Skip to main content

Amphibian Regeneration and Stem Cells

  • Chapter
Regeneration: Stem Cells and Beyond

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 280))

Abstract

Larval and adult urodeles and anuran tadpoles readily regenerate their limbs via a process of histolysis and dedifferentiation of mature cells local to the amputation surface that accumulate under the wound epithelium as a blastema of stem cells. These stem cells require growth and trophic factors from the apical epidermal cap (AEC) and the nerves that re-innervate the blastema for their survival and proliferation. Members of the fibroblast growth factor (FGF) family synthesized by both AEC and nerves, and glial growth factor, substance P, and transferrin of nerves are suspected survival and proliferation factors. Stem cells derived from fibroblasts and muscle cells can transdifferentiate into other cell types during regeneration. The regeneration blastema is a self-organizing system based on positional information inherited from parent limb cells. Retinoids, which act through nuclear receptors, have been used in conjunction with assays for cell adhesivity to show that positional identity of blastema cells is encoded in the cell surface. These molecules are involved in the cell-cell signaling network that re-establishes the original structural pattern of the limb. Other systems of interest that regenerate by histolysis and dedifferentiation of pigmented epithelial cells are the neural retina and lens. Members of the FGF family are also important to the regeneration of these structures. The mechanism of amphibian regeneration by dedifferentiation is of importance to the development of a regenerative medicine, since understanding this mechanism may offer insights into how we might chemically induce the regeneration of mammalian tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akita K (1996) The effect of the ectoderm on the dorsoverntral pattern of epidermis, muscles and joints in the developing chick leg: a new model. Anat Embryol (Berlin) 193:377–386

    Article  CAS  Google Scholar 

  • Albert P, Boilly B, Courty J, Barritault D (1987) Stimulation in cell culture of mesenchymal cells of newt limb blastemas by EDGFI Or II (basic or acidic FGF). Cell Diff 21:63–68

    Article  CAS  Google Scholar 

  • Albert P, Boilly B (1988) Effect of transferrin on amphibian limb regeneration: a blastema cell culture study. Roux's Archiv Dev Biol 197:193–196

    Article  CAS  Google Scholar 

  • Alvarado AS (2000) Regeneration in the metazoans: why does it happen? Bioessays 22:578–590

    Article  CAS  Google Scholar 

  • Bader D, Oberpriller JO (1978) Repair and reorganization of minced cardiac muscle in the adult newt (Notophthalmus viridescens). J Morph 155:349–358

    Article  PubMed  CAS  Google Scholar 

  • Blau HM, Brazelton TR, Weimann JM (2001) The evolving concept of a stem cell: entity or function. Cell: 105:829–841

    Article  PubMed  CAS  Google Scholar 

  • Boilly B, Cavanaugh KP, Thomas D, Hondermarck H, Bryant SV, Bradshaw RA (1991) Acidic fibroblast growth factor is present in regenerating limb blastemas of axolotls and bonds specifically to blastema tissues. Dev Biol 145:302–310

    Article  PubMed  CAS  Google Scholar 

  • Bosco, L., Valle, C, and Willems, D (1993) In vivo and in vitro experimental analysis of lens regeneration in larval Xenopus laevis. Dev. Growth Diff 35:257–270

    Article  Google Scholar 

  • Bosco, L., Venturini, G., and Willems, D (1997) In vitro lens transdifferentiation of Xenopus laevis outer cornea induced by Fibroblast Growth Factor (FGF). Development 124:421–428

    PubMed  CAS  Google Scholar 

  • Brockes JP (1984) Mitogenic growth factors and nerve dependence of limb regeneration. Science 225:1280–1287

    Article  PubMed  CAS  Google Scholar 

  • Brockes JP (1992) Introduction of a retinoid reporter gene into the urodele limb blastema. Proc Natl Acad Sci UA 89:11386–11390

    Article  CAS  Google Scholar 

  • Brockes JP (1997) Amphibian limb regeneration: rebuilding a complex structure. Science 276:81–87

    Article  PubMed  CAS  Google Scholar 

  • Brockes JP, Kintner CR (1986) Glial growth factor and nerve-dependent proliferation in the regeneration blastema of urodele amphibians. Cell 45:301–306

    Article  PubMed  CAS  Google Scholar 

  • Brown R, Brockes JP (1991) Identification and expression of a regeneration-specific homeobox gene in the newt limb blastema. Development 111:489–496

    PubMed  CAS  Google Scholar 

  • Brustle O, Jones KN, Learish RD, Karram K, Choudhary K, Wiestler OD, Duncan ID, McKay RD (1999) Embryonic stem cell-derived glial precursors. A source of myelinating transplants. Science 285:754–756

    Article  PubMed  CAS  Google Scholar 

  • Bryant V, Iten LE (1976) Supernumerry limbs in amphibians: Experimental production in Notophthalmus viridescens and a new interpretation of their formation. Dev Biol 50:212–234

    Article  PubMed  CAS  Google Scholar 

  • Bryant S, French V, Bryant PJ (1981) Distal regeneration and symmetry. Science 212:993–1002

    Article  PubMed  CAS  Google Scholar 

  • Cadinouche MZA, Liversage RA, Muller W, Tsilfidis C (1999) Molecular cloning of the Notophthalmus viridescens Radical Fringe cDNA and characterization of its expression during forelimb development and adult forelimb regeneration. Dev Dyn 214:259–268

    Article  PubMed  CAS  Google Scholar 

  • Cameron JA, Hilgers AR, Hinterberger TJ (1986) Evidence that reserve cells are a source of regenerated adult newt muscle in vitro. Nature 321:607–610

    Article  Google Scholar 

  • Cameron JA, Fallon JF (1977) Evidence for polarizing zone in the limb buds of Xenopus laevis. Dev Biol 55:320–330

    Article  PubMed  CAS  Google Scholar 

  • Cannata M, Bernardini S, Filoni S (1992) Regenerative responses in cultured hindlimb stumps of larval Xenopus laevis. J exp Zool 262:446–453

    Article  PubMed  CAS  Google Scholar 

  • Carlson BM (1974) Morphogenetic interactions between rotated skin cuffs and underlying stump tissues in regenerating axolotl forelimbs. Dev Biol 39:263–285

    PubMed  CAS  Google Scholar 

  • Carlson BM (1975) The effects of rotation and positional change of stump tissues upon morphogenesis of the regenerating axolotl limb. Ev Biol 47:269–291

    CAS  Google Scholar 

  • Carlson MRJ, Bryant SV, Gardiner DM (1998) Expression of Msx-2 during development, regeneration, and wound healing in axolotl limbs. J Exp Zool 282:715–723

    Article  PubMed  CAS  Google Scholar 

  • Casimir CM, Gates P, Patient RK, Brockes JP (1988) Evidence for dedifferentiation and metaplasia in amphibian limb regeneration from inheritance of DNA methylation. Development 104:657–668

    PubMed  CAS  Google Scholar 

  • Chapron C (1974) Mise en evidence du role, dans 1a regeneration des amphibians, d&une glycoproteine secretee par 1a cape apicale: Etude cytochemique st autoradiographique en microscopie electronique. J Embryol exp Morph 32:133–145

    PubMed  CAS  Google Scholar 

  • Chen H, Lun Y, Ovchinnikov D, Kokubo H, Oberg KC, Pepicelli CV, Gan L, Lee B, Johnson RL (1998) Limb and kidney defects in Lmx1b mutant mice suggest and involvement of LMX1B in human nail patella syndrome. Nature Genet 19:51–55

    Article  PubMed  Google Scholar 

  • Chernoff, EAG (1996) Spinal cord regeneration: a phenomenon unique to urodeles? Int J Dev Biol 40:823–832

    PubMed  CAS  Google Scholar 

  • Chew K, Cameron JA (1983) Increase in mitotic activity of regenerating axolotl limbs by growth factor-impregnated implants. J exp Zool 226:325–329

    Article  Google Scholar 

  • Christen B, Slack JMW (1997) FGF-8 is associated with anteroposterior patterning and limb regeneration in Xenopus. Dev Biol 192:455–466

    Article  PubMed  CAS  Google Scholar 

  • Christen B, Slack JMW (1998) All limbs are not the same. Nature 395:230–231

    Article  PubMed  CAS  Google Scholar 

  • Christensen RN, Tassava RA (2000) Apical epithelial cap morphology and fibronectin gene expression in regenerating axolotl limbs. Dev Dyn 217:216–224

    Article  PubMed  CAS  Google Scholar 

  • Christensen RN, Weinstein M, Tassava RA (2001) Fibroblast growth factors in regenerating limbs of Ambystoma: cloning and semi-quantitative RT-PCR expression studies. J exp Zool 290:529–540

    Article  PubMed  CAS  Google Scholar 

  • Christensen RN, Weinstein M, Tassava RA (2002) Expression of fibroblast growth factors 4,8,and 10 in limbs, flanks, and blastemas of Ambystoma. Dev Dyn 223:193–203

    Article  PubMed  CAS  Google Scholar 

  • Clark RAF (1996) Wound repair: Overview and general considerations. In: Clark RAF (ed) The molecular and cellular biology of wound repair. John Wiley & Sons, New York, pp 255–272

    Google Scholar 

  • Clarke D, Johansson C, Wilbertz J, Veress B, Nilsson E, Karlstrom H, Lendahl U, Frisen J (2000) Generalized potential of adult neural stem cells. Science 288:1660–1663

