Skip to main content
Book cover

Tachykinins pp 359–440Cite as

The Role of Tachykinins and the Tachykinin NK1 Receptor in Nausea and Emesis

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 164))

Abstract

Nausea and vomiting are both components of the body’s defensive system to protect against the effects of accidentally ingested toxins. Whilst these responses have survival value in the wild, they can also be induced by diseases and disease treatments with one of the most unpleasant examples being the treatment of cancer using cytotoxic drugs and radiation. Understanding the mechanisms by which this occurs has been a major impetus to the identification of novel anti-emetic agents. The recent licensing of an NK1 receptor antagonist for the treatment of chemotherapy-induced emesis provides the first example of a drug acting to block the effects of substance P. Whilst the blockade of emesis by selective NK1 receptor antagonists provides the most powerful evidence implicating substance P in emesis there is a considerable body of supporting evidence including: presence of substance P (usually by immunohistochemistry) in relevant sites (e.g. vagal afferents, nucleus tractus solitarius, gastrointestinal mucosa); presence of NK1, receptors in relevant sites (e.g. nucleus tractus solitarius); induction of emesis by administration of NK1 receptor agonists. Pre-clinical studies in a variety of species revealed the broad-spectrum anti-emetic effects of NK1 receptor antagonists against stimuli including the anti-cancer agent cisplatin (acute and delayed phases), radiation, opioids, copper sulphate, apomorphine, motion and electrical stimulation of abdominal vagal afferents. Species differences in response to NK1 receptor antagonists and species-specific iso-forms of the receptor are discussed and the potential implications for transfer of data from these animal models to humans reviewed. The spectrum of antiemetic effects against stimuli acting via both peripheral and centrally acting emetic stimuli, a requirement for brain penetration and blockade of emesis by microinjection of antagonists into the brain stem all support a central site of action with the nucleus tractus solitarius and the vicinity of the Botzinger complex being the favoured locations although definitive studies are awaited. Evidence for a contribution from a peripheral site in the delayed phase of cytotoxic druginduced emesis is reviewed. The unique pre-clinical profile and especially the observation that NK1, receptor antagonists could block both the acute and delayed phase of cisplatin-induced emesis prompted clinical trials of a number of agents [CJ11974 (ezlopitant), GR205171 (vofopitant), MK869/L754030 (aprepi-tant)] in patients undergoing chemotherapy. These studies and others in motion and post-operative nausea and vomiting are reviewed in detail. In general the trials in chemotherapy show NK1 receptor antagonists have demonstrable efficacy against acute (first 24 h after therapy) emesis when given alone and enhance the efficacy of 5-hydroxytryptamine3 receptor antagonists and dexamethasone when given in combination. Of particular clinical significance is the efficacy of NK1 receptor antagonists given in combination with dexamethasone to reduce emesis in the delayed phase (days 2–5) as this phase of emesis is poorly con trolled using current treatments. Efficacy against nausea has been reported but to date the effects appear less clear than against emesis and further studies are required. The availability of NK1 receptor antagonists in the clinic will provide a useful tool to further investigate the involvement of NK1 receptors in emesis and to explore the roles of central and peripheral substance P in health and disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alfieri AB, Cubbedu LX (2000) Role of NK1, receptors on cisplatin-induced nephrotoxicity in the rat. Naunyn-Schmiedeberg’s Arch Pharmacol 361: 334–338

    Article  CAS  Google Scholar 

  • Alfieri AB, Gardner CJ (1995) The NK1 antagonist GR203040 inhibits cyclophosphamide-induced damage in the rat and ferret bladder. Gen Pharmacol 29: 245–250

    Google Scholar 

  • Alumets J, Hakanson R, Ingemansson S et al. (1977) Substance P and 5-HT in granules isolated from an intestinal argentaffin carcinoid. Histochemistry 52: 217–222

    Article  PubMed  CAS  Google Scholar 

  • Amin AH, Crawford TBB, Gaddum JH (1954) The distribution of substance P and 5-hydroxytryptamine in the central nervous system of the dog. J Physiol (Lond) 126: 596–618

    CAS  Google Scholar 

  • Andresen MC, Kunze DL (1994) Nucleus tractus solitarius—gateway to neural circulatory control. Ann Rev Physiol 56: 93–116

    Article  CAS  Google Scholar 

  • Andrews PLR (1992) Physiology of nausea and vomiting. Br J Anaesth 69:2S-19S Andrews PLR (1994) 5-HT3 receptor antagonists and antiemesis. In: King PD, Jones BJ, Sanger GJ (eds) 5-Hydroxytryptamine-3 Receptor Antagonists. CRC Press, Boca Raton, USA, pp 255–317

    Google Scholar 

  • Andrews PLR (1999) Postoperative nausea and vomiting. In: Herbert MK, Holzer P, Roewer N (eds) Problems of the Gastrointestinal Tract in Anesthesia, the Perioperative Period, and Intensive Care. Springer, Berlin, pp 267–288

    Chapter  Google Scholar 

  • Andrews PLR (2003) Approaching and understanding of the mechanism of post-operative nausea and vomiting. In: Strunin L, Rowbotham D, Miles A (eds) The Effective Prevention and Managemnt of Post-operative Nausea and Vomiting. Aesculapius Medical Press, London, UK, pp 3–28

    Google Scholar 

  • Andrews PLR, Bhandari P (1993) Resinferatoxin, an ultrapotent capsaicin analogue, has anti-emetic properties in the ferret. Neuropharmacology 32: 799–806

    Article  PubMed  CAS  Google Scholar 

  • Andrews PLR, Davis CJ (1995) The physiology of emesis induced by anti-cancer therapy. In: Reynolds DJM, Andrews PLR, Davis CJ (eds) Serotonin and the Scientific Basis of Anti-emetic Therapy. Oxford Clinical Communications, Oxford, UK, pp 25–49

    Google Scholar 

  • Andrews PLR, Davis CJ, Bingham S et al. (1990) The abdominal visceral innervation and the emetic reflex: pathways, pharmacology, and plasticity. Can J Physiol Pharmacol 68: 325–345

    Article  PubMed  CAS  Google Scholar 

  • Andrews PLR, Hawthorn J (1987) Evidence for an extra-abdominal site of action for the 5-HT3 receptor antagonist BRL24924 in the inhibition of radiation-evoked emesis in the ferret. Neuropharmacology 26: 1367–1370

    Article  PubMed  CAS  Google Scholar 

  • Andrews PLR, Hawthorn J (1988) The neurophysiology of vomiting. Clin Gastroenterol 2: 141–168

    CAS  Google Scholar 

  • Andrews PLR, Kovacs M, Watson JW (2001) The anti-emetic action of the neurokinin-1 receptor antagonist CP-99,994 does not require the presence of the area postrema in the dog. Neurosci Lett 314: 102–104

    Article  PubMed  CAS  Google Scholar 

  • Andrews PLR, Naylor RJ, Joss RA (1998) Neuropharmacology of emesis and its relevance to anti-emetic therapy. Consensus and controversies. Support Care Cancer 6: 197–203

    Article  PubMed  CAS  Google Scholar 

  • Andrews PLR, Okada F, Woods AJ et al. (2000) The emetic and anti-emetic effects of the capsaicin analogue resiniferatoxin in Suncus murinus, the house musk shrew. Br J Pharmacol 130: 1247–1254

    Article  PubMed  CAS  Google Scholar 

  • Andrews PLR, Rapeport WG and Sanger GJ (1988) Neuropharmacology of emesis induced by anti-cancer therapy. Trends Pharmacal Sci 9: 334–341

    Article  CAS  Google Scholar 

  • Andrews PLR, Torii Y, Saito H et al. (1996) The pharmacology of the emetic response to upper gastrointestinal tract stimulation in Suncus murinus. Eur J Pharmacol 307: 305–313

    Article  PubMed  CAS  Google Scholar 

  • Andrews PLR, Davis CJ (1993) The mechanism of emesis induced by anti-cancer therapies. In: Andrews PLR, Sanger GJ (eds) Emesis in Anti-cancer Therapy: Mechanisms and Treatment. Chapman and Hall Medical, London, UK, pp 113–161

    Google Scholar 

  • Apfel CC, Katz MH, Kranke P et al. (2002) Volatile anaesthetics may be the main cause of early but not delayed postoperative vomiting: a random controlled trial of factorial design. Br J Anaesth 88: 1–10

    Article  Google Scholar 

  • Ariumi H, Saito R, Nago S et al. (2000) The role of tachykinin NK-1 receptors in the area postrema offerrets in emesis. Neurosci Lett 286: 123–126

    Article  PubMed  CAS  Google Scholar 

  • Armstrong DM, Pickel VM, Joh TH et al. (1981) Immunocytochemical localization of catecholamine-synthesizing enzymes and neuropeptides in area postrema and medial nucleus tractus solitarius of rat brain. J Comp Neurol 196: 505–517

    Article  PubMed  CAS  Google Scholar 

  • Armstrong DM, Pickel VM, Reis DJ (1982) Electron microscopic immunocytochemical localization of substance P in the area postrema of rat. Brain Res 243: 141–146

    Article  PubMed  CAS  Google Scholar 

  • Arunlakshana O, Schild HO (1959) Some quantitative uses of drug antagonists. Br J Pharmacol 14: 48–58

    CAS  Google Scholar 

  • Barnes JM, Barnes NM, Costall B et al. (1988) Reserpine, para-chlorophenylalanine and fenfluramine antagonise cisplatin-induced emesis in the ferret. Neuropharmacology 27: 783–790

    Article  PubMed  CAS  Google Scholar 

  • Bartho L, Holzer P (1985) Search for a physiological role of substance P in gastrointestinal motility. Neuroscience 16: 1–32

    Article  PubMed  CAS  Google Scholar 

  • Baude A, Lanoir J, Vernier P et al. (1989) Substance P-imm uno-reactivity in the dorsal medial region of the medulla in the cat: effects of nodosectomy. J Chem Neuroanat 2: 67–81

    PubMed  CAS  Google Scholar 

  • Beattie DT, Beresford IJ, Connor HE et al. (1995) The pharmacology of GR203040, a novel, potent and selective non-pep tide tachykinin NK1 receptor antagonist. Br J Pharmacol 116: 3149–3157

    Article  PubMed  CAS  Google Scholar 

  • Beleslin DB, Krstic SK (1987) Further studies on nicotine-induced emesis: nicotinic mediation in area postrema. Physiol Behav 39: 681–686

    Article  PubMed  CAS  Google Scholar 

  • Bertaccini G, Cei JM, Erspamer V (1965) Occurrence of physalaemin in extracts of the skin of Physalaemus fuscumaculatus and its pharmacological actions of extravascular smooth muscle. Br J Pharmacol 25: 363–379

    CAS  Google Scholar 

  • Bhandari P, Bingham S, Andrews PL (1992) The neuropharmacology of loperarnide-induced emesis in the ferret: the role of the area postrema, vagus, opiate and 5-HT3 receptors. Neuropharmacology 31: 735–742

    Article  PubMed  CAS  Google Scholar 

  • Bianchi AL, Grelot L, Miller AD et al. (1992) Mechanisms and Control of Emesis. Colloque INSERM: John Libbey Euro text, France

    Google Scholar 

  • Blackshaw LA, Dent J (1997) Lower oesophageal sphincter responses to noxious oesophageal chemical stimuli in the ferret: involvement of tachykin in receptors. J Auton Nerv Syst 66: 189–200

    Article  PubMed  CAS  Google Scholar 

  • Blondeau C, Clerc N, Baude A (2002) Neurokinin-1 and neurokinin-3 receptors are expressed in vagal efferent neurons that innervate different parts of the gastro-intestinal tract. Neuroscience 110: 339–349

    Article  PubMed  CAS  Google Scholar 

  • Boissonade FM, Davison JS, Egizii R et al. (1996) The dorsal vagal complex of the ferret: anatomical and immunohistochemical studies. Neurogastroenterol Motil 8: 255–272

    Article  PubMed  CAS  Google Scholar 

  • Bolser DC, DeGennaro FC, O’Reilly SO et al. (1997) Central antitussive activity of the NK1 and NK2 tachykinin receptor antagonist, CP-99,994 and SR48968, in the guinea-pig and cat. Br J Pharmacol 121: 165–170

    Article  PubMed  CAS  Google Scholar 

  • Borison HL, Wang SC (1953) Physiolog y and pharmacology of vomiting. Pharmacol Rev 5: 193–230

    PubMed  CAS  Google Scholar 

  • Bountra C, Bunce K, Dale T et al. (1993) Anti-emetic profile of a non-peptide neurokinin NK1 receptor antagonist, CP-99,994, in ferrets. Eur J Pharmacol 249: R3–R4

    Article  PubMed  CAS  Google Scholar 

  • Boyle S, Guard S, Higginbottom M, Horwell DC et al. (1994) Rationa l design of high affinity tachykinin NK1 receptor antagonists. Bioorg Med Chem 2: 357–370

    Article  PubMed  CAS  Google Scholar 

  • Brimijoin S, Lundberg JM, Brodin E et al. (1980) Axonal transport of substance P in the vagus and sciatic nerve s of the guinea pig. Brain Res 191: 443–457

    Article  PubMed  CAS  Google Scholar 

  • Campos D, Rodrigues-Pereira J, Reinhardt RR et al. (2001). Prevention of cisplatin-in-duced emesis by the oral neurokinin-1 antagonist, MK-869, in combination with granisteron and dexamethasone or with dexamethasone alone. J Clin Oncol 19: 1759–1767

    PubMed  CAS  Google Scholar 

  • Carpenter DO, Briggs DB, Strominger N (1983a) Responses of neuron s of canine area postrema to neurotransmitters and peptides. Cell Mol Neurobiol 3: 113–126

    Article  PubMed  CAS  Google Scholar 

  • Carpenter DO, Briggs DB, Strominger N (1983b) Responses of neuro ns of the canine area postrema to neurotransmitters and peptides. Final Report No. USAFSAM-tr-83-37 (October 1981-September 1982), USAF School of Aerospace Medicine, Texas and SE Center for Electrical Engineering Education, Florida, USA

    Google Scholar 

  • Carpenter DO, Briggs DB, Strominger N (1984) Behavioural and electrophysiological studies of peptide-induced emesis in dogs. Fed Proc 43: 2952–2954

    PubMed  CAS  Google Scholar 

  • Carpenter DO (1990) Neural mechanism of emesis. Can J Physiol Pharmacol 68: 230–236

    Article  PubMed  CAS  Google Scholar 

  • Carraway R, Leeman SE (1979) The amino acid sequence of bovine hypothalamic substance P. Identity to substance P from colliculi and small intestine. J Biol Chem 254: 2944–2945

    PubMed  CAS  Google Scholar 

  • Chang MM, Leeman SE (1970) Isolation of a sialogogic peptide from bovine hypothalamic tissue and its characterization as substance P. J Biol Chem 245: 4784–4790

    PubMed  CAS  Google Scholar 

  • Chang MM, Leeman SE, Niall HD (1971) Amino acid sequence of substance P. Nature New Biol 232: 86–87

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Saito H, Matsuki N et al. (1997) Ethanol-induced emesis in the house musk shrew, Suncus murinus. Life Sci 60: 253–261

    Article  PubMed  CAS  Google Scholar 

  • Chigr F, Najimi M, Leduque P et al. (1991) Anatomical distribution of substance P-like immunoreactive neurons in the human brainstem during the first postnatal year. Brain Res Bull 26: 515–523

    Article  PubMed  CAS  Google Scholar 

  • Cocquyt V, Van Belle S, Reinhardt RR et al. (2001) Comparison of L-758,298, a prodrug for the selective neurokinin-1 antagonist, L-754-030, with ondansetron for the prevention of cisplatin-induced emesis. Eur J Cancer 37: 835–842

    Article  PubMed  CAS  Google Scholar 

  • Colby ED, McCarthy LE, Borison HL (1981) Emetic action of xylazine on the chemoreceptor trigger zone for vomiting in cats. J Vet Pharmacol Ther 4: 93–96

    Article  PubMed  CAS  Google Scholar 

  • Cooper PE, Fernstrom MH, Rorstad OP et al. (1981) The regional distribution of somatostatin, substance P and neurotensin in human brain. Brain Res 218: 219–232

    Article  PubMed  CAS  Google Scholar 

  • Crampton GH (1990) Neurophysiology of motion sickness. In: Crampton GH (ed) Motion and Space Sickness. CRC Press, Boca Raton, FL, USA, pp 29–44

    Google Scholar 

  • Cubeddu LX (1996) Serotonin mechanisms in chemotherapy-induced emesis in cancer patients. Oncology 53: 18–25

    Article  PubMed  Google Scholar 

  • Davison JS, Oland L, Boissonade F (1995) The effects of centrally injected NK1 receptor antagonists on emesis in the ferret. Gastroenterology 108: A589

    Google Scholar 

  • Del Fiacco M, Dessi ML, Levanti MC (1983) Immunohistochemical localization of substance P in the human central nervous system: the brainstem and hippocampal formation. In: Skrabanek P, Powell D (eds) Substance P. Proceedings of the International Symposium-Dublin 1983. Boole Press, Dublin, Ireland, pp 261–262

    Google Scholar 

  • Diemunsch P, Schoeffler P, Bryssine B et al. (1999) Antiemetic activity of the NK1 receptor antagonist GR205171 in the treatment of established postoperative nausea and vomiting after major gynaecological surgery. Br J Anaesth 82: 274–276

    Article  PubMed  CAS  Google Scholar 

  • Douglas FL, Palkovits M, Brownstein MJ (1982) Regional distribution of substance P-like immunoreactivity in the lower brainstem of the rat. Brain Res 245: 376–378

    Article  PubMed  CAS  Google Scholar 

  • Douglas WW, Feldberg W, Paton WDM et al. (1951) Distribution of histamine and substance P in the wall of the dog’s digestive tract. J Physiol (Lond) 115: 163–176

    CAS  Google Scholar 

  • Erspamer V, Glasser A (1963) The action of eledoisin on systemic arterial blood pressure of some experimental animals. Br J Pharmacol 20: 516–527

    CAS  Google Scholar 

  • Fauser AA, Fellhauer M, Hoffmann M et al. (1999) Guidelines for anti-emetic therapy: acute emesis. Eur J Cancer 35: 361–370

    Article  PubMed  CAS  Google Scholar 

  • Florczyk AP, Schurig JE, Bradner WT (1982) Cisplatin-induced emesis in the ferret: a new animal model. Cancer Treat Rep 66: 187–189

    PubMed  CAS  Google Scholar 

  • Forster ER, Palmer JL, Bedding AW et al. (1994) Syrup of ipecacuanha-induced nausea and emesis is mediated by 5-HT3 receptors in man. J Physio1 (Lond) 477: 72P

    Google Scholar 

  • Fukuda H, Koga T (1995) Activation of peripheral and/or central chemoreceptors changes retching activities of Bötzinger complex neurons and induces expulsion in decerebrate dogs. Neurosci Res 23: 171–183

    Article  PubMed  CAS  Google Scholar 

  • Fukuda H, Koga T, Furukawa N et al. (1998) The tachykinin NK1 receptor antagonist GR205171 prevents vagal stimulation-induced retching but not neuronal transmission from emetic vagal afferents to solitary nucleus neurons in dogs. Brain Res 802: 221–231

    Article  PubMed  CAS  Google Scholar 

  • Fukuda H, Koga T, Furukawa N et al. (1999a) The tachykinin NK1 receptor antagonist GR205171 abolishes the retching activity of neurons comprising the central pattern generator for vomiting in dogs. Neurosci Res 33: 25–32

    Article  PubMed  CAS  Google Scholar 

  • Fukuda H, Nakamura E, Koga T et al. (1999b) The site of the anti-emetic action of tachykinin NK1 receptor antagonists may exist in the medullary area adjacent to the semicompact part of the nucleus ambiguus. Brain Res 818: 439–449

    Article  PubMed  CAS  Google Scholar 

  • Fukui H, Yamamoto M (1999) Methotrexate produces delayed emesis in dogs: a potential model of delayed emesis induced by chemotherapy. Eur J Pharmacol 372: 261–267

    Article  PubMed  CAS  Google Scholar 

  • Fumoleau P, Graham E, Giovanni M et al. (1998) Control of acute cisplatin-induced emesis and nausea with the NK1 receptor antagonist GR205171 in combination with ondansetron. Proc Am Soc Clinical Oncol 17: 225

    Google Scholar 

  • Furukawa N, Fukuda H, Hatano M et al. (1998) A neurokinin-1 receptor antagonist reduced Hypersalivation and gastric contractility related to emesis in dogs. Am J Physiol 275: G1l93–GI201

    Google Scholar 

  • Furukawa N, Hatano M, Fukuda H (2001) Glutamatergic vagal afferents may mediate both retching and gastric adaptive relaxation in dogs. Auton Neurosci Basic Clin 93: 21–30

    Article  CAS  Google Scholar 

  • Gamse R, Lembeck F, Cuello AC (1979) Substance P in the vagus nerve. Immunochemical and immunohistochemical evidence for axoplasmic transport. Naunyn-Schmiedeberg’s Arch Pharmacol 306: 37–44

    Article  CAS  Google Scholar 

  • Gamse R, Mroz E, Leeman SE et al. (1978) The intestine as source of immunoreactive sustance P in plasma of the cat. Naunyn-Schmiedeberg’s Arch Pharmacol 305: 17–21

    Article  CAS  Google Scholar 

  • Gardner C, Perren M (1998) Inhibition of anaesthetic-induced emesis by a NK1 or 5-HT3 receptor antagonist in the house musk shrew, Suncus murinus. Neuropharmacology 37: 1643–1644

    Article  PubMed  CAS  Google Scholar 

  • Gardner CT, Armour DR, Beattie DT et al. (1996) GR 205171: a novel antagonist with high affinity for the tachykinin NK1 receptor, and potent broad-spectrum anti-emetic activity. Regul Pept 65: 45–53

    Article  PubMed  CAS  Google Scholar 

  • Gardner CJ, Bountra C, Nbunce KT et al. (1994) Anti-emetic activity of neurokinin NK1 receptor antagonists is mediated centrally in the ferret. Br J Pharmacoll 12: 516P

    Google Scholar 

  • Gardner CJ, Twissell DJ, Dale TJ et al. (1995) The broad-spectrum anti-emetic activity of the novel non-peptide tachykinin NK1 receptor antagonist GR203040. Br J Pharmacol 116: 3158–3163

    Article  PubMed  CAS  Google Scholar 

  • Garret C, Carruette A, Fardin V et al. (1991) Pharmacological properties of a potent and selective nonpeptide substance P antagonist. Proc Nat! Acad Sci USA 88: 10208–10212

    Article  PubMed  CAS  Google Scholar 

  • Gerard NP, Garraway LA, Eddy RL et al. (1991) Human substance Preceptor (NK-l): organization of the gene, chromosome localization, and functional expression of eDNA clones. Biochemistry 30: 10640–10646

    Article  PubMed  CAS  Google Scholar 

  • Gesztesi ZS, Song D, White PF (1998) Comparison of a new NK-1 antagonist (CPI22,721) to ondansetron in the prevention of postoperative nausea and vomiting. Anesth Analg 86: S32

    Article  Google Scholar 

  • Gesztesi ZS, Scudieri PE, White PF et al. (2000) Substance P (neurokinin-1) antagonists prevents postoperative vomiting after abdominal hysterectomy procedures. Anesthesiology 93: 931–937

    Article  PubMed  CAS  Google Scholar 

  • Girod V, Dapzol J, Bouvier M et al. (2002) The COX inhibitors indomethacin and meloxi-cam exhibit anti-emetic activity against cisplatin-induced emesis in piglets. Neuropharmacology 42: 428–436

    Article  PubMed  CAS  Google Scholar 

  • Gitter BD, Bruns RF, Howbert JJ et al. (1995) Pharmacological characterization of LY303870: a novel, potent and selective nonpeptide substance P (neurokinin-1) receptor antagonist. J Pharmacol Exp Ther 275: 737–744

    PubMed  CAS  Google Scholar 

  • Gonsalves S, Watson J, Ashton C (1996) Broad spectrum antiemetic effects of CP-122,72I, a tachykinin NK1 receptor antagonist, in ferrets. Eur J Pharmacol 305: 181–185

    Article  PubMed  CAS  Google Scholar 

  • Gralla RJ, Itri LM, Pisko SE et al. (1981) Antiemetic efficacy of high-dose metoclopramide: randomized trials with placebo and prochlorperazine in patients with chemotherapy-induced nausea and vomiting. New Engl J Med 305: 905–909

    Article  PubMed  CAS  Google Scholar 

  • Gray PA, Janczewski WA, Mellen N et al. (2001) Normal breathing requires pre-Bötzlnger complex neurokinin-l receptor expressing neurons. Nat Neurosci 4: 927–930

    Article  PubMed  CAS  Google Scholar 

  • Grelot L, Bianchi AL (1997) Multifunctional medullary respiratory neurons. In: Miller AD, Bianchi AL, Bishop BP (eds) Neural Control of Respiratory Muscles. CRC Press, Boca Raton, USA, pp 297–304

    Google Scholar 

  • Grelot L, Dapzol J, Esteve E et al. (1998) Potent inhibition of both the acute and delayed emetic responses to cisplatin in piglets treated with GR205171, a novel highly selective tachykinin NK1 receptor antagonist. Br J Pharmacol 124: 1643–1650

    Article  PubMed  CAS  Google Scholar 

  • Grelot L, Le Stunff H, Milano S et al. (1996) Repeated administration of the 5-HT3 receptor antagonist granisetron reduces the incidence of delayed cisplatin-induced emesis in the piglet. J Pharmacol Exp Ther 279: 255–261

    PubMed  CAS  Google Scholar 

  • Grelot L, Miller AD (1997) Neural control of respiratory muscle activation during vomiting. In: Miller AD, Bianchi AL, Bishop BP (eds). Neural Control of the Respiratory Muscles. CRC Press, Boca Raton, USA, pp 239–248

    Google Scholar 

  • Gross PM, Wainman DS, Shaver SW et al. (1990) Metabolic activation of efferent pathways from the rat area postrema. Am J Physiol 258: R788–R797

    PubMed  CAS  Google Scholar 

  • Gylys JA, Doran KM, Buyniski JP (1979) Antagonism of cisplatin induced emesis in the dog. Res Commun Chem Pathol Pharmacol 23: 61–68

    PubMed  CAS  Google Scholar 

  • Hakanson R, Beding B, Ljungqvist A et al. (1988) Blockade of sensory nerve mediated contraction in rabbitiris sphincter mediated by a series of novel tachykinin antagonist s. Regul Pept 20: 99–105

    Article  PubMed  CAS  Google Scholar 

  • Hale JJ, Mills SG, MacCoss M et al. (1998) Structural optimization affording 2-(R)-(1-(R)3,5-Bis (trifluoromethy1)pheylethoxy)-3-(S)-(4-fluoro )pheny1-4-(3-oxo-1,2,4-triazol-5-yl)methylmorpholone, a potent, orally active, long-acting morpholine acetyl human NK-1 receptor antagonist. J Med Chem 41: 4607–4614

    Article  PubMed  CAS  Google Scholar 

  • Harding RK, Hugenholtz H, Keaney M et al. (1985) Discrete lesions of the area postrema abolish radiation-induced emesis in the dog. Neurosci Lett 53: 95–100

    Article  PubMed  CAS  Google Scholar 

  • Harding RK, Hugenholtz H, Kucharczyk J et al. (1987) Central mechanisms for apomorphine-induced emesis in the dog. Eur J PharmacoI144:61-65 Hargreaves R (2002) Imaging substance P (NK1) receptors in the living human bra in using positron emission tomography. J Clin Psychiatry 63(Supp1 11): 18–24

    Google Scholar 

  • Harmar AJ (1984) Three tachykinins in mammalian brain. Trends Neurosci 7: 57–60

    Article  CAS  Google Scholar 

  • Hasegawa M, Sasaki T, Sadakane K et al. (2002) Studies for the emetic mechanisms of ipecac syrup (TJN-119) and its active components in ferrets: involvement of 5-hydroxytryptamine receptors. Jpn J Pharmacol 89: 113–119

    Article  PubMed  CAS  Google Scholar 

  • Hawthorn J, Ostler KJ, Andrews PLR (1988) The role of the abdominal visceral innervation and 5-hydroxytryptamine M-receptors in vomiting induced by the cytotoxic drugs cyclophosphamide and cis-platin in the ferret. QJ Exp Physiol 73: 7–21

    CAS  Google Scholar 

  • Heitz P, Polak JM, Timson CM et al. (1976) Enterochromaffin cells as the endocrine source of gastrointestinal substance P. Histochemistry 49: 343–347

    Article  PubMed  CAS  Google Scholar 

  • Helke C, Hill KM (1988) Immunohistochemical study of neuropeptides in vagal and glossopharyngeal afferent neurons in the rat. Neuroscience 26: 539–551

    Article  PubMed  CAS  Google Scholar 

  • Helke CJ, Shults CW, Chase TN et al. (1984) Autoradiographic localization of substance P receptors in rat medulla: effect of vagotomy and nodose ganglionectomy. Neuroscience 12: 215–223

    Article  PubMed  CAS  Google Scholar 

  • Hesketh PJ, Gralla RJ, Webb RT et al. (1999) Randomized phase II study of the neurokinin 1 receptor antagonist CJ-11974 in the control of cisplatin-induced emesis. J Clin On-col 17: 338–343

    CAS  Google Scholar 

  • Hesketh PJ, Grunberg SM, Gralla RJ et al. (2003a) The oral neurokinin-1 antagonist aprepitant for the prevention of chemotherapy-induced nausea and vomiting: A multinational, randomised, double blind, placebo-controlled trial in patients receiving high-dose cisplatin-the aprepitant protocol 052 study group. J Clin Oncol 21: 4112–4119

    Article  PubMed  CAS  Google Scholar 

  • Hesketh PJ, Van Belle S, Aapro M et al. (2003b) Differential involvement of neurotransmitter s through the time course of cisplatin-induced emesis as revealed by therapy with specific receptor antagonists. Eur J Cancer 39: 1074–1080

    Article  PubMed  CAS  Google Scholar 

  • Hikasa Y, Akiba T, Iino Y et al. (1992) Central alpha-adrenoceptor subtypes involved in the emetic pathway in cats. Eur J Pharmacol 229: 241–251

    Article  PubMed  CAS  Google Scholar 

  • Holzer P (1998) Implications of tachykinins and calcitonin gene-related peptide in inflammatory bowel disease. Digestion 59: 269–283

    Article  PubMed  CAS  Google Scholar 

  • Hornby PJ (2001) Receptors and transmission in the bra in-gut axis: potential for novel therapies. II. Excitatory amino acid receptors in the brain gut axis. Am J Physiol 2001: G1055–G1060

    Google Scholar 

  • Ihara H, Nakanishi S (1990) Selective inhibition of expression of the substance Preceptor mRNA in pancreatic acinar AR42J cells by glucocorticoids. J Biol Chem 265: 22441–22445

    PubMed  CAS  Google Scholar 

  • Janes RJ, Muhonen T, Karjalainen UP et al. (1998) Urinary 5-hydroxyindoleacetic acid (5HIAA) excretion during multiple-day high-dose chemotherapy. Eur J Cancer 34: 196–198

    Article  PubMed  CAS  Google Scholar 

  • Javid FA, Naylor RJ (2002) The effect of serotonin and serotonin receptor antagonists on motion sickness in Suncus murinus. Pharmacol Biochem Behav 73: 979–989

    Article  PubMed  CAS  Google Scholar 

  • Jenkinson KM, Southwell BR, Furness JB (1999) Two affinities for a single antagonist at the neuronal NK1 tachykinin receptor: evidence from quantitation of receptor endocytosis. Br J Pharmacol 126: 131–136

    Article  PubMed  CAS  Google Scholar 

  • Kakimoto S, Saito H, Matsuki N (1997) Antiemetic effects of morphine on motion-and drug-induced emesis in Suncus murinus. Biol Pharm Bull 20: 739–742

    Article  PubMed  CAS  Google Scholar 

  • Kalia M, Fuxe K, Hokfelt T et al. (1984) Distribution of neuropeptide immunoreactive nerve terminals within the subnuclei of the nucleus of the tractus solitarius of the rat. J Comp Neurol 222: 409–444

    Article  PubMed  CAS  Google Scholar 

  • Kan KKW, Jones RL, Ngan MP et al. (2003a) Action of prostanoids on the emetic reflex of Suncus murinus (the house musk shrew). Eur J Pharmacol 477: 247–251

    Article  PubMed  CAS  Google Scholar 

  • Kan KKW, Jones RL, Ngan MP et al. (2003b) Emetic action of the TP prostanoid receptor agonist, U46619, in Suncus murinus (the house musk shrew). Eur J Pharmacol 482: 297–304

    Article  PubMed  CAS  Google Scholar 

  • Keast JR, Furness JB, Costa M (1985) Distribution of certain peptide-containing nerve fibres and endocrine cells in the gastrointestinal mucosa in five mammalian species. J Comp Neurol 236: 403–422

    Article  PubMed  CAS  Google Scholar 

  • King GL (1990) Animal models in the study of vomiting. Can J Physio1 Pharmaco1 68: 260–268

    Article  CAS  Google Scholar 

  • Knox AP, Strominger NL, Battles AH et al. (1993) Behavioral studies of emetic sensitivity in the ferret. Brain Res Bull 31: 477–484

    Article  PubMed  CAS  Google Scholar 

  • Koch KL (1995) Approach to the patient with nausea and vomiting. In: Yamada T (ed) Textbook of Gastroenterology vol 1. Lippincott, Philadelphia, USA, pp 731–749

    Google Scholar 

  • Kowicki ZK, Hornby PJ (2000) Substance P in the dorsal motor nucleus of the vagus evokes gastric motor inhibition via neurokinin-1 receptor in rat. J Pharmacol Exp Ther 293: 214–221

    Google Scholar 

  • Kris MG, Gralla RJ, Clark RA (1985) Incidence, course, and severity of delayed nausea and vomiting following the administration of high-dose cisplatin. J Clin Oncol 3: 1379–1384

    PubMed  CAS  Google Scholar 

  • Kris MG, Gralla RJ, Tyson LB et al. (1989) Controlling delayed vomiting: double-blind randomized trial comparing placebo, dexamethasone alone, and metoclopramide plus dexamethsaone in patienst receiving cisplatin. J Clin Oncol 7: 108–114

    PubMed  CAS  Google Scholar 

  • Kris MG, Pisters KMW, Hinkley L (1994) Delayed emesis following anti-cancer chemo therapy. Support Care Cancer 2: 297–300

    Article  PubMed  CAS  Google Scholar 

  • Kris MG, Radford J, Pizzo BA et al. (1997) Control of emesis following cisplatin by CP122, 721, a selective NK1, receptor antagonist. J Natl Cancer Inst 89: 817–818.

    Article  PubMed  CAS  Google Scholar 

  • Lang IM (1990) Digestive tract motor correlates of vomiting and nausea. Can J Physiol Pharmacol 68: 242–253

    Article  PubMed  CAS  Google Scholar 

  • Lernbeck, F (1986) A network of defence. In: Henry JL, Couture R, Cuello AC, Pelletier G, Quirion R, Regoli D (eds) Substance P and Neurokinins—Montreal’ 86. Springer, New York, Berlin, Heidelberg, pp 380–386

    Google Scholar 

  • Lien HC, Sun WM, Chen YH et al. (2003) Effects of ginger on motion sickness and gastric slow-wave dysrhythmias induced by circular vection. Am J Physiol 284: G481–G489

    CAS  Google Scholar 

  • Lindh B, Dalsgaard CJ, Elfvin LG et al. (1983) Evidence of substance P immunoreactive neurons in dorsal root ganglia and vagal ganglia projecting to the guinea-pig pylorus. Brain Res 269: 365–369

    Article  PubMed  CAS  Google Scholar 

  • Lindstrom PA, Brizzee KR (1962) Relief of intractable vomiting from surgical lesion in the area postrema. J Neurosurg 19: 228–236

    Article  PubMed  CAS  Google Scholar 

  • Ljungdahl A, Hokfelt T, Nilsson G (1978) Distribution of substance P-like immunoreactivity in the central nervous system of the rat. 1. Cell bodies and nerve terminals. Neuroscience 3: 861–943

    Article  PubMed  CAS  Google Scholar 

  • Lucot JB (1989) Blockade of 5-hydroxytryptamine3 receptors prevents cisplatin-induced but not motion-or xylazine-induced emesis in the cat. Pharmacol Biochem Behav 32: 207–210

    Article  PubMed  CAS  Google Scholar 

  • Lucot JB (1994) Antiemetic effects of flesinoxan in cats: Comparisons with 8-hydroxy-2( di-n-propylamino)tetralin. Eur J Pharmacol 253: 53–60

    Article  PubMed  CAS  Google Scholar 

  • Lucot JB, Obach RS, McLean S et al. (1997) The effect of CP-99,994 on the responses to provocative motion in the cat. Br J Pharmacol 120: 116–120

    Article  PubMed  CAS  Google Scholar 

  • Lundberg JM, Hökfelt T, Kewenter J et al. (1979) Substance P-, VIP-and enkephalin-like immunoreactivity in the human vagus nerve. Gastroenterology 77: 468–471

    PubMed  CAS  Google Scholar 

  • Lundberg JM, Hokfelt T, Nilsson G et al. (1978) Peptide neurons in the vagus, splanchnic and sciatic nerves. Acta Physiol Scand 104: 499–501

    Article  PubMed  CAS  Google Scholar 

  • MacLean DB (1987) Adrenocorticotropin-adrenal regulation of transported substance P in the vagus nerve of the rat. Endocrinology 121: 1540–1547

    Article  PubMed  CAS  Google Scholar 

  • MacLean DB, Lewis SF (1984) Axoplasmic transport of somatostatin and substance P in the vagus nerve of the cat, guinea-pig and rat. Brain Res 307: 135–145

    Article  PubMed  CAS  Google Scholar 

  • MacLean DB, Wheeler F, Hayes K (1990) Basal and stimulated release of substance P from dissociated cultures of vagal sensory neurons. Brain Res 519: 308–314

    Article  PubMed  CAS  Google Scholar 

  • Maggi CA (1995) The mammalian tachykinin receptors. Gen Pharmacol 26: 911–944

    Article  PubMed  CAS  Google Scholar 

  • Maley BE (1985) The ultrastructural localization of enkephalin and substance P immunoreactivities in the nucleus tractus solitarii of the cat. J Comp Neurol 233: 490–496

    Article  PubMed  CAS  Google Scholar 

  • Maley BE, Elde R (1981) Localisation of substance P-like immunoreactivity in cell bodies of the feline dors al vagal nucleus. Neurosci Lett 27: 187–191

    Article  PubMed  CAS  Google Scholar 

  • Maley BE, Elde R (1982) Immunohistochemical localization of putative neurotransmitters within the feline nucleus tractus solitarii. Neuroscience 7: 2469–2490

    Article  PubMed  CAS  Google Scholar 

  • Maley BE, Newton BW, Howes KA et al. (1987) Immunohistochemical localization of substance P and enkephalin in the nucleus tractus solitarii of the rhesus monkey, Macaca Mulatta. J Comp Neurol 260: 483–490

    Article  PubMed  CAS  Google Scholar 

  • Martin WR (1983) Pharmacology of opioids. Pharmacol Rev 35: 283–323

    PubMed  CAS  Google Scholar 

  • Matsuki N, Ueno S, Kaji T et al. (1988) Emesis induced by cancer chemotherapeutic agents in the Suncus murinus: a new experimental model. Jpn J Pharmacol 48: 303–306

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto S, Kawasaki Y, Mikami M et al. (1999) Relationship between cancer chemotherapeutic drug-induced delayed emesis and plasma levels of substance P in two patients with small cell lung cancer. Jpn J Cancer Chemother 26: 535–538

    CAS  Google Scholar 

  • Maubach K, Hagan RM, Jones RSG (1994) Responses of neurones in the nucleus tractus solitarius to NK1 receptor agonists. Can J Physiol Pharmacol 72(Suppl 1): 460

    Google Scholar 

  • Maubach KA, Jones RS (1997) Electrophysiological characterisation of tachykinin receptors in the rat nucleus of the solitary tract and dorsal motor nucleus of the vagus in vitro. Br J Pharmacol 122: 1151–1159

    Article  PubMed  CAS  Google Scholar 

  • Maubach KA, Jones RSG, Stratton SC et al. (1995) Autoradiographic distribution of substance P binding sites in the brainstem of the rat and the ferret. Br J Pharmacol 116: 249P

    Google Scholar 

  • Mayer DJ (2000) Acupuncture: an evidence-based review of the clinical literature. Annu Rev Med 51: 49–63

    Article  PubMed  CAS  Google Scholar 

  • Mazzone SB, Geraghty DP (2000a) Characterization and regulation of tachykinin receptors in the nucleus tractus solitarius. Clin Exp Pharmacol Physiol 27: 939–942

    Article  PubMed  CAS  Google Scholar 

  • Mazzone SB, Geraghty DP (2000b) Respiratory actions of tachykinins in the nucleus of the solitary tract: characterization of receptors using selective agonists and antagonists. Br J Pharmacol 129: 1121–1131

    Article  PubMed  CAS  Google Scholar 

  • McAllister KHM, Pratt JA (1998) GR205171 blocks apomorphine and amphetamine-induced conditioned taste aversions. Eur J Pharmacol 353: 141–148

    Article  PubMed  CAS  Google Scholar 

  • McLean S, Ganong A, Seymour PA et al. (1993) Pharmacology of CP-99,994; a nonpeptide antagonist of the tachykin in neurokinin-1 receptor. J Pharmacol Exp Ther 267: 472–479

    PubMed  CAS  Google Scholar 

  • McLean S, Ganong A, Seymour PA et al. (1996) Characterization of CP-122,721; a non peptide antagonist of the neurokinin NK1 receptor. J Pharmacol Exp Ther 277: 900–908

    PubMed  CAS  Google Scholar 

  • McRitchie DA, Tork I (1994) Distribution of substance P-like immunoreactive neurones and terminals throughout the nucleus of the solitary tract in the human brain stem. J Comp Neurol 343: 83–101

    Article  PubMed  CAS  Google Scholar 

  • Megens AAHP, Ashton D, Vermeire JCA et al. (2002) Pharmacological profile of (2rtrans)-4-[1-[3,5-bis(tritluromethyl)benzoyl]-2-(phenylmethyl)-4-piperidinyl]-n-(2,6dimethylphenyl)-I-acetamide (s)-hydroxybutanedioate (RI16301), an orally and centrally active neurokinin-l receptor antagonist. J Pharmacol Exp Ther 302: 696–709

    Article  PubMed  CAS  Google Scholar 

  • Mele PC, McDonough JR, McLean DB et al. (1992) Cisplatin-induced conditioned taste aversion: attenuation by dexamethasone but not zacopride or GR38032F. Eur J Pharmacol 218: 229–236

    Article  PubMed  CAS  Google Scholar 

  • Milano S, Blower P, Romain D et al. (1995) The piglet as a suitable animal model for studying the delayed phase of cisplatin-induced emesis. J Pharmacol Exp Ther 274: 951–961

    PubMed  CAS  Google Scholar 

  • Miller AD, Grelot L (1996) The neural basis of nausea and vomiting. In Yates BJ, Miller AD (eds) Vestibular Autonomic Regulation. CRC Press, Boca Raton, USA, pp 85–94

    Google Scholar 

  • Miller AD, Rowley HA, Roberts TPL et al. (1996) Human cortical activity during vestibular-and drug-induced nausea. Ann New York Acad Sci 781: 670–672

    Article  CAS  Google Scholar 

  • Minami M, Endo T, Kikuchi K et al. (1998) Antiemetic effects of sendide, a peptide tachykinin NK1, receptor antagonist, in the ferret. Eur J Pharmacol 363: 49–55

    Article  PubMed  CAS  Google Scholar 

  • Minami M, Endo T, Yokota H et al. (2001) Effects of CP-99,994, a tachykinin receptor antagonist, on abdominal afferent vagal activity in ferrets: evidence for involvement of NK1, and 5-HT3 receptors. Eur J Pharmacol 428: 215–220

    Article  PubMed  CAS  Google Scholar 

  • Miner WD, Sanger GJ, Turner DH (1987) Evidence that 5-hydroxytryptamine3 receptors mediate cytotoxic drug and radiation-evoked emesis. Br J Cancer 56: 159–162

    Article  PubMed  CAS  Google Scholar 

  • Minton N, Swift R, Lawlor C (1993) Ipecacuanha-induced emesis: a human model for testing anti-emetic drug activity. Clin Pharmacol Ther 54: 53–57

    Article  PubMed  CAS  Google Scholar 

  • Miolan JP, Niel JP (1988) Non-cholinergic ascending excitatory response in the cat small intestine: possible involvement of substance P. Neuropeptides 12: 243–248

    Article  PubMed  CAS  Google Scholar 

  • Morita M, Takeda N, Kubo T et al. (1988) Pica as an index of motion sickness in rats. ORL J Otorhinolaryngol Relat Spec 50: 188–192

    Article  PubMed  CAS  Google Scholar 

  • Morrow GR, Rosco JA, Hynes He et al. (1998) Progress in reducing anticipatory nausea and vomiting: a study of community practice. Supp Care Cancer 6: 46–50

    Article  CAS  Google Scholar 

  • Navari RM, Reinhardt RR, Gralla RJ et al. (1999) Reduction of cisplatin-induced emesis by a selective neurokinin-1 receptor antagonist. N Engl J Med 340: 190–195

    Article  PubMed  CAS  Google Scholar 

  • Navarra P, Martire M, del Carmine R et al. (1992) A dual effect of some 5-HT3 receptor antagonists on cisplatin-induced emesis in the pigeon. Toxicol Lett 64-65(Spec NO): 745–749

    Google Scholar 

  • Naylor RJ, Rudd JA (1996) Mechanisms of chemotherapy/radiotherapy-induced emesis in animal models. Oncology 53: 8–17

    Article  PubMed  Google Scholar 

  • Newton BW, Maley B, Traurig H (1985) The distribution of substance P, enkephalin, and serotonin immunoreactivities in the area postrema of the rat and cat. J Comp Neurol 234: 87–104

    Article  PubMed  CAS  Google Scholar 

  • Niel JP (1991) Rêle de la substance P dansb Ie contrôle nerveux de la motricité digestive. Association des physiologistes, Nancy (Septembre 1991): A65–A76

    Google Scholar 

  • Niemegeers CJ (1971) The apomorphine antagonism test in dogs. Experimental evidence and critical considerations on specific methodological criteria. Pharmacology 6: 353–364

    Article  PubMed  CAS  Google Scholar 

  • Niemegeers CJ (1982) Antiemetic specificity of dopamine antagonists. Psychopharmacology (Berl) 78: 210–213

    Article  CAS  Google Scholar 

  • Nussey SS, Hawthorn J, Page SR et al. (1988) Responses of plasma oxytocin and arginine vasopressin to nausea induced by apomorphine and ipecacuanha. Clin Endocrinol (Oxf) 28: 297–304

    Article  CAS  Google Scholar 

  • Otterson MF, Leming SC, Moulder JE (1997) Central NK1 receptors mediate radiation induced emesis. Gastroenterology 112: A801

    Google Scholar 

  • Paasonen MK, Vogt M (1956) The effect of drugs on the amounts of substance P and 5-hydroxytryptamine in mammalian brain. J Physiol (Lond) 131: 617–626

    CAS  Google Scholar 

  • Paton JF (1998) Importance of neurokinin-1 receptors in the nucleus tractus solitarii of mice for the integration of cardiac vagal inputs. Eur J Neurosci 10: 2261–2275

    Article  PubMed  CAS  Google Scholar 

  • Pearse AGE, Polak JM (1975) Immunochemical localization of substance P in mammalian intestine. Histochemistry 41: 373–375

    Article  PubMed  CAS  Google Scholar 

  • Pernow B (1951) Substamce P distribution in the digestive tract. Acta Physiol Scand 24: 97–102

    Article  PubMed  CAS  Google Scholar 

  • Pernow B (1983) Substance P. Pharmacol Rev 35: 85–141

    PubMed  CAS  Google Scholar 

  • Pernow B (1953) Studies on substance P. Purification, occurrence and biological actions. Acta Physiol Scand 29: 1–90

    Article  CAS  Google Scholar 

  • Pernow B, von Euler US (1961) Effect of intraventricular administration of substance P in the unanaesthetized cat. In: Stern P (ed) Proceedings of the Symposium on Substance P, Sarajevo. Scientific Society of Bosnia and Herzegovina, Yugoslavia, p 82

    Google Scholar 

  • Picard P, Regoli D, Couture R (1994) Cardiovascular and behavioural effects of centrally administered tachykinins in the rat: characterization of receptors with selective antagonists. Br J Pharmacol 112: 240–249

    Article  PubMed  CAS  Google Scholar 

  • Pickel VM, Armstrong D (1984) Ultrastructural localization of monoamines and peptides in rat area postrema. Fed Proc 43: 2949–2951

    PubMed  CAS  Google Scholar 

  • Poli-Bigelli S, Rodrigues-Pereira J, Carides, AD et al. (2003) Addition of the neurokinin 1 receptor antagonist aprepitant to standard antiemetic therapy improves control of chemotherapy-induced nausea and vomiting. Results from a randomised doubleblind, placebo-controlled trial in latin America. Cancer 97: 3090–3098

    Article  PubMed  CAS  Google Scholar 

  • Powell D, Cannon D, Skrabanek P et al. (1978) The pathophysiology of substance P in man. In: Bloom SR, Grossman MI (eds) Gut Hormones. Churchhill Livingstone, Edinburgh, pp 524–529

    Google Scholar 

  • Ptak K, Burnet H, Bianchi B et al. (2002) The murine neurokinin NK1 receptor gene contributes to the adult hypoxic facilitation of ventilation. Eur J Neurosci 16: 2245–2252

    Article  PubMed  Google Scholar 

  • Quigley EMM, Hasler WL, Parkman HP (2001) AGA technical review on nausea and vomiting. Gastroenterology 120: 263–286

    Article  PubMed  CAS  Google Scholar 

  • Quirion R (1985) Multiple tachykinin receptors. Trends Neurosci 8: 183–185

    Article  CAS  Google Scholar 

  • Regoli D, Drapeau G, Dion S et al. (1988) New selective agonists for neurokinin receptors: pharmacological tools for receptor characterization. Trends Pharmacol Sci 9: 290–295

    Article  PubMed  CAS  Google Scholar 

  • Regoli D, Rouissi N, D’Orleans-Juste P (1994) Pharmacological characterization of receptor types. In: Buck SH (eds) The Tachykinin Receptors. Humana Press, Totowa, New Jersey, USA, pp 367–393

    Chapter  Google Scholar 

  • Reid K, Palmer JL, Wright RJ et al. (2000) Comparison of the neurokinin-1 antagonist GR205171, alone and in combination with the 5-HT3 antagonist ondansetron, hyoseine and placebo in prevention of motion-induced nausea in man. Br J Clin Pharmacol 50: 61–64

    Article  PubMed  CAS  Google Scholar 

  • Reid K, Sciberras DG, Gertz BJ et al. (1998) Comparison of a neurokinin-1 antagonist, L-758, 298, and scopolamine with placebo in the prevention of motion-induced nausea in man. Br J Clin Pharmacol 45: 282P

    Google Scholar 

  • Reynolds DJM (1995) Where do 5-HT3 receptor antagonists act as anti-emetics? In: Reynolds DJM, Andrews PLR, Davis CJ (eds) Serotonin and the Scientific Basis of Anti-emetic Therapy. Oxford Clinical Communications, Oxford, UK, pp 111–126

    Google Scholar 

  • Rikard Bell GC, Tork I, Sullivan C et al. (1990) Distribution of substance P-like immuno-reactive fibres and terminals in the medulla oblongata of the human infant. Neuroscience 34: 133–148

    Article  PubMed  CAS  Google Scholar 

  • Rizk AN, Hesketh PJ (1999) Antiemetics for cancer chemotherapy-induced nausea and vomiting. A review of agents in development. Drugs Res Dev 2: 229–235

    Article  CAS  Google Scholar 

  • Robichaud A, Tattersall FD, Choudhury I et al. (1999) Emesis induced by inhibitors of type IV cyclic nucleotide phosphodiesterase (PDE IV) in the ferret. Neuropharmacology 38: 289–297

    Article  PubMed  CAS  Google Scholar 

  • Rogers RC, Herman GE (1992) Central regulation of brainstem gastric vago-vagal control circuits. In: Ritter S, Ritter RC, Barnes, CD (eds) Neuroanatomy and Physiology of Abdominal Vagal Afferents. CRC Press, Boca Raton, USA, pp 99–134

    Google Scholar 

  • Roth GI, Yamamoto WS (1968) The microcirculation of the area postrema in the rat. J Comp Neurol 133: 329–340

    Article  PubMed  CAS  Google Scholar 

  • Rudd JA, Bunce KT, Naylor RJ (1992) Effect of 8-0H-DPAT on drug-induced emesis in the ferret. Br J Pharmacol 106: 101P

    Article  Google Scholar 

  • Rudd JA, Bunce KT, Naylor RJ (1996a) The interaction of dexamethasone with on-dansetron on drug-induced emesis in the ferret. Neuropharmacology 35: 91–97

    Article  PubMed  CAS  Google Scholar 

  • Rudd JA, Cheng CH, Naylor RJ et al. (1999a) Modulation of emesis by fentanyl and opioid receptor antagonists in Suncus murinus (house musk shrew). Eur J Pharmacol 374: 77–84

    Article  PubMed  CAS  Google Scholar 

  • Rudd JA, Jordan CC, Naylor RJ (1994) Profiles of emetic action of cisplatin in the ferret: a potential model of acute and delayed emesis. Eur J Pharmacol 262: RI–R2

    Article  Google Scholar 

  • Rudd JA, Jordan CC, Naylor RJ (1996b) The action of the NKI tachykinin receptor antagonist, CP-99,994, in antagonizing the acute and delayed emesis induced by cisplatin in the ferret. Br J Pharmacol 1l9: 931–936

    Article  Google Scholar 

  • Rudd JA, Naylor RJ (1994) Effects of 5-HT3 receptor antagonists on models of acute and delayed emesis induced by cisplatin in the ferret. Neuropharmacology 33: 1607–1608

    Article  PubMed  CAS  Google Scholar 

  • Rudd JA, Naylor RJ (1997) The actions of ondansetron and dexamethasone to antagonise cisplatin-induced emesis in the ferret. Em J Pharmacol 322: 79–82

    Article  CAS  Google Scholar 

  • Rudd JA, Naylor RJ (1996) An interaction of ondansetron and dexamethasone antagonizing cisplatin-induced acute and delayed emesis in the ferret. Br J Pharmacol 118: 209–214

    Article  PubMed  CAS  Google Scholar 

  • Rudd JA, Ngan MP, Wai MK (1998) 5-HT3 receptors are not involved in conditioned taste aversions induced by 5-hydroxytryptamine, ipecacuanha or cisplatin. Eur J Pharmacol 352: 143–149

    Article  PubMed  CAS  Google Scholar 

  • Rudd JA, Ngan MP, Wai MK (1999b) Inhibition of emesis by tachykinin NK1 receptor antagonists in Suncus murinus (house musk shrew). Eur J Pharmacol 366: 243–252

    Article  PubMed  CAS  Google Scholar 

  • Rudd JA, Wai MK (2001) Genital grooming and emesis induced by vanilloids in Suncus Murinus, the house musk shrew. Eur J Pharmacol 422: 185–195

    Article  PubMed  CAS  Google Scholar 

  • Rupniak NM, Kramer MS (1999) Discovery of the anti-depressant and anti-emetic efficacy of substance Preceptor ( NK1) antagonists. Trends Pharmacol Sci 20: 485–490

    Article  PubMed  CAS  Google Scholar 

  • Rupniak NM, Tattersall FD, Williams AR et al. (1997) In vitro and in vivo predictors of the anti-emetic activity of tachykinin NK1 receptor antagonists. Eur J Pharmacol 326: 201–209

    Article  PubMed  CAS  Google Scholar 

  • Saeki M, Sakai M, Saito R et al. (2001) Effects of HSP-117, a novel tachykinin NK1 receptor antagonist, on cisplatin-induced pica as a new evaluation of delayed emesis in rats. Ipn J Pharmacol 86: 359–362

    Article  CAS  Google Scholar 

  • Saito R, Ariumi H, Kubota H et al. (1999) The role of tachykinin NK1-receptors in emetic action in the area postrema of ferrets. Nippon Yakurigaku Zasshi 114: 209P–214P

    Article  PubMed  Google Scholar 

  • Saito R, Suehiro Y, Ariumi H et al. (1998) Anti-emetic effects of a novel NK1 receptor antagonist HSP-117 in ferrets. Neurosci Lett 254: 169–172

    Article  PubMed  CAS  Google Scholar 

  • Sakaruda T, Manome Y, Tan-no K et al. (1992) A selective and extremely potent anatagonist of the neurokinin-l receptor. Brain Res 593: 319–322

    Article  Google Scholar 

  • Sanger GJ (1993) The pharmacology of anti-emetic agents. In: Andrews PLR, Sanger GJ (eds) Emesis in Anti-cancer Therapy: Mechanisms and Treatment. Chapman and Hall, London, UK, pp 179–210

    Google Scholar 

  • Saria A (1999) The tachykinin NK1 receptor in the brain: pharmacology and putative functions. Eur J Pharmacol 375: 51–60

    Article  PubMed  CAS  Google Scholar 

  • Selve N, Friderichs E, Reimann W et al. (1994) Absence of emetic effects of morphine and loperamide in Suncus murinus. Eur J Pharmacol 256: 287–293

    Article  PubMed  CAS  Google Scholar 

  • Severini C, Improta G, Falconieri-Erspamer G et al. (2002) The tachykinin peptide family. Pharmacol Rev 54: 285–322

    Article  PubMed  CAS  Google Scholar 

  • Shashkov VS, Iasnetsov VV, Drozd IV et al. (1988) Neuropharmacology of the autonomic vestibular syndrome (Russian). Farmakol Toksikol 51: 30–36

    PubMed  CAS  Google Scholar 

  • Shiroshita Y, Koga T, Fukuda H (1997) Capsaicin in the 4th ventricle abolishes retching and transmission of emetic vagal afferents to solitary nucleus neurons. Eur J Pharmacol 339: 183–192

    Article  PubMed  CAS  Google Scholar 

  • Singh L, Field MJ, Hughes J et al. (1997) The tachykinin NK1 receptor antagonist PD154075 blocks cisplatin-induced delayed emesis in the ferret. Eur J Pharmacol 321: 209–216

    Article  PubMed  CAS  Google Scholar 

  • Sleisenger MH (ed.) (1993) The Handbook of Nausea and Vomiting. Caduceus Medical Publishers, Pathenon Publ Group, New York, USA

    Google Scholar 

  • Smid SO, Lynn PA, Templeman R et al. (1998) Activation of non-adrenergic non-cholinergic inhibitory pathways by endogenous and exogenous tachykinins in the ferret lower oesophageal sphincter. Neurogastroenterol Motil 10: 149–156

    Article  PubMed  CAS  Google Scholar 

  • Smith JE, Paton JFR, Andrews PLR (2002) An arterially perfused decerebrate preparation of Suncus murinus (house musk shrew) for the study of emesis and swallowing. Exp Physiol 87: 563–574

    Article  PubMed  CAS  Google Scholar 

  • Snider RM, Constantine JW, Lowe JA et al. (1991) A potent nonpeptide antagonist of the substance P (NK1) receptor. Science 251: 435–437

    Article  PubMed  CAS  Google Scholar 

  • Sothwell BR, Seynold VS, Woodman HL et al. (1998) Quantitation of neurokinin 1 receptor internalisation and recycling in guinea-pig myenteric neurons. Neuroscience 87: 925–931

    Article  Google Scholar 

  • Spencer SE, Talman WT (1986) Central modulation of gastric pressure by substance P: a comparison with glutamate and acetylcholine. Brain Res 385: 371–374

    Article  PubMed  CAS  Google Scholar 

  • Sundler F, Hakanson R, Larsson LI et al. (1977) Substance P in the gut: an immunohistochemical study of its distribution and development. In: von Euler US, Pernow B (eds) Substance P, Raven Press, New York, USA, pp 59–65

    Google Scholar 

  • Szallasi A, Blumberg PM (1999) Vanilloid (capsaicin) receptors and mechanisms. Pharmacol Rev 51: 159–212

    PubMed  CAS  Google Scholar 

  • Takeda N, Hasegawa S, Morita M et al. (1993) Pica in rats is analogous to emesis: an animal model in emesis research. Pharmacol Biochem Behav 45: 817–821

    Article  PubMed  CAS  Google Scholar 

  • Takeda N, Hasegawa S, Morita M et al. (1995) Neuropharmacological mechanisms of emesis. 1. Effects of antiemetic drugs on motion-and apomorphine-induced pica in rats. Methods Find Exp Clin Pharmacol 17: 589–590

    PubMed  CAS  Google Scholar 

  • Tanihata S, Igarashi H, Suzuki M et al. (2000) Cisplatin-induced early and delayed emesis in the pigeon. Br J Pharmacol 130: 132–138

    Article  PubMed  CAS  Google Scholar 

  • Tanihata S, Oda S, Kakuta S et al. (2003) Antiemetic effect of a tachykinin NK1 receptor antagonist GR205171 on cisplatin-induced early and delayed emesis in the pigeon. Eur J Pharmacol 461: 197–206

    Article  PubMed  CAS  Google Scholar 

  • Tattersall FD, Rycroft W, Cumberbatch M et al. (2000) The novel NK1 receptor antagonist MK-0869 (L-754,030) and its water soluble phosphoryl prodrug, L-758,298, inhibit acute and delayed cisplatin-induced emesis in ferret s. Neuropharmacology 39: 652–663

    Article  PubMed  CAS  Google Scholar 

  • Tattersall FD, Rycroft W, Francis B et al. (1996) Tachykinin NK1 receptor antagonists act centrally to inhibit emesis induced by the chemotherapeutic agent cisplatin in ferrets. Neuropharmacology 35: 1121–1129

    Article  PubMed  CAS  Google Scholar 

  • Tattersall FD, Rycroft W, Hargreaves RJ et al. (1993) The tachykinin NK1 receptor antagonist CP-99,994 attenuates cisplatin induced emesis in the ferret. Eur J Pharmacol 250: R5–R6

    Article  PubMed  CAS  Google Scholar 

  • Tattersall FD, Rycroft W, Hill RG et al. (1994) Enantioselective inhibition of apomorphine-induced emesis in the ferret by the neurokinin1 receptor antagonist CP99,994. Neuropharmacology 33: 259–260

    Article  PubMed  CAS  Google Scholar 

  • Tattersall FD, Rycroft W, Marmont N et al. (1995) Enantiospecific inhibition of emesis induced by nicotine in the house musk shrew (Suncus murinus) by the neurokinin 1 (NK1) receptor antagonist CP-99,994. Neuropharmacology 34: 1697–1699

    Article  PubMed  CAS  Google Scholar 

  • Tavorath R, Hesketh PJ (1996) Drug treatment of chemotherapy-induced delayed emesis. Drugs 52: 639–648

    Article  PubMed  CAS  Google Scholar 

  • Thompson PI, Bingham S, Andrews PL et al. (1992) Morphine 6-glucuronide: a metabolite of morphine with greater emetic potency than morphine in the ferret. Br J Pharmacol 106: 3–8

    Article  PubMed  CAS  Google Scholar 

  • Torii Y, Saito H, Matsuki N (1991a) 5-hydroxytryptamine is emetogenic in the house musk shrew, Suncus murinus. Naunyn-Schmiedeberg’s Arch Pharmacol 344: 564–567

    CAS  Google Scholar 

  • Torii Y, Saito H, Matsuki N (1991b) Selective blockade of cytotoxic drug-induced emesis by 5-HT3 receptor antagonists in Suncus murinus. Jpn J Pharmacol 55: 107–113

    Article  PubMed  CAS  Google Scholar 

  • Tramer MR, Moore RA, Reylods DJM (1997) A quantitiative systematic review of ondansetron in treatment of established postoperative nausea and vomiting. Br Med J 314: 1088–1092

    Article  CAS  Google Scholar 

  • Travagli RA, Rogers RC (200l) Receptors and transmission in the bra in-gut axis: potential for novel therapies. V. Fast and slow extrinsic modulation of dorsal vagal complex circuits. Am J Physiol 281: G595–G601

    Google Scholar 

  • Triepl J, Weindl A, Reinecke M et al. (1983) The distribution of substance P in the spinal cord and brain stem of cat, guinea-pig and rat. A comparative immunohistochemical investigation. In: Skrabanek P, Powell D (eds) Substance P. Proceedings of the International Symposium— Dublin 1983. Boole Press, Dublin, Ireland, pp 267–268

    Google Scholar 

  • Tsuchiya M, Fujiwara Y, Kanai Y et al. (2002) Anti-emetic activity of the novel nonpeptide tachykinin NK1 receptor antagonist ezlopitant (CJ-11,974) against acute and delayed cisplatin-induced emesis in the ferret. Pharmacology 66: 144–152

    Article  PubMed  CAS  Google Scholar 

  • Ueno S, Matsuki N, Saito H (1987) Suncus murinus: A new experimental model in emesis research. Life Sci 41: 513–518

    Article  PubMed  CAS  Google Scholar 

  • Van Belle S, Lichinitser MR, Navari RM et al. (2002). Prevention of cisplatin-induced acute and delayed emesis by the selective neurokinin-1 antagonists, L-758,298 and MK-869. Cancer 94: 3032–3041

    Article  PubMed  Google Scholar 

  • von Euler US (1936) Untersuchungen über Substanz P, die atropinfeste, darmerregende und gefässerweiternde Substanz aus Darm und Gehirn. Naunyn-Schrniedeberg’s Arch Exp Pathol Pharmakol 181: 181–197

    Article  Google Scholar 

  • von Euler US, Gaddum JH (1931) An unidentified depressor substance in certain tissue extracts. J Physiol (Lond) 72: 74–87

    Google Scholar 

  • von Euler US, Pernow B (eds) (1976) Substance P. Nobel Symposium 37, Raven Press, New York, USA

    Google Scholar 

  • Ward P, Armour DR, Bays DE et al. (1995) Discovery of an orally bioavailable NK1 receptor antagonist, (2S,3S)-(2-methoxy-5-tetrazol-1-ylbenzyl)(2-phenylpiperidin-3-yl)amine (GR203040),with potent antiemetic activity. J Med Chem 38: 4985–4992

    Article  PubMed  CAS  Google Scholar 

  • Watson JW, Gonsalves SF, Fossa AA et al. (1995a) The anti-emetic effects of CP-99,994 in the ferret and the dog: Role of the NK1 receptor. Br J Pharmacol 115: 84–94

    Article  PubMed  CAS  Google Scholar 

  • Watson JW, Gonsalves SF, Fossa AA et al. (1995b) The tachykinins and emesis: Towards complete control? In: Reynolds DJM, Andrews PLR, Davis CJ (eds) Serotonin and the Scientific Basis of Anti-emetic Therapy. Oxford Clinical Communications, Oxford, UK, pp 233–238

    Google Scholar 

  • Wieland T, Bodanszky M (1991) Biologically active fragments of proteins. Chapter 8 in The World of Peptides, Springer, Berlin

    Google Scholar 

  • Wilder-Smith OH, Borgeat A, Chappuis P et al. (1993) Urinary serotonin metabolite excretion during cisplatin chemotherapy. Cancer 72: 2239–2241

    Article  PubMed  CAS  Google Scholar 

  • de Wit R, Herrstedt J, Rapoport B et al. (2004) The oral NK(1) antagonist, aprepitant, given with standard antiemetics provides protection against nausea and vomiting over multiple cycles of cisplatin-based chemotherapy: a combined analysis of two randomised, placebo-controlled phase III clinical trials. Eur J Cancer 40: 403–410

    Article  PubMed  CAS  Google Scholar 

  • de Wit R, Herrstedt J, Rapoport B et al. (2003) Addition of the oral NK1 antagonist aprepitant to standard antiemetics provides protection against nausea and vomiting during multiple cycles of cisplatin-based chemotherapy. J Clin Oncol 21: 4105–4111

    Article  PubMed  CAS  Google Scholar 

  • Wood KL (1988) Aspects of the central control of gastric motility in the ferret and the rat. PhD Thesis, University of London, UK

    Google Scholar 

  • Wu M, Harding K, Hugenholtz H et al. (1985) Emetic effects of centrally-administered angiotensin II, arginin vasopressin and neurotensin in the dog. Peptides 6: 173–175

    Article  PubMed  CAS  Google Scholar 

  • Wynn RL, Essien E, Thut PD (1993) The effects of different antiemetic agents on morphine-induced emesis in ferrets. Eur J Pharmacol 241: 47–54

    Article  PubMed  CAS  Google Scholar 

  • Yamakuni H, Sawai H, Maeda Y et al. (2000) Probable involvement of the 5-hydroxytryptamine-4 receptor in methotrexate-induced delayed emesis in dogs. J Pharmacol Exp Ther 292: 1002–1007

    PubMed  CAS  Google Scholar 

  • Yamanuki H, Sawai-Nakayama H, Imazumi K et al. (2002) Resiniferatoxin antagonises cisplatin-induced emesis in dogs and ferrets. Eur J Pharmacol 442: 273–278

    Article  Google Scholar 

  • Yamazoe M, Shiosaka S, Shibasaki T et al. (1984) Distribution of six neuropeptides in the nucleus tractus solitarii of the rat: an immuno-histochemical analysis. Neuroscience 13: 1243–1266

    Article  PubMed  CAS  Google Scholar 

  • Yasnetsov VV, Drozd YV, Shashkov VS (1987) Emetic and anti-emetic properties of some regulatory peptides. Byulleten Eksperimental’noi Biologii I Meditsiny 103: 586–588

    CAS  Google Scholar 

  • Yates BJ, Miller AD, Lucot JB (1998) Physiological basis and pharmacology of motion sickness: an update. Brain Res Bull 47: 395–406

    Article  PubMed  CAS  Google Scholar 

  • Zachrisson O, Lindefors N, Brene S (1998) A tachykinin NK1 receptor antagonist, CP122, 721-1, attenuates kainic acid-induced seizure activity. Mol Brain Res 60: 291–295

    Article  PubMed  CAS  Google Scholar 

  • Zaman S, Woods AJ, Watson JW et al. (2000) The effect of the NK1 receptor antagonist CP-99, 994 on emesis and c-fos protein induction by loperamide in the ferret. Neuropharmacology 39: 316–323

    Article  PubMed  CAS  Google Scholar 

  • Zettler G, Schlosser L (1955) Über die Verteilung von Substanz P und Cholinacetylase im Gehirn. Naunyn-Schmiedeberg’s Arch Exp Pathol Pharmakol 224: 159–175

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Andrews, P.L.R., Rudd, J.A. (2004). The Role of Tachykinins and the Tachykinin NK1 Receptor in Nausea and Emesis. In: Holzer, P. (eds) Tachykinins. Handbook of Experimental Pharmacology, vol 164. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18891-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18891-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62342-4

  • Online ISBN: 978-3-642-18891-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics