Skip to main content

Genetic Regulation of Mouse Stem Cells: Identification of Two Keratinocyte Stem Cell Regulatory Loci

  • Chapter
Regeneration: Stem Cells and Beyond

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 280))

Abstract

It is well documented that the bulge of hair follicle is a ‘niche’ for a significant population of mouse keratinocyte stem cells, and 95% of rodent clonogenic keratinocytes originate from the bulge region. The ability to form colonies in vitro is a well recognized test for keratinocyte stem cells. We analyzed the epidermis of seven mouse strains and their segregating crosses [(BALB/c×C57BL/6)F1; (BALB/c×CB6F1); (C57BL/ 6×CB6F1); (CBF1×CBF1)F2] for their clonogenic activity in vitro. We found that keratinocyte colony (KC) number is a new quantitative multigenic trait. The analysis of KC size in two parental strains (C57BL/6 and BALB/c), the F1 generation and the segregating crosses demonstrated that the size of KC is a quantitative complex trait also. We determined that mouse epidermis has at least two subpopulations of keratinocytes that gave small (<2 mm2) and large (>2 mm2) colonies. The differences in the number of small and large colonies between parental strains (C57BL/6, BALB/c) were significant (P<0.01). A genome-wide scan of the intercross and the two backcrosses maps the number of small KC to the central region of mouse Chromosome 9 (genomewide P value=0.01). We define this locus as Ksc1. The proximal region of chromosome 4 is associated with the high number of large KC. We defined this locus as Ksc2. We found that Kscl and minor loci on chromosomes 6 and 7 map close, if not equal to, loci associated with mouse skin carcinogenesis. We conclude that mouse epidermis has at least two subpopulations of clonogenic keratinocyte stem cells that are regulated by different genes. We suggest that keratinocyte stem cells responsible for small colonies may play a major role in the regulation of resistance or sensitivity to skin carcinogenesis. Investigation of the genes regulating the stem cell number should provide new insight into the mechanisms of skin carcinogenesis, and should help to develop new approaches for therapies not only against active proliferating tumor cells but also quiescent tumor stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Alessandrini A, Brott BK, Erikson RL (1997) Differential expression of MEK1 and MEK2 during mouse development. Growth Differ 8:505–511

    CAS  Google Scholar 

  • Angel J, Popova N, Lanko N, Turusov V, DiGiovanni J. (2000) A locus that influences susceptibility to 1,2-Dimethylhydrazine-induced colon tumors maps to the distal end of mouse Chromosome 3. Mol Carcinogen 27:47–54

    Article  CAS  Google Scholar 

  • Angel J, Beltran L, Minda K, Rupp T, DiGiovanni J (1997) Association of murine chromosome 9 locus (PsI1) with susceptibility to mouse skin tumor promotion by 12-O-Tetradecanoylphorbol-13-acetate. Mol Carcinogen 20:162–167

    Article  CAS  Google Scholar 

  • Beck J A, Lloyd S, Hefezparasr M, Lennon-Pierce M, Eppig JT, Festing MFW, Fisher EMC (2000) Genealogies of mouse inbred strains. Nat Genet 24:23–25

    Article  PubMed  CAS  Google Scholar 

  • Box GEP, Hunter WG, Hunter JS. (1978) Statistics for experimenters. In: An Introduction to Design, Data Analysis, and Model Building. John Wiley & Sons. New York, NY

    Google Scholar 

  • Cotsarelis G, Kaur P, Dhouailly D, Hengge U, Bickenbach J (1999) Epidermal stem cells in the skin: definition, markers, localization and functions. Exp Dermatol 8:80–8

    Article  PubMed  CAS  Google Scholar 

  • Elston RC, Stewart J (1973) The biomedical genetics with one or two loci: the inheritance of physiological characters in mice. Genetics 73:675–693

    PubMed  Google Scholar 

  • Green EL (1981) Segregation of alleles genetics and probability. In: Genetics and Probability in Animal Breeding Experiments. Macmillan Publishers Ltd, London, pp 50–59

    Google Scholar 

  • Furuta Y, Piston D, Hogan B (1997) Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. Development 124:2203–2212

    PubMed  CAS  Google Scholar 

  • Fuchs E, Raghavan S (2002) Getting under the skin of epidermal morphogenesis. Nature Rev Genet 3:199–209

    Article  PubMed  CAS  Google Scholar 

  • Jacquemin P, Durviaux SM, Jensen J, Godfraind G, Guillemot F, Madsen OD, Carmeliet P, Dewerchin M, Collen D, Rousseau GG, Lemaigre FP (2000) Transcription factor hepatocyte nuclear factor 6 regulates pancreatic cell differentiation and controls expression of the proendocrine gene ngn3. Mol Cell Biol 20:4445–4454

    Article  PubMed  CAS  Google Scholar 

  • Hibbs M, Stanley E, Maglitto R, Dunn A (1995) Identification of a duplication of the mouse gene. Gene 24: 175–181

    Article  Google Scholar 

  • Kopan R, Weintraub H (1993) Mouse Notch: expression in hair follicles correlated with cell fate determination. J Cell Biol 121:631–641

    Article  PubMed  CAS  Google Scholar 

  • Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11:241–247

    Article  PubMed  CAS  Google Scholar 

  • Lowell S, Jones P, Le Roux I, Dunne J, Watt FM (2000) Stimulation of human epidermal differentiation by Delta-Notch signaling at the boundaries of stem-cells clusters. Curr Biol 10:491–500

    Article  PubMed  CAS  Google Scholar 

  • McBrearty BA, Clark LD, Zhang XM, Blankenhorn EP, Heber-Katz E (1998) Genetic analysis of a mammalian wound-healing trait. Proc Natl Acad Sci USA 95:11792–11797

    Article  PubMed  CAS  Google Scholar 

  • Mock B, Lowry D, Rehman I., Padlan C, Yuspa S, Hennings H (1998) Multigenic control of skin tumor susceptibility in SENKAR/Pt mice. Carcinogenesis 19:1109–1115

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi K, Rochat A, Barrandon Y (1993) Proc Natl Acad Sci USA 90:7391–7395

    Google Scholar 

  • Morris RJ (1994) Procedure for harvesting epidermal cells from the dorsal epidermis of adult mice for primary cell culture in &high calcium& defined medium. In: Leigh I. and Watt F (eds) Keratinocyte Methods, Cambridge University Press, pp 25–31

    Google Scholar 

  • Morris RJ, Potten CS (1994) Slowly cycling label-retaining epidermal cells behave like clonogenic stem cells in vitro. Cell Prolif 27:279–289

    Article  PubMed  CAS  Google Scholar 

  • Morris R, Potten C (1999) Highly persistent label-retaining cells in the hair follicles of mice and their fate following induction of anagen. J Invest Dermatol 112:470–475

    Article  PubMed  CAS  Google Scholar 

  • Morris RJ, Tacker KC, Fischer SM, Slaga TJ (1988) Quantitation of primary in vitro clonogenic keratinocytes from normal adult murine epidermis following initiation and during promotion of epidermal tumors. Cancer Res 48:6285–6290

    PubMed  CAS  Google Scholar 

  • Morris RJ, Fisher SM, Slaga TJ (1985) Evidence that the central and peripherally located cells in the murine epidermal proliferative unit are two distinct cell populations. J Invest Dermatol 84:277–281

    Article  PubMed  CAS  Google Scholar 

  • Nagase H, Bryson S, Cordell H, Kemp C, Fee F, Balmain A (1995) Distinct genetic loci control development of benign and malignant skin tumors in mice. Nat Genet 10:424–429

    Article  PubMed  CAS  Google Scholar 

  • Newman B, Dai Y (1996) Transcription of c-mos protooncogene in the pig involves both tissue-specific promoters and alternative polyadenylation sites. Mol Reprod Dev 44:275–288

    Article  PubMed  CAS  Google Scholar 

  • Neurman T, Keen A, Knapik E, Shain D, Ross M, Nornes HO, Zuber MX (1993) ME1 and GE1: basic helix-loop-helix transcriptional factors expressed at high levels in the developing nervous system and in morphogenetically active regions. Eur J Neurosci 5: 311–318

    Article  Google Scholar 

  • Oshima H, Rochat A, Kedzia C, Kobayashi K, Barrandon Y (2001) Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell 104:233–245

    Article  PubMed  CAS  Google Scholar 

  • Popova N, Tryson K, Wu K, Morris R (2002) Evidence that keratinocyte colony number is genetically controlled. Exp Dermatol 11:503–508

    Article  PubMed  Google Scholar 

  • Popova NV, Teti KA, Wu K, Morris RJ (2003) Identification of Two Keratinocyte Stem Cell Regulatory Locilmplicated in Skin Carcinogenesis Carcinogenesis 24:417–425

    CAS  Google Scholar 

  • Potten CS (1986) Cell cycles in cell hierarchies. Int J Radiat Biol Relat Stud Phys Chem Med 49:257–78

    Article  PubMed  CAS  Google Scholar 

  • Rangarajan A, Talora C, Okuyama R, Nicolas M, Mammucari C, Oh H, Aster J, Krishna S, Metzger D, Chambon P, Miele L, Aguet M, Radtke A, Dotto, GP (2001) Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J 20: 3427–3436

    Article  PubMed  CAS  Google Scholar 

  • Rochat A, Kobayashi K, Barrandon Y (1994) Location of stem cells of human hair follicles by clonal analysis. Cell 76:1063–1073

    Article  PubMed  CAS  Google Scholar 

  • Santoro T, Maguire J, McBrige O, Avraham K, Copeland N, Jenkins N, Kelly K (1995) Chromosomal organization and transcriptional regulation of human GEM and localization of the human and mouse GEM loci encoding an inducible Ras-like protein. Genomics 10:558–564

    Article  Google Scholar 

  • Saris CJ, Kristensen T, D'Eustachio P, Hicks LJ, Noonan DJ, Hunter T, Tack BF (1987) cDNA sequence and tissue distribution of the m-RNA for bovine and murine p11, the S100-related light chain of the protein-tyrosine kinase substrate p36 (capactin 1). J Biol Chem 5:10663–10671

    Google Scholar 

  • Sasaki H, Hogan BL (1993) Differential expression of multiple fork head related genes during gastration and axial pattern formation in the mouse embryo. Development 118:47–59

    PubMed  CAS  Google Scholar 

  • Vassar R, Hutton ME, Fuchs E (1992) Transgenic overexpression of transforming growth factor alpha bypasses the need for c-Ha-ras mutation in mouse skin tumorigenesis. Mol Cell Biol. 12:4643–4653

    PubMed  CAS  Google Scholar 

  • Watt FM (2001) Stem cell fate and patterning in mammalian epidermis. Curr Opin Genet Dev 11:410–7

    Article  PubMed  CAS  Google Scholar 

  • West MF, Verrotti AC, Salles FJ, Tsirka SE, Strickland S (1996) Isolation and characterization of two novel, cytoplasmically polyadenylated, oocyte-specific, mouse maternal RNAs. Dev Biol 175:132–141

    Article  PubMed  CAS  Google Scholar 

  • Wolff R, Gemmill R (1997) Purifying and analyzing genomic DNA. In: Birren B, Green E, Klapholz S, Myers R, Roskams J (eds). Genome analysis. A laboratory manual. Vol 1. New York: Cold Spring Harbor Laboratory Press, pp 1–82

    Google Scholar 

  • Wolfsberg TG, White JM (1996) ADAMs in fertilization and development. Dev Biol 15:389–401

    Article  Google Scholar 

  • Yavari R, Adida C, Bray-Ward P, Brines M, Xu T, (1998) Human metalloprotease-disintegrin Kuzbanian regulates sympathoadrenal cell fate in development and neoplasia. Hum Mol Genet 7:1161–1167

    Article  PubMed  CAS  Google Scholar 

  • Zhu AJ, Hoose I, Watt F (1999) Signalling via β1 integrins and mitogen-activated protein kinase determines human epidermal stem cell fate in vitro. Pros Natl Acad Sci USA 96:6728–6733

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Popova, N.V., Morris, R.J. (2004). Genetic Regulation of Mouse Stem Cells: Identification of Two Keratinocyte Stem Cell Regulatory Loci. In: Heber-Katz, E. (eds) Regeneration: Stem Cells and Beyond. Current Topics in Microbiology and Immunology, vol 280. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18846-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18846-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62321-9

  • Online ISBN: 978-3-642-18846-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics