    Schultz KJ, Splettstoesser W (1987) Measured and predicted impulsive noise directivity characteristics. Paper 1.2, 13th European Rotorcraft Forum, ArlesGoogle Scholar
  245. 18.244
    Schultz KJ, Lohmann D et al. (1994) Aeroacoustic calculations of helicopter rotors at DLR. AGARD Symposium on Aerodynamics and Aeroacoustics of Rotorcraft, Paper No 29, BerlinGoogle Scholar
  246. 18.245
    Schwenk W(1976) Das Verbot von zivilen Flügen mit Überschallgeschwindigkeit für die Bundesrepublik Deutschland. Kampf dem Lärm 23, 57–61Google Scholar
  247. 18.246
    Sen R (1996) Local dynamics and acoustics in a simple 2D model of airfoil lateral-edge noise. AIAA-96-1673Google Scholar
  248. 18.247
    Sharland IJ (1964) Sources of noise in axial flow fans. Journal of Sound & Vibration 1, 302–322zbMATHCrossRefGoogle Scholar
  249. 18.248
    Sijtsma P et al. (1999) Source location by phased array measurements in closed wind tunnel test sections. AIAA/CEAS-99-1814Google Scholar
  250. 18.248
    Siller H, Arnold F, Michel U (2001) Investigation of aero-engine core-noise using a phased microphone array. AIAA Paper 2001-2269Google Scholar
  251. 18.250
    Singer BA, Brentner KS et al. (1999) Simulation of acoustic scattering from a trailing edge. AIAA-Paper No 99-0231Google Scholar
  252. 18.251
    Smith MJT (1989) Aircraft noise. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  253. 18.252
    Smith M et al. (1998) Prediction method for aerodynamic noise from aircraft landing gear. AIAA/CEAS-98-2228Google Scholar
  254. 18.253
    Society of Automotive Engineers Inc (1977) Prediction procedure for near-field and far-field propeller noise. SAE-AIR 1407Google Scholar
  255. 18.254
    Splettstoesser WR, Schultz K-J et al. (1984) Helicopter model rotor-blade/vortex interaction impulsive noise: Scalability and parametric variations. Paper No 18, 10th European Rotorcraft Forum, Den Haag, auch NASA TM-86007Google Scholar
  256. 18.255
    Splettstoesser W, Schultz K-J, Martin R (1987) Rotor blade/vortex interaction impulsive noise source identification and correlation with rotor wake predictions. AIAA-87-2744, AIAA 11th Aeroacoustics Conference, Palo Alto, CA (USA)Google Scholar
  257. 18.256
    Splettstoesser WR, Schultz KJ et al. (1994) A higher harmonic control test in the DNW to reduce impulsive BVI noise. Journal of the American Helicopter Society 39(4)Google Scholar
  258. 18.257
    Splettstoesser WR, Kube R et al. (1997) Key results from a higher harmonic control aeroacoustic rotor test (HART). Journal of the American Helicopter Society 42(1)Google Scholar
  259. 18.258
    Splettstoesser WR, Schultz KJ et al. (1998) The effect of individual blade pitch control on BVI noise — comparison of flight test and simulation results. Proceedings AC07, 24th European Rotorcraft Forum, MarseilleGoogle Scholar
  260. 18.259
    Stevens RCK, Bryce WD, Szewczyk VM (1983) Model and fullscale studies of the exhaustnoise from a bypass engine in flight. AIAA Paper 83-0751Google Scholar
  261. 18.260
    Storms BL, Takahashi TT et al. (1996) Flap-tip treatments for the reduction of lift-generated noise. NASA CDTM-21006Google Scholar
  262. 18.261
    Storms BL, Ross JC et al. (1998) An aeroacoustic study of an unswept wing with a three-dimensional high lift system. NASA/TM-1998-112222Google Scholar
  263. 18.262
    Storms B et al. (1999) Aeroacoustic measurements of slat noise on a three-dimensional high-lift system. AIAA/CEAS-99-1957Google Scholar
  264. 18.263
    Streett CL (1998) Numerical simulation of fluctuations leading to noise in a flap-edge flowfield. AIAA-98-0628Google Scholar
  265. 18.264
    Stuff R (1982) Propellerlärm bei Unterschallblattspitzen-Machzahlen, Umfangskraft und Axialkraft. DFVLR-Mitteilung 82–17Google Scholar
  266. 18.265
    Succi GP (1979) Design of quiet efficient propellers. SAE Paper 790584Google Scholar
  267. 18.266
    Takallu MA, Block PJW (1987) Prediction of added noise due to the effect of unsteady flow on pusher propellers. AIAA 25th Aerospace Sciences Meeting, AIAA-87-0255, Reno, NV (USA)Google Scholar
  268. 18.267
    Tam CKW (1991) Broadband shock-associated noise from supersonic jets in flight. Journal of Sound & Vibration 151, 55–71CrossRefGoogle Scholar
  269. 18.268
    Tam CKW (1995) Supersonic jet noise. Annual Review of Fluid Mechanics 27, 131–147CrossRefGoogle Scholar
  270. 18.269
    Tam CKW (2001) On the failure of the acoustic analogy to identify the correct noise sources. AIAA Paper 2001-2117Google Scholar
  271. 18.270
    Tam CKW, Auriault L (1999) Jet mixing noise from fine scale turbulence. AIAA Journal 37, 145–153CrossRefGoogle Scholar
  272. 18.271
    Tam CKW, Dong Z (1994) Wall boundary conditions for high-order finite-difference schemes in computational aeroacoustics. Theoretical Computational Fluid Dynamics 6, 303–322zbMATHCrossRefGoogle Scholar
  273. 18.272
    Tam CKW, Dong Z (1995) Radiation and outflow boundary conditions for direct computation of acoustic and flow disturbances in a nonuniform mean flow. AIAA Paper No 95-007Google Scholar
  274. 18.273
    Tam CKW, Hardin JC (ed.) (1997) Second computational aeroacoustics (CAA) workshop on benchmark problems. NASA CP 3352Google Scholar
  275. 18.274
    Tam CKW, Shen H (1993) Direct computation of nonlinear acoustic pulses using high-order finite difference schemes. AIAA Paper No 93-4325Google Scholar
  276. 18.275
    Tam CKW, Webb JC (1993) Dispersion relation preserving finite difference schemes for computational acoustics. Journal of Computational Physics 107, 262–281MathSciNetzbMATHCrossRefGoogle Scholar
  277. 18.276
    Tam CKW, Salikuddin M, Hanson DB (1988) Acoustic interference of counter-rotation propellers. Journal of Sound & Vibration 124, 357–366CrossRefGoogle Scholar
  278. 18.277
    Tam CKW, Golebiowski M, Seiner JM (1996) On the two components of turbulent mixing noise from supersonic jets. AIAA Paper 96-1716Google Scholar
  279. 18.278
    Tanna HK (1977) An experimental study of jet noise. Part 1: Jet mixing noise. Journal of Sound & Vibration 50, 405–428CrossRefGoogle Scholar
  280. 18.279
    Tanna HK (1977) An experimental study of jet noise. Part 2: Shock associated noise. Journal of Sound & Vibration 50, 429–444CrossRefGoogle Scholar
  281. 18.280
    Thackray RI (1972) Sonic boom exposure effects II.3: Startle responses. Journal of Sound & Vibration 20, 519–526CrossRefGoogle Scholar
  282. 18.281
    Tyler JM, Sofrin TG (1962) Axial flow compressor noise studies. SAE Trans 70, 309–332Google Scholar
  283. 18.282
    U.S. standard atmosphere (1962) Prepared under sponsorship of NASA, USAF, US Weather Bureau. Washington D.C.Google Scholar
  284. 18.283
    Vallée J (1969) Etude expérimentale des focalisations de bangs soniques engendrés par le vol supersonique en accélération rectiligne ou en virage d’un avion Mirage IV à l’altitude de 11000 m. Opération Jéricho-Virage, Rapport d’études No 277, Centre d’essais en vol, annexe d’IstresGoogle Scholar
  285. 18.284
    Wagner S, Bareiss R, Guidati G (1996) Wind turbine noise. Springer, BerlinCrossRefGoogle Scholar
  286. 18.285
    van der Wall B, Roth M (1997) Free-wake analysis on massively-parallel computers and validation with HART test data. 53rd Annual Forum, Virginia Beach, VA (USA)Google Scholar
  287. 18.286
    Wang ME (1980) Wing effect on jet noise propagation. AIAA-Paper 80-1047Google Scholar
  288. 18.287
    Watanabe T, Kawachi K (1987) Noise prediction of counter rotation propeller. AIAA Paper 87-2658, Palo Alto, CA (USA)Google Scholar
  289. 18.288
    Way DJ, Turner BA (1980) Model tests demonstrating under-wing installation effects on engine exhaust noise. AIAA-Paper 80-1048Google Scholar
  290. 18.289
    Wood T et al. (1999) Aeroacoustic predictions of a wing-flap configuration in three dimensions. AIAA/CEAS-99-1893Google Scholar
  291. 18.290
    Woodward RP, Hughes CE (1990) Aeroacoustic effects of reduced aft tip speed at constant thrust for a model counterrotation turboprop at takeoff conditions. AIAA Paper 90-3933, Tallahassee, FL (USA)Google Scholar
  292. 18.291
    Woodward RP, Loeffler IJ, Dittmar JH (1989) Measured far-field flight noise of a counterrotation turboprop at cruise conditions. NASA TM-101383Google Scholar
  293. 18.292
    Yin J, Delfs J (2001) Sound generation from gust-airfoil interaction using CAA-chimera method. AIAA-Paper No 2001-2136Google Scholar
  294. 18.293
    Yin JP, Ahmed SR, Dobrzynski W(1999) New acoustic and aerodynamic phenomena due to non-uniform rotation of propellers. Journal of Sound & Vibration 225(1), 171–187Google Scholar
  295. 18.294
    Young RW(1989) Day-night average sound level (DNL) and sound exposure level (SEL) as efficient descriptors for noise compatibility planning. Internoise 89 Proceedings, 1289–1292Google Scholar
  296. 18.295
    Yu YH, Gmelin B et al. (1997) Reduction of helicopter blade-vortex interaction noise by active rotor control technology. Progress in Aerospace Science 33, 647–687CrossRefGoogle Scholar
  297. 18.296
    Zepler EE, Harel JRP (1965) The loudness of sonic booms and other impulsive sounds. Journal of Sound & Vibration 2, 249–256CrossRefGoogle Scholar
  298. 18.297
    Zorumski WE (1982) Aircraft noise prediction program. Part I: Theoretical manual. NASA TM-83199Google Scholar
  299. 18.298
    Zorumski WE, Weir DS (1986) Aircraft noise prediction program. Theoretical manual. Part 3: Propeller aerodynamics and noise. NASA TM-83199Google Scholar
  300. 18.299
    Guidati G, Wagner S (1999) The influence of airfoil shape on gust-airfoil interaction noise in compressible flows. AIAA/CEAS Paper 99-1843Google Scholar
  301. 18.300
    Lee RA, Downing JM (1996) Comparison of measured and predicted lateral distribution of sonic boom overpressures from United States Air Force sonic boom database. J. Acoust. Soc. Am. 99, 768–776CrossRefGoogle Scholar
  302. 18.301
    Lipkens B, Blackstock DT (1998) Model experiments to study sonic boom propagation through turbulence. Part I: General results. J. Acoust. Soc. Am. 103, 148–158CrossRefGoogle Scholar
  303. 18.302
    Downing JM et al. (1988) Controlled focused sonic booms from manoeuvring aircraft. J. Acoust. Soc. Am. 104, 112–121CrossRefGoogle Scholar
  304. 18.303
    Pierce AD, Kang J (1990) Molecular relaxation effects on sonic boom waveforms. Frontiers in nonlinear acoustics, Proceedings of the 12 ISNA, MF Hamilton, DTGoogle Scholar
  305. 18.304
    Schomer PD, Sias JW (1998) On spectral weightings to assess human response indoors to blast noise and sonic booms. Noise Control Eng. Journal 46, 57–71CrossRefGoogle Scholar
  306. 18.305
    Sparrow VW (1995) The effect of supersonic aircraft speed on the penetration of sonic boom into the ocean. J. Acoust. Soc. Am. 97, 159–162CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • J. Delfs
  • W. Dobrzynski
  • H. Heller
  • U. Isermann
  • U. Michel
  • W. Splettstösser
  • F. Obermeier

There are no affiliations available

Personalised recommendations