    Article  PubMed  CAS  Google Scholar 

  • Coulombre JL, Columbre AJ (1965) Regeneration of neural retina from the pigmented epithelium in the chick embryo. Dev Biol 12:79–92

    Article  PubMed  CAS  Google Scholar 

  • Coulombre JL Coulombre AJ (1970) Influence of mouse neural retina on regeneration of chick neural retina from chick embryonic pigmented epithelium. Nature 228:559–560

    Article  PubMed  CAS  Google Scholar 

  • Crawford K, Stocum DL (1988a) Retinoic acid coordinately proximalizes regenerate pattern and blastema differential affinity in axolotl limbs. Development 102:687–698

    PubMed  CAS  Google Scholar 

  • Crawford K, Stocum DL (1988b) Retinoic acid proximalizes level-specific properties responsible for intercalary regeneration in axolotl limbs. Development 104:703–712

    PubMed  CAS  Google Scholar 

  • Crews L, Gates PB, Brown R, Joliot A, Foley C, Brockes, J, Gann A (1995) Expression and activity of the newt Msx-1 gene in relation to limb regeneration. Proc Royal Soc London [Biol] 259:161–171

    Article  CAS  Google Scholar 

  • Cygan JA, Johnson L, McMahon AP (1997) Novel regulatory interactions revealed by studies of murine limb pattern in Wnt-7a and En-1 mutants. Development 124:5021–5032

    PubMed  CAS  Google Scholar 

  • Del-Rio Tsonis K, Washabaugh CH, Tsonis PA (1995) Expression of pax-6 during urodele eye development and lens regeneration. Proc Natl Acad Sci USA 92:5092–5096

    Article  PubMed  Google Scholar 

  • DelRio Tsonis K, Jung JC, Chiu, I-M, and Tsonis P.A. 1997 Conservation of fibroblast growth factor function in lens regeneration. Proc Natl Acad Sci USA 94:13701–13706

    Article  PubMed  Google Scholar 

  • Del-Rio Tsonis K, Trombley MT, McMahon G, Tsonis PA (1998) Regulation of lens regeneration by fibroblast growth factor receptor 1. Dev Dyn 213:140–146

    Article  PubMed  CAS  Google Scholar 

  • Dent JN (1962) Limb regeneration in larvae and metamorphosing individuals of the South African clawed toad. J Morph 110:61–77

    Article  PubMed  CAS  Google Scholar 

  • D'Jamoos CA, McMahon G, Tsonis PA (1998) Fibroblast growth factor receptors regulate the ability for hindlimb regeneration in Xenopus laevis. Wound Rep Reg 6:388–397

    Article  Google Scholar 

  • Desselle J-C, Gontcharoff M (1978) Cytophotometric detection of the participation of cartilage grafts in regeneration of x-rayed urodele limbs. Biol Cellul 33:45–54

    CAS  Google Scholar 

  • Dresden MH (1969) Denervation effects on newt limb regeneration: DNA, RNA, and protein synthesis. Dev Biol 19:311–320

    Article  PubMed  CAS  Google Scholar 

  • Dresden MH, Gross J (1970) The collagenolytic enzyme of the regenerating limb of the newt Triturus viridescens. Dev Biol 22:129–137

    Article  PubMed  CAS  Google Scholar 

  • Ducy P (2000) Cbfal: A molecular switch in osteoblast biology. Dev Dyn 219:461–471

    Article  PubMed  CAS  Google Scholar 

  • Ducy P, Schinke T, Karsenty G (2000) The osteoblast: A sophisticated fibroblast under central surveillance. Science 289:1501–1504

    Article  PubMed  CAS  Google Scholar 

  • Dudley AT, Ros MA, Tabin CJ (2002) A re-examination of proximodistal patterning during vertebrate limb development. Nature 418:539–544

    Article  PubMed  CAS  Google Scholar 

  • Dungan KM, Wei TY, Nace JD, Poulin ML, Chiu I-M, Lang JC, Tassava RA (2002) Expression and biological effect of urodele fibroblast growth factor 1: Relationship to limb regeneration. J exp Zool 292:540–554

    Article  PubMed  CAS  Google Scholar 

  • Dunis DA, Namenwirth M (1977) The role of grafted skin in the regeneration of X-irradiated axolotl limbs. Dev Biol 56:97–109

    Article  PubMed  CAS  Google Scholar 

  • Echeverri K, Clarke DW, Tanaka EM (2001) In vivo imaging indicates muscle fiber dedifferentiation is a major contributor to the regenerating tail blastema. Dev Biol 236:151–164

    Article  PubMed  CAS  Google Scholar 

  • Egar MW (1993) Affinophoresis as a test of axolotl accessory limbs. In: Fallon JF, Goetinck PF, Kelley RO, Stocum DL (eds) Limb development and regeneration, Part B. Wiley-Liss, New York pp. 203–211

    Google Scholar 

  • Egar M, Singer M. (1981) The role of ependyma in spinal cord regrowth. In: Becker RO (ed) Mechanisms of growth control. Charles Thomas Publisher, Springfield pp 93–106

    Google Scholar 

  • Eguchi, G (1998) Transdifferentiation as the basis of eye lens regeneration. In: Cellular and molecular basis of regeneration. Ferretti P, Geraudie J (eds) John Wiley & Sons, New York pp 207–229

    Google Scholar 

  • Einhorn TA (1998) The cell and molecular biology of fracture healing. Clin Orthopaed Related Res 355S:7–21

    Article  Google Scholar 

  • Endo T, Yokoyama H, Tamura, Ide H (1997) Shh expression in in developing and regenerating limb buds of Xenopus laevis. Dev Dyn 209:227–232

    Article  PubMed  CAS  Google Scholar 

  • Enwright JF, Grainger RM. (2000) Altered retinoid signaling in the heads of small eye mouse embryos. Dev Biol. 221:10–22

    Article  PubMed  CAS  Google Scholar 

  • Evans MJ, Kaufman M (1983) Pluripotential cells grown directly from normal mouse embryos. Cancer Surv 2:185–208

    Google Scholar 

  • Fallon JF, Crosby GM (1977) Polarizing zone activity in limb buds of amniotes. In: Ede DA, Hinchliffe JR, Balls M, eds. Vertebrate Limb and Somite Morphogenesis. Cambridge University Press, Cambridge pp 55–70

    Google Scholar 

  • Fallon JF, Lopez A, Ros, MA, Savage MP, Olwin BB, Simandl BK (1994) Apical ectodermal ridge growth signal for chick limb development. Science 264:104–107

    Article  PubMed  CAS  Google Scholar 

  • Fekete D, Brockes JP (1987) A monoclonal antibody detects a difference in the cellular composition of developing and regenerating limbs of newts. Development 99:589–602

    PubMed  CAS  Google Scholar 

  • Fekete DM, Brockes JP (1988) Evidence that the nerve controls molecular identity of progenitor cells for limb regeneration. Development 103:567–573

    PubMed  CAS  Google Scholar 

  • Ferretti P, Brockes JP (1991) Cell origin and identity in limb regeneration and development. Glia 4:214–224

    Article  PubMed  CAS  Google Scholar 

  • Ferretti P, Ghosh S (1997) Expression of regeneration-associated cytoskeletal proteins reveals differences and similarities between regenerating organs. Dev Dyn 210:288–304

    Article  PubMed  CAS  Google Scholar 

  • Feynman R, Leighton R, Sands M (1977a) The Feynman lectures on physics, Vol II. Addison-Wesley Publishing Company, New York, pp 19–4 to 19–14

    Google Scholar 

  • Feynman RP, Leighton RB, Sands M (1977b) The Feynman lectures on physics, Vol I. Addison-Wesley Publishing Company, New York, pp 26–3 to 26–8

    Google Scholar 

  • Filoni S, Paglialunga L (1990) Effect of denervation on hindlimb regeneration in Xenopus laevis larvae. Differentiation 43:10–19

    Article  PubMed  CAS  Google Scholar 

  • Filoni S, Bernardini S, Cannata SM (1991) The influence of denervation on grafted hindlimb regeneration of larval Xenopus laevis. J exp Zool 260:210–219

    Article  PubMed  CAS  Google Scholar 

  • Filoni S, Bernardini S, Cannata SM, Ghittoni R (1999) Nerve-independence of limb regeneration in larval Xenopus laevis is related to the presence of mitogenic factors in early limb tissues. J exp Zool 284:188–196

    Article  PubMed  CAS  Google Scholar 

  • Freeman G (1963) Lens regeneration from cornea in Xenopus laevis. J exp Zool. 154:39–65

    Article  PubMed  CAS  Google Scholar 

  • French V, Bryant PJ, Bryant SV (1976) Pattern regulation in epimorphic fields. Science 193:969–981

    Article  PubMed  CAS  Google Scholar 

  • Fuchs E, Segre JA (2000) Stem cells: a new lease on life. Cell:143–156

    Google Scholar 

  • Gardiner DM, Blumberg B, Komine Y, Bryant SV (1995) Regulation of HoxA expression in developing and regenerating axolotl limbs. Development 121:1731–1741

    PubMed  CAS  Google Scholar 

  • Gardiner DM, Bryant SV (1996) Molecular mechanisms in the control of limb regeneration: the role of homeobox genes. Int J Dev Biol 40:797–805

    PubMed  CAS  Google Scholar 

  • Gaze RM. (1959) Regeneration of the optic nerve in Xenopus laevis. Quart J exp Physiol. 44:290–308

    PubMed  CAS  Google Scholar 

  • Geraudie J, Ferretti P (1998) Gene expression during amphibian limb regeneration. Int JCytol 180:1–50

    Article  CAS  Google Scholar 

  • Gevers W (1984) Protein metabolism in the heart. J Mol Cell Cardiol 16:3–32

    Article  PubMed  CAS  Google Scholar 

  • Giguere V, Ong S, Evans RM, Tabin CJ (1989) Spatial and temporal expression of the retinoic acid receptor in the regenerating amphibian limb. Nature 337:566–569

    Article  PubMed  CAS  Google Scholar 

  • Gilbert SF (2000) Developmental biology. Sinauer Associates, Inc, Sunderland MA

    Google Scholar 

  • Globus M (1988) A neuromitogenic role for substance P in urodele limb regeneration. In Inoue S, Shirai T, Egar M, Aiyama S, Geraudie J, Nobunaga T, Sato NL (eds). Regeneration and development. Okada Printing & Publishing, Maebashi, pp 675–685

    Google Scholar 

  • Globus M, Alles P (1990) A search for immunoreactive substance P and other neural peptides in the limb regenerate of the newt Notophthalmus viridescens. J exp Zool 254:165–176

    Article  PubMed  CAS  Google Scholar 

  • Globus M, Vethamany-Globus S, Lee YCI (1980) Effect of apical epidermal cap on mitotic cycle and cartilage differentiation in regeneration blastemata in the newt, Notophthalmus viridescens. Dev Biol 75:358–372

    Article  PubMed  CAS  Google Scholar 

  • Globus M, Vethamany-Globus S (1985) In vitro studies of controlling factors in newt limb regeneration. In: Sicard RE (ed) Regulation of Vertebrate Limb Regeneration. New York, Oxford University Press, pp 106–127

    Google Scholar 

  • Go MJ, Eastman DS, Artavanis-Tsakonas S (1998) Cell proliferation control by Notch signaling in Drosophila development. Development 125:2031–2040

    PubMed  CAS  Google Scholar 

  • Goldhamer DJ, Tassava RA (1987) An analysis of proliferative activity in innervated and denervated forelimb regenerates of the newt Notophthalmus viridescens. Development 100:619–628

    Google Scholar 

  • Goodchild CG (1956) Reconstitution of the intestinal tract in the adult leopard frog Rana pipiens Schreber. J exp Zool 131:301–327

    Article  Google Scholar 

  • Goss RJ (1956a) Regenerative inhibition following limb amputation and immediate insertion into the body cavity. Anat Rec 126:15–27

    Article  PubMed  CAS  Google Scholar 

  • Goss RJ (1956b) The regenerative responses of amputated limbs to delayed insertion into the body cavity. Anat Rec 126:283–297

    Article  PubMed  CAS  Google Scholar 

  • Goss RJ (1969) Principles of regeneration. Academic Press, New York

    Google Scholar 

  • Goss RJ, Stagg MW (1958) Regeneration of lower jaws in adult newts. J Morph 102:289–310

    Article  Google Scholar 

  • Goss RJ, Holt R (1992) Epimorphic vs tissue regeneration in Xenopus forelimbs. J exp Zool 261:451–457

    Article  PubMed  CAS  Google Scholar 

  • Graver H (1973) The polarity of the dental lamina in the regenerating salamander jaw. J Embryol exp Morph 30:635–646

    PubMed  CAS  Google Scholar 

  • Grillo H, Lapiere CM, Dresden MH, Gross J (1968) Collagenolytic activity in regenerating forelimbs of the adult newt (Triturus viridescens). Dev Biol 17:571–583

    Article  PubMed  CAS  Google Scholar 

  • Grubb RB (1975) An autoradiographic study of the origin of intestinal blastema cels in the newt Notophthalmus viridescens. Dev Biol 47:185–195

    Article  PubMed  CAS  Google Scholar 

  • Gussoni E, Soneoka Y, Strickland CD, Buzney EA, Khan MK, Flint AF, Kunkel LM, Mulligan RC (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401:390–394

    PubMed  CAS  Google Scholar 

  • Guyenot E (1927) La perte du pouvoir regenerateur des Anoures, etudiee par les heterogreffess, et la notion de territories. Rev Suisse Zool 34:1–54

    Google Scholar 

  • Han M-J, An J-Y, Kim W-S (2001) Expression patterns of Fgf-8 during development and limb regeneration of the axolotl. Dev Dyn 220:40–48

    Article  PubMed  CAS  Google Scholar 

  • Hay ED (1959) Electron microscopic observations of muscle dedifferentiation in regenerating Amblystoma limbs. Dev Biol 3:26–59

    Article  Google Scholar 

  • Hill RE, Jones PF, Rees AR, Sime CM, Justice MJ, Copeland NG, Jenkins NA, Graham E, Davidson DR (1989) A new family of mouse homeobox-containing genes: molecular structure, chromosomal location, and developmental expression of Hox-7.1. Genes Dev 3:26–37

    Article  PubMed  CAS  Google Scholar 

  • Hill DS, Ragsdale CW, Brockes JP (1993) Isoform-specific immunological detection of newt retinoic acid receptor δ1 in normal and regenerating limbs. Development 117:937–945

    PubMed  CAS  Google Scholar 

  • Holder, N (1989) Organization of connective tissue patterns by dermal fibroblasts in the regenerating axolotl limb. Development 105:585–593

    PubMed  CAS  Google Scholar 

  • Holder N, Tank PW (1979) Morphogenetic interactions occurring between blastemas and stumps after exchanging blastemas between normal and double-half forelimbs in the axolotl Ambystoma mexicanum. Dev Biol 74:302–314

    Article  Google Scholar 

  • Humpherys D, Eggan K, Akutsu H, Hochedlinger K, Rideout WM III, Biniszkiewicz D, Yanagimachi R, Jaenisch R (2001) Epigenetic instability in ES cells and cloned mice. Science 293:95–97

    Article  PubMed  CAS  Google Scholar 

  • Ide H, Wada N, Uchiyama K (1994) Sorting out of cells from different parts and stages of the chick limb bud. Dev Biol 162:71–76

    Article  PubMed  CAS  Google Scholar 

  • Ide H, Yokoyama H, Endo T, Omi M, Tamura K, Wada N (1998) Pattern formation in dissociated limb bud mesenchyme in vitro and in vivo. Wound Rep Reg 6:398–402

    Article  CAS  Google Scholar 

  • Imokawa Y, Yoshizato K (1997) Expression of Sonic hedgehog gene in regenerating newt limb blastemas recapitulates that in developing limb buds. Proc Natl Acad Sci US 94:9159–9164

    Article  CAS  Google Scholar 

  • Imokawa Y, Yoshizato K (1998) Expression of Sonic hedgehog gene in regenerating newt limbs. Wound Rep Reg 6:366–470

    Article  CAS  Google Scholar 

  • Irvin BC, Tassava RA (1998) Effects of peripheral nerve implants on the regeneration of partially and fully innervated urodele forelimbs. Wound Rep Reg 6:382–387

    Article  CAS  Google Scholar 

  • Iten LE, Bryant SV (1973) Forelimb regeneration from different levels of amputation in the newt, Notophthalmus viridescens: length, rate, and stages. W Roux Archiv 173:263–282

    Article  Google Scholar 

  • Iten LE, Bryant SV (1975) The interaction between the blastema and stump in the establishment of the anterior-posterior and proximal-distal organization of the limb regenerate. Dev Biol 44:119–147

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Jahagirdar BN, Reinhardt R, Schwarts RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, ldrich S, Lisberg A, Low WC, Largaespada DA, Verfaille CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    Article  PubMed  CAS  Google Scholar 

  • Johnson RL, Tabin CJ (1997) Molecular models for vertebrate limb development. Cell 90:979–990

    Article  PubMed  CAS  Google Scholar 

  • Johnson KJ, Scadding SR (1992) Effects of tunicamycin in retinoic acid induced respecification of positional vaues in regenerating limbs of the larval axolotl, Ambystoma mexicanum. Dev Dyn 193:185–192

    Article  PubMed  CAS  Google Scholar 

  • Ju B-G, Kim W-S (1994) Pattern duplication by retinoic acid treatment in the regenerating limbs of Korean salamander larvae, Hunobius leechi correlates well with the extent of dedifferentiation. Dev Dyn 100:253–267

    Article  Google Scholar 

  • Ju B-G, Kim W-S (1998) Upregulation of cathepsin D expression in the dedifferentiating salamander limb regenerate and enhancement of its expression by retinoic acid. Wound Rep Reg 6:S349–S358

    Article  Google Scholar 

  • Keeble S, Maden M (1986) Retinoic acid binding protein in the axolotl: distribution in mature tissues and time of appearance during limb regeneration. Dev Biol 117:435–441

    Article  PubMed  CAS  Google Scholar 

  • Kiffmeyer WR, Tomusk EV, Mescher AL (1991) Axonal transport and release of transferring in nerves of regenerating amphibian limbs. Dev Biol 147:392–402

    Article  PubMed  CAS  Google Scholar 

  • Kim W-S, Stocum DL (1986a) Retinoic acid modifies positional memory in the anteroposterior axis of regenerating axolotl limbs. Dev Biol 114:170–179

    Article  PubMed  CAS  Google Scholar 

  • Kim W-S, Stocum DL (1986b) Effects of retinoic acid on regenerating normal and double half limbs of axolotls. Roux& Archiv Dev Biol 195:243–251

    Article  CAS  Google Scholar 

  • Kim J-H, Auerbach J, Rodriguez-Gomez JA, Velasco I, Gavin, Lumelsky N, Lee S-H, Nguyen J, Sanchez-Pernaute R, Bankiewicz K, McKay R (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature 418:50–56

    Article  PubMed  CAS  Google Scholar 

  • Korneluk RG, Liversage RA (1984) Tissue regeneration in the amputated forelimb of Xenopus laevis froglets. Canadian J Zool 62:2383–2391

    Article  Google Scholar 

  • Koshiba K, Kuroiwa A, Yamamoto H, Tamura K, Ide H (1998) Expression of Msx genes in regenerating and developing limbs of axolotl. J exp Zool 282:703–714

    Article  PubMed  CAS  Google Scholar 

  • Krause DS, Theise ND, Collector MI, Henegariu, Hwang S, Gardner R, Neutzel S, Sharkis J (2001) Multi-organ, multilineage engraftment by a single bone marrow-derived stem cell. Cell 105:369–377

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Velloso C, Imokawa Y, Brockes JP (2000) Plasticity of retrovirus-labelled myotubes in the newt regeneration blastema. Dev Biol 218:125–136

    Article  PubMed  CAS  Google Scholar 

  • Kurabuchi S, Inoue S (1983) Denervation effects on limb regeneration in postmetamorphic Xenopus laevis. Dev Growth Diff 25:463–467

    Article  Google Scholar 

  • Laufer E, Dahn R, Orozco OE, Yeo CY, Pisenti J, Henrique D, Abbot UK, Fallon JF, Tabin C (1997) Expression of Radical fringe in limb-bud ectoderm regulates apical ectodermal ridge formation. Nature 386:366–373

    Article  PubMed  CAS  Google Scholar 

  • Lagasse E, Connors, Al-Dhalimy M, Teitsma M, Dohse M, Osborne L, Wang X, Finegold M, Weissman I, Grompe M (2000) Purified hematopoietic stem cells can differentiate to hepatocytes in vivo. Nature Med 6:1229–1234

    Article  PubMed  CAS  Google Scholar 

  • Lebowitz P, Singer M (1970) Neurotrophic control of protein synthesis in the regenerating limb of the newt Triturus. Nature 225:824–827

    Article  PubMed  CAS  Google Scholar 

  • Lewandowski M, Sun X, Martin GR (2000) Fgf8 signalling from the AER is essential for normal limb development. Nat Genet 26:460–463

    Article  CAS  Google Scholar 

  • Lheureux E (1975) Regeneration des members irradies de Plurodeles waltlii Michah (urodele), influence des qualities et orientations des greffons non-irradies. W Roux Archiv 176:303–327

    Article  Google Scholar 

  • Litingtung Y, Dahn RD, Li Y, Fallon JF, Chiang C (2002) Shh and Gli3 function as a regulatory module in amniote limb patterning. Nature 418:979–983

    Article  PubMed  CAS  Google Scholar 

  • Liversage RA (1967) Hypophysectomy and forelimb regeneration in Ambystoma opacum larvae. J exp Zool 165:57–70

    Article  Google Scholar 

  • Lo DC, Allen F, Brockes JP (1993) Reversal of muscle differentiation during urodele limb regeneration. Proc Natl Acad Sci (USA) 90:7230–7234

    Article  CAS  Google Scholar 

  • Logan C, Hornbruch A, Campbell I, Lumsden A (1997) The role of Engrailed in establishing the dorsoventral axis of the chick limb. Development 124:2317–2324

    PubMed  CAS  Google Scholar 

  • Loomis CA, Kimmel, Tong CX, Michaud J, Joyner A (1998) Analysis of the genetic pathway leading to formation of ectopic apical ectodermal ridges in mouse Engrailed-1 mutant limbs. Development 125:1137–1148

    PubMed  CAS  Google Scholar 

  • Loyd RM, Tassava RA (1980) DNA synthesis and mitosis in adult newt limbs following amputation and insertion into the body cavity. J exp Zool 214:61–69

    Article  PubMed  CAS  Google Scholar 

  • Ludolph D, Cameron JA, Stocum DL (1990) The effect of retinoic acid on positional memory in the dorsoventral axis of regenerating axolotl limbs. Dev Biol 140:41–52

    Article  PubMed  CAS  Google Scholar 

  • Ludolph DC, Cameron JA, Stocum DL (1993a) Test of a model for the effects of retinoic acid on urodele limb regeneration. Dev Dyn 198:77–85

    Article  PubMed  CAS  Google Scholar 

  • Ludolph DC, Cameron JA, Neff AW, Stocum DL (1993b) Cloning and tissue specific expression of the axolotl cellular retinoic binding protein. Dev Growth Diff 35:341–347

    Article  CAS  Google Scholar 

  • Maden M (1977) The regeneration of postional information in the amphibian limb. J Theor Biol 69:735–753

    Article  PubMed  CAS  Google Scholar 

  • Maden M (1979) Neurotrophic and X-ray blocks in the blastemal cell cycle. J Embryol exp Morphol 50:169–173

    PubMed  CAS  Google Scholar 

  • Maden M (1981) Morphallaxis in an epimorphic system: size, growth control and pattern formation during amphibian limb regeneration. J Embryol exp Morph 65:151–167

    Google Scholar 

  • Maden M (1982) Vitamin A and pattern formation in regenerating limbs. Nature 295:672–675

    Article  PubMed  CAS  Google Scholar 

  • Maden M (1983) The effects of vitamin A on limb regeneration in Rana temporaria. Dev Biol 98:409–416

    Article  PubMed  CAS  Google Scholar 

  • Maden M (1984) Does vitamin A act on pattern formation via the epidermis or the mesenchyme? J exp Zool 230:387–392

    Article  CAS  Google Scholar 

  • Maden M (1997) Retinoic acid and its receptors in limb regeneration. Sem Cell Dev Biol 8:445–453

    Article  CAS  Google Scholar 

  • Maden M, Wallace H (1975) The origin of limb regenerates from cartilage grafts. Acta Embryol Exp 2:77–86

    Google Scholar 

  • Manglesdorf DJ, Umesono K, Evans RM (1994) The retinoid receptors. In: The Retinoids, 2nd ed. Sporn M, Roberts AB, Goodman DS (eds) Raven Press, New York pp 319–338

    Google Scholar 

  • Marshak DR, Gottlieb D, Gardner RL (2001) Introduction: Stem cell biology. In: Marshak DR, Gardner RL, Gottlieb D (eds) Stem cell biology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 1–16

    Google Scholar 

  • Martin GR (1998) The roles of FGFs in the early development of vertebrate limbs. Genes Dev 12:1571–1586

    Article  PubMed  CAS  Google Scholar 

  • Matsuda H, Yokoyama H, Endo T, Tamura K, Ide H (2001) An epidermal signal regulates Lmx-1 expression and dorsal-ventral pattern during Xenopus limb regeneration. Dev Biol 229:351–362

    Article  PubMed  CAS  Google Scholar 

  • McCormick AM, Shubeita HE, Stocum DL (1988) Cellular retinoic acid bind protein: detection and quantitation in regenerating axolotl limbs. J exp Zool 245:270–276

    Article  PubMed  CAS  Google Scholar 

  • McDevitt, D.S., Brahma, S.K., Courtois, Y, and Jeanny, J-C (1997) Fibroblast growth factor receptors and regeneration of the eye lens. Dev Dyn. 208:220–226

    Article  PubMed  CAS  Google Scholar 

  • McGann C, Odelberg SJ, Keating MT (2001) Mammalian myotube dedifferentiation induced by newt regeneration extract. Proc Natl Acad Sci (USA) 98:13699–13703

    Article  CAS  Google Scholar 

  • McGinnis W, Krumlauf R (1992) Homeobox genes and axial patterning. Cell 68:283–302

    Article  PubMed  CAS  Google Scholar 

  • Mescher AL (1976) Effects on adult newt limb regeneration of partial and complete skin flaps over the amputation surface. J exp Zool 195:117–128

    Article  PubMed  CAS  Google Scholar 

  • Mescher AL (1996) The cellular basis of limb regeneration in urodeles. Int J Dev Biol 40:785–796

    PubMed  CAS  Google Scholar 

  • Mescher AL, Cox CA (1988) Hyaluronate accumulation and nerve-dependent growth during regeneration of larval Ambystoma limbs. Differentiation 38:161–168

    Article  PubMed  CAS  Google Scholar 

  • Mescher AL, Munaim SI (1986) Changes in the extracellular matrix and glycosaminoglycan synthesis during the imnitiation of regeneration in adult newt forelimbs. Anat Rec 214:424–431

    Article  PubMed  CAS  Google Scholar 

  • Mescher AL, Munaim SI (1988) Transferrin and the growth-promoting effect of nerves. Int Rev Cytol 100:1–26

    Article  Google Scholar 

  • Mescher AL, Kiffmeyer WR (1992) Axonal release of transferrin in peripheral nerves of axolotls during regeneration. In: Taban CH, Boilly B (eds) Keys for regeneration: monographs in dev biol 23:100–109

    Google Scholar 

  • Mescher AL, Connell E, Hsu C, Patel C, Overton B (1997) Transferrin is necessary and sufficient for the neural effect on growth in amphibian limb regeneration blastemas. Dev Growth Diff 39:677–684

    Article  CAS  Google Scholar 

  • Mescher AL, White GW, Brokaw JJ (2000) Apoptosis in regenerating and denervated, nonregenerating urodele forelimbs. Wound Rep Reg 8:110–116

    Article  CAS  Google Scholar 

  • Meyers EN, Lewendoski M., Martin GR (1998) Generation of an Fgf8 mutant allelic series using a single targeted mouse line carrying Cre and Fle recombinate recognition sites. Nature Gen 18:136–141

    Article  CAS  Google Scholar 

  • Michalopoulos GK, DeFrances MC (1997) Liver regeneration. Science 276:60–66 Mitashov VI (1996) Mechanisms of retina regeneration in urodeles. Int J Dev Biol 40:833–844

    Article  PubMed  CAS  Google Scholar 

  • Mittenthal JE (1981) The rule of normal neighbors: a hypothesis for morphogenetic pattern regulation. Dev Biol 88:15–26

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki K, Uchiyawa K, Imokawa Y, Yoshizato K (1996) Cloning and characterization of of cDNAs for matrix metalloproteinases of regenerating newt limbs. Proc Natl Acad Sci USA 93:6819–6824

    Article  PubMed  CAS  Google Scholar 

  • Mochii M, Mazaki Y, Mizuno N, Hayashi H, Eguchi G (1998) Role of Mitf in differentiation and transdifferentiation of chicken pigmented epithelial cell. Dev Biol 193:47–62

    Article  PubMed  CAS  Google Scholar 

  • Monkmeyer J, Ludolph DC, Cameron JA, Stocum DL (1992) Retinoic acid-induced change in anteroposterior positional identity in regenerating axolotl limbs is dose-dependent. Dev Dyn 193: 286–294

    Article  Google Scholar 

  • Moon AM, Capecchi MR (2000) Fgf8 is required for outgrowth and patterning of the limbs. Nat Genet 26:455–459

    Article  PubMed  CAS  Google Scholar 

  • Moon AM, Boulet AM, Capecchi MR (2000) Normal development in conditional mutants of Fgf4. Development 127:989–996

    PubMed  CAS  Google Scholar 

  • Morgan CJ, Pledger WJ (1992) Fibroblast proliferation. In: Cohen IK, Diegelmann RF, Lindblad WJ (eds) Wound healing: biochemical and clinical aspects. WB Saunders, Philadelphia, pp 63–76

    Google Scholar 

  • Morzlock FV, Stocum DL (1972) Neural control of RNA synthesis in regenerating limbs of the adult newt Triturus viridescens. Roux's Archiv Dev Biol 171:170–180

    Article  Google Scholar 

  • Mullen LM, Bryant SV, Torok MA, Blumberg B, Gardiner DM (1996) Nerve dependency of regeneration: the role of Distal-less and FGF signaling in amphibian limb regeneration. Development 122:3487–3497

    PubMed  CAS  Google Scholar 

  • Munaim SI, Mescher AL (1986) Transferrin and the trophic effect of neural tissue on amphibian limb regeneration blastemas. Dev Biol 116:138–142

    Article  PubMed  CAS  Google Scholar 

  • Muneoka K, Fox WF, Bryant SV (1986) Cellular contribution from dermis and cartilage to the regenerating limb blastema in axolotls. Dev Biol 116:256–260

    Article  PubMed  CAS  Google Scholar 

  • Muneoka K, Holler-Dinsmore G, Bryant SV (1986) Intrinsic control of regenerative loss in Xenopus laevis limbs. J exp Zool 240:47–54

    Article  PubMed  CAS  Google Scholar 

  • Namenwirth M (1974) The inheritance of cell differentiation during limb regeneration in the axolotl. Dev Biol 41:42–56

    Article  PubMed  CAS  Google Scholar 

  • Nardi JB, Stocum DL (1983) Surface properties of regenerating limb cells: Evidence for gradation along the proximodistal axis. Differentiation 25:27–31

    Article  Google Scholar 

  • Niazi IA, Saxena S (1978) Abnormal hindlimb regeneration in tadpoles of the toad Bufo andersoni, exposed to vitamin A. Folia Biol (Krakow) 26:3–11

    CAS  Google Scholar 

  • Niazi IA (1996) Background to work on retinoids and amphibian limb regeneration: Studies on anuran tadpoles—a retrospect. J Biosci 21:273–297

    Article  CAS  Google Scholar 

  • Niazi IA, Pescetelli MJ, Stocum DL (1985) Stage dependent effects of retinoic acid on regenerating urodele limbs. Roux's Archiv Dev Biol 194:355–363

    Article  CAS  Google Scholar 

  • Nieuwkoop P, Faber J (1967) Normal table of Xenopus laevis (Daudin): a systematical and chronological survey of the development from the fertilized egg till the end of metamorphosis, 2nd ed. North Holland Pub Co, Amsterdam

    Google Scholar 

  • Nilsson J, von Euler AM, Dalsgaard C-J (1985) Stimulation of connective tissue growth by substance P and substance K. Nature 315:61–63

    Article  PubMed  CAS  Google Scholar 

  • Niswander L, Tickle C, Vogel A, Booth I, Martin GR (1993) FGF-4 replaces the apical ectodermal ridge and directes outgrowth and patterning of the limb. Cell 75:579–587

    Article  PubMed  CAS  Google Scholar 

  • Noji S, Matsuo T, Koyama E, Yamaai T, Nohno T, Matsuo N, Tanaguchi S (1990) Expression pattern of acidic and basic fibroblast growth factor genes in adult rat eyes. Biochem Biophys Res Comm 168:343–349

    Article  PubMed  CAS  Google Scholar 

  • Oberpriller JO, Oberpriller JC (1991) Cell division in adult newt cardiomyocytes. In: Oberpriller J, Oberpriller JC, Mauro A (eds) The developmental and regenerative potential of cardiac muscle. Harwood Press, New York, pp 293–311

    Google Scholar 

  • Odelberg SJ, Kollhof A, Keating MT (2001) Dedifferentiation of mammalian myotubes induced by msx-1. Cell 103:1099–1109

    Article  Google Scholar 

  • Olsen BR (1999) Bone morphogenesis and embryologic development. In: Favus MJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism, 4th ed. Lippincott, Williams and Wilkins, Philadelphia, pp 11–14

    Google Scholar 

  • Orkin S, Morrison SJ (2002) Stem-cell competition. 2002 Nature 418:25–27

    Article  CAS  Google Scholar 

  • Orts-Lorca F, Genis-Galvez JM (1960) Experimental production of retinal septa in the chick embryo: differentiation of pigment epithelium into neural retina. Acta Anat 42:31–70

    Article  Google Scholar 

  • O'Steen WK, Walker BE (1962) Radioautographic studies of regeneration in the common newt. III. Regeneration and repair of the intestine. Anat Rec 142:179–188

    Article  PubMed  Google Scholar 

  • Oudkhir M, Boilly B, Lheureux E, Lasalle B (1985) Influence of denervation on the regeneration of Pleurodele limbs: Cytophotometric study of nuclear DNA from blastema cells. Differentiation 29:116–120

    Article  Google Scholar 

  • Overton J (1963) Patterns of limb regeneration in Xenopus laevis. J exp Zool 154:153–161

    Article  PubMed  CAS  Google Scholar 

  • Pagan SM, Ros MA, Tabin C, Fallon JF (1996) Surgical removal of limb bud Sonic hedgehog results in posterior skeletal defects. Dev Biol 180:35–40

    Article  PubMed  CAS  Google Scholar 

  • Park C, Hollenberg MJ (1991) Induction of retinal regeneration in vivo by growth factors. Dev Biol 148:322–333

    Article  PubMed  CAS  Google Scholar 

  • Park C, Hollenberg MJ (1993) Growth factor-induced retinal regeneration in vivo. Int Rev Cytol 146:49–71

    Article  PubMed  CAS  Google Scholar 

  • Park I-S, Kim W-S (1999) Modification of gelatinase activity correlates with the dedifferentiation profile of regenerating axolotl limbs. Mol Cells 9:119–126

    PubMed  CAS  Google Scholar 

  • Parr BA, McMahon AP (1995) Dorsalizing signal Wnt-7a required for normal polarity of D-Vand A-P axes of mouse limb. Nature 374:350–353

    Article  PubMed  CAS  Google Scholar 

  • Pecorino LT, Entwistle, Brockes JP (1996) Activation of a single retinoic acid receptor isoform mediates proximodistal respecification. Curr Biol 6563–6569

    Google Scholar 

  • Pescitelli MJ, Stocum DL (1980) The origin of skeletal structures during intercalary regeneration of larval Ambystoma limbs. Dev Biol 79:255–275

    Article  PubMed  Google Scholar 

  • Piatt J (1957) Studies on the problem of nerve pattern. III. Innervaton of the regenerated forelimb in Amblystoma. J exp Zool 136:229–248

    Article  PubMed  CAS  Google Scholar 

  • Pittack C, Jones M, Reh TA (1991) Basic fibroblast growth factor induces retinal pigment epithelium to generate neural retina in vitro. Development 113:577–588

    PubMed  CAS  Google Scholar 

  • Pittack C, Grunwald GB, Reh TA (1997) Fibroblast growth factors are necessary for neural retina but not pigmented epithelium differentiation in chick embryos. Development 124:805–816

    PubMed  CAS  Google Scholar 

  • Pittenger MF, Mackay AM, Beck S, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  • Pittman RN, Buettner HM (1989) Degradation of extracellular matrix by neuronal proteases. Dev Neurosci 11:361–375

    Article  PubMed  CAS  Google Scholar 

  • Poulin ML, Patrie KM, Botelho MJ, Tassava RA, Chiu I-M (1993) Heterogeneity in expression of fibroblast growth factor receptors during limb regeneration in newts (Notophthalmus viridescens). Development 119:353–361

    PubMed  CAS  Google Scholar 

  • Poulin ML and Chiu I-M. (1995) Re-programming of expression of the KGFR and bek variants of fibroblast growth factor receptor 2 during limb regeneration in newts (Notopthalmus viridescens). Dev Dyn 202:378–387

    Article  PubMed  CAS  Google Scholar 

  • Ragsdale CW, Petkovich M, Gates PB, Chambon P, Brockes JP (1989) Identification of a novel retinoic acid receptor in regenerating tissues of the newt. Nature 341:654–657

    Article  PubMed  CAS  Google Scholar 

  • Ragsdale CW, Gates PB, Brockes JP (1992a) Identification and expression pattern of a second isoform of the newt alpha retinoic acid receptor. Nuc Acid Res 20:5851

    Article  CAS  Google Scholar 

  • Ragsdale CW, Gates PB, Hill D, Brockes JP (1992b) Delta retinoic acid receptor iso-form δ1 is distinguished by its exceptional N-terminal sequence and abundance in the limb regeneration blastema. Mech Dev 40:99–112

    Article  Google Scholar 

  • Raymond PA, Hitchcock, PF (1997) Retinal regeneration: common principles but a diversity of mechanisms. Adv Neurol 72:171–184

    PubMed  CAS  Google Scholar 

  • Reyer RW (1977) The amphibian eye: development and regeneration. In: Crescitelli F (ed) Handbook of sensory physiology, Vol. VII/5. Springer-Verlag, Berlin, pp 309–390

    Google Scholar 

  • Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaille CM (2001) Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 98:2615–2625

    Article  PubMed  CAS  Google Scholar 

  • Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker PH, Verfaille CM (2002) Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 109:337–346

    PubMed  CAS  Google Scholar 

  • Richmond MJ, Pollack ED (1983) Regulation of tadpole spinal nerve growth by the regenerating limb blastema in tissue culture. J Exp Zool 225:233–242

    Article  PubMed  CAS  Google Scholar 

  • Riddle, RD, Johnson, RL, Laufer, E, Tabin, C (1993) Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75:1401–1416

    Article  PubMed  CAS  Google Scholar 

  • Robert B, Sassoon D, Jacq C, Gehring W, Buckingham M (1989) Hox-7, a mouse homeobox gene with a novel pattern of expression during embryogenesis. EMBO J 8:91–100

    PubMed  CAS  Google Scholar 

  • Rodriguez-Esteban C, Schwabe JW, De La Pena J, Foys B, Eshelman B, Ispizua-Belmonte JC (1997) Radical fringe positions the apical ectodermal ridge at the dorsoventral boundary of the vertebrate limb. Nature 386:360–366

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Esteban C, Schwabe JW, Pena JD, Rincon-Limas DE, Magallon J, Botas J, Belmonte JC (1998) Lhx2, a vertebrate homologue of apterous, regulates vertebrate limb outgrowth. Development 125:3925–3934

    PubMed  CAS  Google Scholar 

  • Rowe DA, Cairns JM, Fallon JF (1982) Spatial and temporal patterns of cerll death in limb bud mesoderm after apical ectodermal ridge removal. Dev Biol 93:83–91

    Article  PubMed  CAS  Google Scholar 

  • Roy S, Gardiner DM, Bryant SV (2000) Vaccinia as a tool for functional analysis in regenerating limbs: ectopic expression of Shh. Dev Biol 218:199–205

    Article  PubMed  CAS  Google Scholar 

  • Saunders JWJr (1948) The proximo-distal sequence of the origin of the parts of the chick wing and the role of the ectoderm. J exp Zool 108:363–403

    Article  PubMed  Google Scholar 

  • Scadding SR, Maden M (1994) Retinoic acid gradients during limb rergeneration. Dev Biol 162:608–617

    Article  PubMed  CAS  Google Scholar 

  • Schmidt AJ (1966) The Molecular Basis of Regeneration: Enzymes. Illinois Monographs Med Sci 6(4), University of Illinois Press, Urbana

    Google Scholar 

  • Schotte OE, Butler EG (1944) Phases in regeneration of the urodele limb and their dependence on the nervous system. J exp Zool 97:95–121

    Article  Google Scholar 

  • Shimizu-Nishikawa K, Tazawa I, Uchiyama K, Yoshizato K (1999) Expression of helix-loop-helix type negative regulators of differentiation during limb regeneration in urodeles and anurans. Dev Growth Diff 41:731–743

    Article  CAS  Google Scholar 

  • Shimizu-Nishikawa KS, Tsuji S, Yoshizato K (2001) Identification and characterization of newt rad (ras associated with diabetes), a gene specifically expressed in regenerating limb muscle. Dev Dyn 220:74–86

    Article  PubMed  CAS  Google Scholar 

  • Shubin NH, Alberch P (1986) A morphogenetic approach to the origin and basic organization of the tetrapod limb. Evol Biol 20:318–390

    Google Scholar 

  • Schwartz RE, Reyes M, Koodie L, Jiang Y, Blackstad M, Lund T, Lenvik T, Johnson S, Hu W-S, Verfaille M (2002) Multipotent adult progenitor cells from bone marrow d8ifferentiate into functional hepatocyte-like cells. J Clin Invest 109:1291–1302

    PubMed  CAS  Google Scholar 

  • Sessions SK, Bryant V (1988) Evidence that regenerative ability is an intrinsic property of limb cells in Xenopus. J exp Zool 247:39–44

    Article  PubMed  CAS  Google Scholar 

  • Simon H-G, Tabin CJ. 1993. Analysis of Hox-4.5 and Hox-3.6 expression during newt limb regeneration: differential regulation of paralogous Hox genes suggests different roles for members of different Hox clusters. Development 111:1397–1407

    Google Scholar 

  • Simon H-G, Nelson C, Goff D, Laufer E, Morgan BA, Tabin C (1995) Differential expression of myogenic regulatory genes and Msx-1 during dedifferentiation and redifferentiation of regenerating amphibian limbs. Dev Dyn 202:1–12

    Article  PubMed  CAS  Google Scholar 

  • Simon H-G, Kittappa R, Han PA, Tsilfildis C, Liversage RA, Oppenheimer S (1997) A novel family of T-box genes in urodele amphibian limb development and regeneration: candidate genes involved in vertebrate forelimb/hindlimb patterning. Development 124:1355–1366

    PubMed  CAS  Google Scholar 

  • Singer M (1952) The influence of the nerve in regeneraton of the amphibian extremity. Quart Rev Biol 27:169–200

    Article  PubMed  CAS  Google Scholar 

  • Singer M (1965) A theory of the trophic nervous control of amphibian limb regeneration, including a re-evaluation of quantitative nerve requirements. In: Kiortsis V, Trampusch HAL (eds) Regeneration in animals and related problems. North Holland, Amsterdam, pp. 20–32

    Google Scholar 

  • Singer M (1978) On the nature of the neurotrophic phenomenon in urodele limb regeneration. Am Zool 18:829–841

    CAS  Google Scholar 

  • Singer M, Craven L (1948) The growth and morphogenesis of the regenerating forelimb of adult Triturus following denervation at various stages of development. J Exp Zool 108:279–308

    Article  PubMed  CAS  Google Scholar 

  • Singer M, Nordlander RH, Egar P (1979) Axonal guidance during embryogenesis and regeneration in the spinal cord of newt: the blueprint hypothesis of neuronal pathway patterning. J Comp Neurol 185:1–22

    Article  PubMed  CAS  Google Scholar 

  • Slack JMW, Savage S (1978) Regeneration of reduplicated limbs in contravention of the complete circle rule. Nature 271:760–761

    Article  PubMed  CAS  Google Scholar 

  • Smith AR, Lewis JH, Crawly A, Wolpert L (1974) A quantitative study of blastemal growth and bone regression during limb regeneration in Triturus cristatus. J Embryol exp Morph 32:375–390

    PubMed  CAS  Google Scholar 

  • Smith GN, Toole BP, Gross J (1975) Hyaluronidase activity and glycosaminoglycan synthesis in the amputated newt limb: Comparison of denervated nonregenerating limbs with regenerates. Dev Biol 43:221–232

    Article  PubMed  CAS  Google Scholar 

  • Smith MJ, Globus M (1989) Multiple interactions in juxtaposed monolayer of amphibian neuronal, epidermal, and mesodermal limb blastema cells. In Vitro Cell Dev Dev Biol 25:849–856

    Article  CAS  Google Scholar 

  • Song K, Wang Y, Sassoon D (1992) Expression of Hox-7.1 in myoblasts inhibits terminal differentiation of and induces cell transformation. Nature 360:477–481

    Article  PubMed  CAS  Google Scholar 

  • Sperry RW (1944) Optic nerve regeneration with return of vision in amphibians. J Neurophysiol 7:57–69

    Google Scholar 

  • Stark RJ, Searls RL (1973) A description of chick wing development and a model of limb morphogenesis. Dev Biol 33:138–153

    Article  PubMed  CAS  Google Scholar 

  • Stark DR, Gates PB, Brockes JP, Ferretti P (1998) Hedgehog family member is expressed throughout regenerating and developing limbs. Dev Dyn 212:352–363

    Article  PubMed  CAS  Google Scholar 

  • Steen TP (1968) Stability of chondrocyte differentiation and contribution of muscle to cartilage during limb regeneration in the axolotl (Siredon mexicanum). J exp Zool 167:49–78

    Article  PubMed  CAS  Google Scholar 

  • Steen TP (1973) The role of muscle cells in Xenopus limb regeneration. Am Zool 13:1349–1350

    Google Scholar 

  • Steen TP, Thornton CS (1963) Tissue interaction in amputated aneurogenic limbs of Ambystoma larvae. J exp Zool 154:207–221

    Article  PubMed  CAS  Google Scholar 

  • Stensaas LJ (1983) Regeneration in the spinal cord of the newt Notophthalmus (Triturus) pyrrhogaster. In: Kao CC, Bunge RP, Reier PJ (eds). Spinal cord reconstruction, Raven Press, New York, pp 121–149

    Google Scholar 

  • Steinberg MS (1978) Cell-cell recognition in multicellular assembly: levels of specificity. In: Curtis ASG (ed). Cell-cell recognition. Cambridge University Press, Cambridge, pp 25–49

    Google Scholar 

  • Stocum DL (1968a) The urodele limb regeneration blastema: A self-organizing system. I. Differentiation in vitro. Dev Biol 18:441–456

    Article  PubMed  CAS  Google Scholar 

  • Stocum D (1968b) The urodele limb regeneration blastema: self-organizing system. II. Morphgenesis and differentiation of autografted whole and fractionall blastemas. Dev Biol 18:457–480

    Article  PubMed  CAS  Google Scholar 

  • Stocum DL (1975) Regulation after proximal or distal transposition of limb regeneration blastemas and determination of the proximal boundary of the regenerate. Dev Biol 45:112–136

    Article  PubMed  CAS  Google Scholar 

  • Stocum DL (1978a) Organization of the morphogenetic field in regenerating amphibian limbs. Am Zool 18:883–896

    Google Scholar 

  • Stocum DL (1978b) Regeneration of symmetrical hindlimbs in larval salamanders. Science 200:790–793

    Article  PubMed  CAS  Google Scholar 

  • Stocum DL (1979) Stages of forelimb regeneration in Ambystoma maculatum. J exp Zool 209:395–416

    Article  PubMed  CAS  Google Scholar 

  • Stocum DL (1980a) Autonomous development of reciprocally exchanged regeneration blastemas of normal forelimbs and symmetrical hindlimbs. J exp Zool 212:361–371

    Article  Google Scholar 

  • Stocum DL (1980b) Intercalary regeneration of symmetrical thighs in the axolotl, Ambystoma mexicanum. Dev Biol 79:276–295

    Article  PubMed  CAS  Google Scholar 

  • Stocum DL (1981) Distal transformation in regenerating double anterior axolotl limbs. J Embryol exp Morph 65:3–18 Stocum DL (1982) Determination of axial polarity in the urodele regeneration blastema. J Embryol Exp Morph 71:193–214

    Google Scholar 

  • Stocum DL (1983) Amphibian limb regeneration: distal transformation. In: Fallon JF, Caplan AI (eds). Limb development and regeneration, Part A. Alan R. Liss, Inc, New York, pp. 467-476

    Google Scholar 

  • Stocum DL (1984) The urodele limb regeneration blastema: Determination and organization of the morphogenetic field. Differentiation 27:13–28

    Article  PubMed  CAS  Google Scholar 

  • Stocum DL (1991) Limb regeneration: a call to arms (and legs). Cell 67:5–8

    Article  PubMed  CAS  Google Scholar 

  • Stocum DL (1995) Wound Repair, Regeneration, and Artificial Tissues. RG Landes Co, Austin, 230 pp

    Google Scholar 

  • Stocum DL (1996) A conceptual framework for analyzing axial patterning in regenerating urodele limbs. Int J Dev Biol 40:773–784

    PubMed  CAS  Google Scholar 

  • Stocum DL (2000) Transplantation and culture techniques for the analysis of urodele limb regeneration. In: Tuan RS, Lo CW (eds). Developmental biology protocols, Vol I. Humana Press, Towota, pp 67–74

    Google Scholar 

  • Stocum DL (2001) Stem cells in regenerative biology and medicine. Wound Rep Reg 9:429–442

    Article  CAS  Google Scholar 

  • Stocum DL, Dearlove GE (1972) Epidermal-mesodermal interaction during morphogenesis of the limb regeneration blastema in larval salamanders. J exp Zool 181:49–62

    Article  Google Scholar 

  • Stocum DL, Melton DA (1977) Self-organizational capacity of distally transplanted limb regeneration blastemas in larval salamanders. J exp Zool 201:451–472

    Article  PubMed  CAS  Google Scholar 

  • Stocum DL, Crawford K (1987) Use of retinoids to analyze the cellular basis of positional memory in regenerating axolotl limbs. Biochem Cell Biol 65:750–761

    Article  PubMed  CAS  Google Scholar 

  • Stocum DL, Fallon JF (1982) Control of pattern formation in urodele limb ontogeny: A review and a hypothesis. J Embryol Exp Morphol 69:7–36

    PubMed  CAS  Google Scholar 

  • Stocum DL, Maden M (1990) Regenerating limbs. Methods in Enzymol 190:189–201

    Article  CAS  Google Scholar 

  • Stocum DL, Mitashov VI (1990) Pattern regulation in regenerating limbs. Ontogenez 27:5–31. In Russian, English translation by Plenum Publishing Corp

    Google Scholar 

  • Stroeva OG, Mitashov VI (1983) Retinal pigment epithelium: proliferation and differentiation during development and regeneration. Int Rev Cytol 38:221–293

    Article  Google Scholar 

  • Summerbell D, Lewis JR (1975) Time, place and positional vaue in the chick limb bud. J Embryol exp Morph 33:621–643

    PubMed  CAS  Google Scholar 

  • Summerbell D, Lewis JR, Wolpert L (1973) Positional information in chick limb morphogenesis. Nature 244:228–230

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Lewandowski M, Meyers EN, Liu YH, Maxson RE, Martin GR. (2000) Conditional inactivation of FGF4 reveals complexity of signaling during limb bud development. Nat Genet 25:83–86

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Mariani FW, Martin GR (2002) Functions of FGF signaling from the apical ectodermal ridge in limb development. Nature 418:501–508

    Article  PubMed  CAS  Google Scholar 

  • Sussman HH (1989) Iron and tumor cell growth. In: deSousa M, Brock JH (eds). Iron in immunity, cancer and inflammation. John Wiley and Sons, New York, pp 261–282

    Google Scholar 

  • Swalla BJ, Solursh M (1984) Inhibition of limb chondrogenesis by fibronectin. Differentiation 26:42–48

    Article  PubMed  CAS  Google Scholar 

  • Tabin C (1989) Isolation of potential limb identity genes. Development 105:813–820

    PubMed  CAS  Google Scholar 

  • Tamura K, Yokouchi Y, Kuroiwa A, Ide H (1997) Retinoic acid changes the proximodistal developmental competence and affinity of distal cells in the developing chick limb bud. Dev Biol 188:224–234

    Article  PubMed  CAS  Google Scholar 

  • Tanaka EM, Gann F, Gates PB, Brockes JP (1997) Newt myotubes re-enter the cell cycle by phosphorylation of the retinoblastoma protein. J Cell Biol 136:155–165

    Article  PubMed  CAS  Google Scholar 

  • Tanaka EM, Dreschel N, Brockes JP (1999) Thrombin regulates S phase re-entry by cultured newt myoblasts. Curr Biol 9:792–799

    Article  PubMed  CAS  Google Scholar 

  • Tank PW (1978) The occurrence of supernumerary limbs following blastemal transplantation in the regenerating forelimb of the axolotl, Ambystoma mexicanum. Dev Biol 62:143–161

    Article  PubMed  CAS  Google Scholar 

  • Tank PW, Carlson BM, Connelly TG (1976) A staging system for forelimb regeneration in the axolotl, Ambystoma maculatum. J Morph 150:117–128

    Article  PubMed  CAS  Google Scholar 

  • Tassava RA, Acton RD (1989) Distribution of a wound epithelium antigen in embryonic tissues of newts and salamanders. Ohio J Sci 89(1):12–15

    Google Scholar 

  • Tassava RA, Garling DJ (1979) Regenerative responses in larval axolotl limbs with skin grafts over the amputation surface. J exp Zool 208:97–110

    Article  PubMed  CAS  Google Scholar 

  • Tassava RA, Mescher AL (1975) The roles of injury, nerves and the wound epidermis during the initiation of amphibian limb regeneration. Differentiation 4:23–24

    Article  PubMed  CAS  Google Scholar 

  • Tassava RA, Chlaponski FA, Thornton CS (1968) Limb regeneration in Ambystoma larvae during and after treatment with adult pituitary hormone. J exp Zool 167:157–167

    Article  PubMed  CAS  Google Scholar 

  • Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504–1508

    Article  PubMed  CAS  Google Scholar 

  • Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y, Meyer EM, Morel L, Petersen BE, Scott EW (2002) Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416:542–545

    Article  PubMed  CAS  Google Scholar 

  • Thorns SD, Stocum DL (1984) Retinoic acid-induced pattern duplication in regenerating urodele limbs. Dev Biol 103:319–328

    Article  Google Scholar 

  • Thornton CS (1938) The histogenesis of muscle in the regenerating forelimb of larval Ambystoma punctatum. J Morph 62:17–46

    Article  Google Scholar 

  • Thornton CS (1960) Influence of an eccentric epidermal cap on limb regeneration in Amblystoma larvae. Dev Biol 2:551–569

    Article  PubMed  CAS  Google Scholar 

  • Thornton CS (1962) Eccentric blastema formation in aneurogenic limbs of Ablystoma following epidermal cap deviation. Dev Biol 5:328–343

    Article  PubMed  CAS  Google Scholar 

  • Thornton CS (1968) Amphibian limb regeneration. Adv Morph 7:205–249

    CAS  Google Scholar 

  • Thornton CS, Thornton MT (1965) The regeneration of accessory limb parts following epidermal cap transplantation in urodeles. Experientia 21:1–6

    Article  Google Scholar 

  • Tomlinson BL, Tassava RL (1987) Dorsal root ganglia stimulate regeneration of denervated urodele forelimbs: timing of graft implantation with respect to denervation. Development 99:173–186

    PubMed  CAS  Google Scholar 

  • Tonge DA, Leclere PG (2000) Directed axonal growth towards axolotl limb blastemas in vitro. Neurosci 100:201–211

    Article  CAS  Google Scholar 

  • Toole BP, Jackson GJ, Gross J (1972) Hyaluronate in morphogenesis: inhibition of chondrogenesis in vitro. Proc Natl Acad Sci USA 69:1384–1386

    Article  PubMed  CAS  Google Scholar 

  • Torok MA, Gardiner M, Shubin N, Bryant SV (1998) Expression of HoxD genes in developing and regenerating axolotl limbs. Dev Biol 200:225–233

    Article  PubMed  CAS  Google Scholar 

  • Torok MA, Gardiner DM, Izpisua-Belmonte J-C, Bryant SV (1999) Sonic hedgehog (shh) expression in developing and regenerating axolotl limbs. J exp Zool 284:197–206

    Article  PubMed  CAS  Google Scholar 

  • Tschumi PA (1957) The growth of hindlimb bud of Xenopus laevis and its dependence upon the epidermis. J Anat 91:149–173

    PubMed  CAS  Google Scholar 

  • Tsonis PA, Trombley MT, Rowland T, Chandraratna RAS, Del-Rio Tsonis K (2000) Role of retinoic acid in lens regeneration. Dev Dyn 219:588–593

    Article  PubMed  CAS  Google Scholar 

  • Van Stone JM (1955) The relationship between innervation and regenerative capacity in hind limbs of Rana sylvatica. J Morph 97:345–391

    Article  Google Scholar 

  • Velloso CP, Kumar A, Tanaka EM, Brockes JP (2000) Generation of mononucleate cells from post-mitotic myotubes proceeds in the absence of cell cycle progression. Differentiation 66:239–246

    PubMed  CAS  Google Scholar 

  • Velloso CP, Simon A, Brockes JP (2001) Mammalian postmitotic nuclei reenter the cell cycle after serum stimulation in newt/mouse hybrid myotubes. Curr Biol 11:855–858

    Article  PubMed  CAS  Google Scholar 

  • Viviano CM, Horton CE, Maden M, Brockes JP (1995) Synthesis and release of 9-cis retinoic acid by the urodele wound epidermis. Development 121:3753–3762

    CAS  Google Scholar 

  • Vogt TF, Duboule D (1999) Antagonists go out on a limb. Cell 99:563–566

    Article  PubMed  CAS  Google Scholar 

  • Vorontsova MA, Liosner LD (1960) Asexual propagation and regeneration. Permagon Press, New York pp 143–159

    Google Scholar 

  • Vortkamp A (2001) Interaction of growth factors regulating chondrocyte differentiation in the developing embryo. Osteoarth Cartilage 9 (Suppl A):S109–S117

    Google Scholar 

  • Wada N, Uchiyama K, Ide H (1993) Cell sorting out and chondrogenic aggregate formation in limb bud recombinant and in culture. Dev Growth Diff 35:421–430

    Article  Google Scholar 

  • Wada N, Ide H (1994) Sorting out of limb bud cells in monolayer culture. Int J Dev Biol 38:351–356

    PubMed  CAS  Google Scholar 

  • Wada N, Kimura I, Tanaka H, Ide H, Nohno T (1998) Glyccosylphosphatidylinositolanchored cell surface proteins regulate position-specific cell affinity in the limb bud. Dev Biol 202:244–252

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Marchionni MA, Tassava RA (2000) Cloning and neuronal expression of a type III newt neuregulin and rescue of denervated nerve-dependent newt limb blastemas by rhGGF2. J Neurobiol 43:150–158

    Article  PubMed  CAS  Google Scholar 

  • Weissman IL (2000a) Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science: 287:1442–1446

    Article  PubMed  CAS  Google Scholar 

  • Weissman IL (2000b) Stem cells: units of development, units of regeneration, and units in evolution. Cell 100:157–168

    Article  PubMed  CAS  Google Scholar 

  • Wolfe D, Nye HLD, Cameron J (2000) Extent of ossification at the amputation plane is correlated with the decline of blastema formation and regeneration in Xenopus laevis hindlmbs. Dev Dyn 218:681–697

    Article  PubMed  CAS  Google Scholar 

  • Woloshin P, Song K, Degnin A, Killary DJ, Goldhamer DJ, Sassoon D, Thayer MJ (1995) MSX1 inhibits MyoD expression in fibroblast X 10T1/2 cell hybrids. Cell 82:611–620

    Article  PubMed  CAS  Google Scholar 

  • Yajima H, Yonei-Tamura S, Watanabe N, Tamura K, Ide H (1999) Role of N-cadherin in the sorting-out of mesenchymal cels and in the positional identity along the proximodistal axis of the chick limb bud. Dev Dyn 216:274–284

    Article  PubMed  CAS  Google Scholar 

  • Yang EV, Gardiner DM, Bryant SV (1999) Expression of Mmp-9 and related matrix metalloproteinase genes during axolotl limb regeneration. Dev Dyn 216:2–9

    Article  PubMed  CAS  Google Scholar 

  • Yannas IV (2001) Tissue and organ regeneration in adults. Springer-Verlag New York, Inc, New York, pp 138–185

    Google Scholar 

  • Ying Q-L, Nichols J, Evans EP, Smith AG (2002) Changing potency by spontaneous fusion. Nature 416:545–548

    Article  PubMed  CAS  Google Scholar 

  • Yntema CL (1959a) Regeneration of sparsely innervated and aneurogenic forelimbs of Ambystoma larvae. J exp Zool 140:101–123

    Article  PubMed  CAS  Google Scholar 

  • Yntema CL (1959b) Blastema formation in sparsely innervated and aneurogenic forelimbs in Amblystoma larvae. J exp Zool 142:423–440

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama H, Yonei-Tamura S, Endo T, Izpisua-Belmonte JC, Tamura K, Ide H (2000) Mesenchyme with fgf10 expression is responsible for regenerative capacity in Xenopus limb buds. Dev Biol 219:18–29

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama H, Ide H, Tamura K (2001) FGF-10 stimulates limb regeneration ability in Xenopus laevis. Dev Biol 233:72–79

    Article  PubMed  CAS  Google Scholar 

  • Young HE, Bailey CF, Dalley BK (1983) Gross morphological analysis of limb regeneration in postmetamorphic adult Ambystoma. Anat Rec 206:295–306

    Article  PubMed  CAS  Google Scholar 

  • Young HE, Dalley B, Markwald RR (1989) Effect of selected denervations on glycoconjugate composition and tissue morphology during the initiation phase of limb regeneration in adult Ambystoma. Anat Rec 223:230

    Google Scholar 

  • Zardoya R, Abouheif A, Meyer A (1996) Evolution and orthology of hedgehog genes. Trends Genet 12:496–497

    Article  PubMed  CAS  Google Scholar 

  • Zenjari C, Boilly, Hondermarck H, Boilly-Marer Y (1997) Nerve-blastema interactions induce fibroblast growth factor-1 release during limb regeneration in Pleurodeles waltl. Dev Growth Diff 39:15–22

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stocum, D.L. (2004). Amphibian Regeneration and Stem Cells. In: Heber-Katz, E. (eds) Regeneration: Stem Cells and Beyond. Current Topics in Microbiology and Immunology, vol 280. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18846-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18846-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62321-9

  • Online ISBN: 978-3-642-18846-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics