Skip to main content

Plants and Geothermal CO2 Exhalations — Survival in and Adaptation to a High CO2 Environment

  • Chapter

Part of the book series: Progress in Botany ((BOTANY,volume 65))

Abstract

Modern plants live in a rather “low CO2”- world when compared to CO2 concentrations in the atmosphere during prehistoric evolution (Petit et al. 1999). Similar to Mars and Venus, CO2 on planet Earth might have been as high as 90–98% during the early days of photosynthetic evolution (Emiliani 1992; Raven 1995; Grace and van Gardingen 1997). But concentrations decreased gradually during epochs to reach only a few hundred ppm, although [CO2]1 is again steadily increasing since the last 200 years (Bowes 1993). Values nowadays are dramatically lower by a factor of 3,000 than in those ancient times. Nevertheless, a further increase from presently 360 ppm (0.036% w/v) to ca. 700 ppm (0.07% w/v) is thought to take place within the current century (WMO 1990; Bowes 1993; IPCC 1996). Predictions for the second half of the present century range from 415 to 575 ppm depending on a CO2 emission rate of ±2% (Houghton et al. 1990; Cook et al. 1997). During evolution, plants had to cope with and adapt to a slowly but permanently changing CO2 environment including periods with increasing and others with decreasing CO2. Although ambient CO2 does nowadays not saturate C3 photosynthesis, plants have evolved mechanisms to rather effectively capture and photo-reduce the oxidised carbon to the level of carbohydrates.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen JH (1990) Plant response to rising carbon dioxide and potential interactions with air pollutants. J Environ Qual 19:15–34

    CAS  Google Scholar 

  • Amthor JS (1995) Terrestrial higher-plant response to increasing atmospheric CO2 in relation to the global carbon cycle. Global Change Biol 1:243–274

    Google Scholar 

  • Andalo C, Godelle B, Lefranc M, Mousseau M, Bottraud T (1996) Elevated CO2 decreases seed germination in Arabidopsis thaliana. Global Change Biol 2:129–135

    Google Scholar 

  • Andrews CJ, Pomeroy MK (1991) Low temperature anaerobiosis in ice encasement damage to winter cereals. In: Jackson MB, Davies DD, Lambers H (eds) Plant life under oxygen deprivation. SBP Acad Publishing, The Hague, pp 85–99

    Google Scholar 

  • Arnone JA (1997) Indices of plant N availability in an alpine grassland under elevated atmospheric CO2. Plant Soil 190:61–66

    CAS  Google Scholar 

  • Arnone JA, Zaller JG, Spehn EM, Niklaus PA, Wells CE, Körner C (2000) Dynamics of root systems in native grasslands: effects of elevated atmospheric CO2. New Phytol 147:73–86

    CAS  Google Scholar 

  • Badger M (1992) Manipulating agricultural plants for a future high CO2 environment. Aust J Bot 40:421–426

    CAS  Google Scholar 

  • Badiani M, Raschi A, Paolacci AR, Miglietta F (2000) Plants responses to elevated CO2; a perspective from natural CO2 springs. In: Agrawal SB, Agrawal M (eds) Environmental pollution and plant response. Lewis, Boca Raton, pp 45–81

    Google Scholar 

  • Baker JT, Allen LH Jr, Boote KJ, Pickering NB (2000) Direct effects of atmospheric carbon dioxide concentration on whole-canopy dark respiration of rice. Global Change Biol 6:275–286

    Google Scholar 

  • Barnes JD, Ollerenshaw JH, Whitfield CP (1995) Effects of elevated CO2 and/or O3 on growth, development and physiology of wheat (Triticum aestivum L.) Global Change Biol 1:129–142

    Google Scholar 

  • Baubron JC, Allard P, Toutain JP (1990) Diffuse volcanic emissions of carbon dioxide from Vulcano Island, Italy. Nature 344:51–53

    PubMed  CAS  Google Scholar 

  • Bauer H, Martha P (1981) The CO2 compensation point of C3 plants-a re-examination. I. Interspecific variability. Z Pflanzenphysiol 103:445–450

    CAS  Google Scholar 

  • Bauer H, Martha P, Kirchner-Heiss B, Maierhofer J (1983) The CO2 compensation point of C3 plants-a re-examination. II. Intraspecific variability. Z Pflanzenphysiol 109:143–154

    CAS  Google Scholar 

  • Baxter PJ, Kapila M (1989) Acute health impact of the gas-release at Lake Nyos, Cameroon. J Volcanol Geotherm Res 39:265–275

    Google Scholar 

  • Bazzaz FA, Wayne PM (1994) Coping with environmental heterogenity: the physiological ecology of tree seedlings regeneration across the gap-understory continuum. In: Caldwell MM, Pearcy RW (eds) Exploitation of environmental heterogeneity by plants. Academic Press, San Diego, pp 349–390

    Google Scholar 

  • Beerling DJ, Chaloner WG (1993) Stomatal density responses of Egyptian Olea europaea leaves to CO2 change since 1327 b.c. Ann Bot 71:431–435

    CAS  Google Scholar 

  • Berner RA (1990) Global CO2 degassing and the carbon cycle. Geochim Cosmochim Acta 54:2889–2894

    CAS  Google Scholar 

  • Bettarini I, Calderoni G, Miglietta F, Raschi A, Ehleringer J (1995) Isotopic discrimination and leaf nitrogen content of Erica arborea L. along a CO2 concentration gradient in a CO2 spring in Italy. Tree Physiol 15:327–332

    PubMed  Google Scholar 

  • Bettarini I, Miglietta F, Raschi A (1997) Studying morpho-physiological responses of Scirpus lacustris from naturally CO2-enriched environments. In: Raschi A, Miglietta F, Tognetti R, van Gardingen PR (eds) Plant responses to elevated CO2. Evidence from natural springs. Cambridge University Press, Cambridge, pp 134–147

    Google Scholar 

  • Bettarini I, Vaccari FP, Miglietta F (1998) Elevated CO2 concentration and stomatal density: observations from 17 plant species growing in a CO2 spring in central Italy. Global Change Biol 4:17–22

    Google Scholar 

  • Beyschlag W, Eckstein J (1997) Stomatal patchiness. In: Behnke H-D, Esser K, Kadereit JW, Lüttge U, Runge M (eds) Progress in botany, vol 59. Springer, Berlin Heidelberg New York, pp 283–298

    Google Scholar 

  • Beyschlag W, Pfanz H (1990) A fast method to detect the occurrence of non-homogeneous distribution of stomatal aperture in heterobaric plant leaves. Experiments with Arbutus unedo L. during the diurnal course. Oecologia 82:52–55

    Google Scholar 

  • Blanke MM, Holthe PA (1997): Bioenergetics, maintenance respiration and transpiration of pepper fruits. J Plant Physiol 150:247–250

    CAS  Google Scholar 

  • Bouma TJ, Nielsen KL, Eissenstat DM, Lynch JP (1997a) Estimating respiration of roots in soihlnteractions with soil CO2, soil temperature and soil water content. Plant Soil 195:221–232

    CAS  Google Scholar 

  • Bouma TJ, Nielsen KL, Eissenstat DM, Lynch JP (1997b) Soil CO2 concentration does not affect growth or root respiration in bean or citrus. Plant Cell Environ 20:1495–1505

    Google Scholar 

  • Bowes G (1993) Facing the inevitable: plants and increasing atmospheric CO2. Annu Rev Plant Physiol Plant Mol Biol 44:309–332

    CAS  Google Scholar 

  • Bragina TV, Grinieva GM (1998) Gas exchange and respiration in waterlogged maize. Russian J Plant Physiol 45:582–585

    CAS  Google Scholar 

  • Brix H (1988a) Light-dependent variations in the composition of the internal atmosphere of Phragmites australis (Cav.) Trin. Ex Steudel. Aquat Bot 30:319–329

    CAS  Google Scholar 

  • Brix H (1988b) Uptake and photosynthetic utilisation of sediment derived carbon by Phragmites communis (Cav.) Trin. Ex Steudel. Aquatic Bot 38:377–389

    Google Scholar 

  • Brook GA, Folkoff ME, Box EO (1983) A world model of soil carbon dioxide. Earth Surface Processes Landforms 8:79–88

    CAS  Google Scholar 

  • Burton AJ, Pregitzer KS (2002) Measurement carbon dioxide concentration does not affect root respiration of nine tree species in the field. Tree Physiol 22:67–72

    PubMed  Google Scholar 

  • Campbell WJ, Allen LH, Bowes G (1988) Effects of CO2 concentration on Rubisco activity, amount, and photosynthesis in soybean leaves. Plant Physiol 88:1310–1316

    PubMed  CAS  Google Scholar 

  • Chaves MM, Pereira JS, Cerasoli S, Clifton-Brown J, Miglietta F, Raschi A (1995) Leaf metabolism during summer drought in Quercus ilex trees with lifetime exposure to elevated CO2. J Biogeogr 22:255–259

    Google Scholar 

  • Cheng W (1999) Rhizosphere feedbacks in elevated CO2. Tree Physiol 19:313–320

    PubMed  Google Scholar 

  • Chiodini G, Frondini F, Ponziani F (1995) Deep structures and carbon dioxide degassing in central Italy. Geothermics 24:81–94

    CAS  Google Scholar 

  • Clinton BD, Vose JM (1999) Fine root respiration in mature eastern white pine (Pinus strobus) in situ: the importance of CO2 in controlled environments. Tree Physiol 19:475–479

    PubMed  Google Scholar 

  • Coleman JS, McConnaughay KDM, Bazzaz FA (1993) Elevated CO2 and plant nitrogen use-is reduced tissue nitrogen concentration size-dependent. Oecologia 93 195–200

    Google Scholar 

  • Constable JVH, Grace JB, Longstreth DJ (1992) High carbon dioxide concentrations in aerenchyma of Typha latifolia. Am J Bot 79:415–418

    Google Scholar 

  • Cook AC, Oechel WC, Sveinbjornsson B (1997) Using Icelandic CO2 springs to understand the long-term effects of elevated CO2. In: Raschi A, Miglietta F, Tognetti R, van Gardingen PR (eds) Plant responses to elevated CO2. Cambridge University Press, Cambridge, pp 87–102

    Google Scholar 

  • Cook AC, Tissue DT, Roberts SW, Oechel WC (1998) Effects of long-term elevated [CO2] from natural CO2 springs on Nardus stricta: photosynthesis, biochemistry, growth and phenology. Plant Cell Environ 21:417–425

    CAS  Google Scholar 

  • Cotrufo MF, Ineson P, Scott A (1998) Elevated CO2 reduces the nitrogen concentration of plant tissues. Global Change Biol 4:43–54

    Google Scholar 

  • Crawford RMM, Braendle R (1996) Oxygen deprivation stress in a changing environment. J Exp Bot 47:145–159

    CAS  Google Scholar 

  • Curtis PS, Vogel CS, Pregitzer KS, Zak DR, Teeri JA (1995) Interacting effects of soil fertility and atmospheric CO2 on leaf area and carbon gain physiology in Populus x euramericana (Dode) Guinier. New Phytol 129:253–263

    Google Scholar 

  • Curtis PS, Wang XZ (1998) A meta-analysis of elevated CO2 effects on woody plant mass, form and physiology. Oecologia 113:299–313

    Google Scholar 

  • Drake BG, Gonzalez-Meier MA, Long SP (1997) More efficient plants:a consequence of rising atmospheric CO2. Annu Rev Plant Physiol Plant Mol Biol 48:609–639

    PubMed  CAS  Google Scholar 

  • Drake BG, Azcon-Bieto J, Berry J, Bunce J, Dijkstra P, Farrar J, Gifford RM, Gonzalez-Meier MA, Koch G, Lambers H, Siedow J, Wulschleger S (1999) Does elevated atmospheric concentration inhibit mitochondrial respiration in green plants? Plant Cell Environ 22:649–657

    CAS  Google Scholar 

  • Duchi V, Minissale A, Romani L (1985) Studio geochimico su acque e gas dellàrea geotermica lago di Vico-M.Cimini (Viterbo). Atti Soc Toscana Sci Nat Ser A 92:237–254

    CAS  Google Scholar 

  • Eamus D, Jarvis PG (1989) The direct effects of increase in the global atmospheric CO2 concentrations on natural and commercial temperate trees and forests. Adv Ecol Res 19:1–55

    Google Scholar 

  • Edwards GR, Clark H, Newton PCD (2003) Soil development under elevated CO2 affects plant growth response to CO2 enrichment. Basic Appl Ecol 4:185–195

    Google Scholar 

  • Emiliani C (1992) Planet earth: cosmology, geology, and the evolution of life and environment. Cambridge University Press, Cambridge

    Google Scholar 

  • Enoch HZ, Kimball BA (eds) (1986) Carbon dioxide enrichment of greenhouse crops, vol I and II. CRC Press, Boca Raton, FL

    Google Scholar 

  • Etiope G (1997) Migration in the ground of CO2 and other volatile contaminants. Theory and survey. In: Raschi A, Miglietta F, Tognetti R, van Gardingen PR (eds) Plant responses to elevated CO2. Cambridge University Press, Cambridge, pp 7–20

    Google Scholar 

  • Ewert F, Pleijel H (1999) Phenological development, leaf emergence, tillering and leaf area index, and duration of spring wheat across Europe in response to CO2 and ozone. Eur J Agron 10:171–184

    Google Scholar 

  • Fan SM, Wofsky SC, Bakwin PS, Jacob DJ (1990) Atmosphere-biosphere exchange of CO2 and O3 in the central amazon forest. J Geophys Res 95:16851–16864

    CAS  Google Scholar 

  • Farrar CD, Neil JM, Howie JF (1999) Magmatic carbon dioxide emissions at Mammoth Mountain, California. US Geological Survey Water-Resources Investigations Report, pp 98–4217

    Google Scholar 

  • Field CB, Jackson RB, Mooney HA (1995) Stomatal response to increased CO2: implications from the plant to the global scale. Plant Cell Environ 18:1214–1225

    Google Scholar 

  • Fordham M, Barnes J (1999) Growth and photosynthetic capacity in Agrostis canina and Plantago major adapted to contrasting long-term atmospheric CO2 concentrations. In: Raschi A, Vaccari FP, Miglietta F (eds) Ecosystem response to CO2: the MAPLE project results. RDG European Commission, Brussels, pp 143–157

    Google Scholar 

  • Fordham MC, Barnes JD, Bettarini I, Polle A, Slee N, Raines C, Miglietta F, Raschi A (1997a) The impact of elevated CO2 on the growth of Agrostis canina and Plantago major adapted to contrasting CO2 concentrations. In: Raschi A, Miglietta F, Tognetti R, van Gardingen PR (eds) Plant responses to elevated CO2. Cambridge University Press, Cambridge, pp 174–196

    Google Scholar 

  • Fordham MC, Barnes JD, Bettarini I, Polle A, Slee N Raines C, Miglietta F, Raschi A (1997b) The impact of elevated CO2 on the growth and photosynthesis in Agrostis canina subsp. monteluccii adapted to contrasting atmospheric CO2 concentrations. Oecologia 110:169–176

    Google Scholar 

  • Gahrooee FR (1998) Impacts of elevated atmospheric CO2 on litter quality, litter decomposability and nitrogen turnover rate of two oak species in a Mediterranean forest ecosystem. Global Change Biol 4:667–677

    Google Scholar 

  • Garcia RL, Idso SB, Wall GW, Kimball BA (1994) Changes in net photosynthesis and growth of Pinus eldarica seedlings in response to atmospheric CO2 enrichment. Plant Cell Environ 17:971–978

    CAS  Google Scholar 

  • Geiger M, Haake V, Ludewig F, Sonnewald U, Stitt M (1999) The nitrate and ammonium nitrate supply have a major influence on the response of photosynthesis, carbon metabolism, nitrogen metabolism and growth to elevated carbon dioxide in tobacco. Plant Cell Environ 22:1177–1199

    Google Scholar 

  • Gerlach TM (1991) Present-day CO2 emissions from volcanoes. Eos, Transactions, American Geophysical Union 72(23):249–255

    Google Scholar 

  • Gibberd MR, Gray JD, Cocks PS, Colmer TD (2001) Waterlogging tolerance among a diverse range of Trifolium accessions is related to root porosity, lateral root formation and ‘aerotropic rooting’. Ann Bot 88:579–589

    Google Scholar 

  • Gonzalez-Meier MA, Siedow JN (1999) Direct inhibition of mitochondrial respiratory enzymes by elevated CO2: does it matter at the tissue or whole-plant level? Tree Physiol 19:253–259

    Google Scholar 

  • Gonzalez-Meier MA, Ribas-Carbo M, Siedow JN, Drake BG (1996) Direct inhibition of plant mitochondrial respiration by elevated CO2. Plant Physiol 112:1349–1355

    Google Scholar 

  • Grace J, van Gardingen PR (1997) Sites of naturally elevated carbon dioxide. In: Raschi A, Miglietta F, Tognetti R, van Gardingen PR (eds) Plant responses to elevated CO2. Cambridge University Press, Cambridge, pp 1–6

    Google Scholar 

  • Gregory PJ, Palta JA, Batts GR (1996) Root systems and root:mass ratio-carbon allocation under current and projected atmospheric conditions in arable crops. Plant Soil 187:221–228

    CAS  Google Scholar 

  • Hamilton JG, Thomas RB, DeLucia EH (2001) Direct and indirect effects of elevated CO2 on leaf respiration in a forest ecosystem. Plant Cell Environ 24:975–982

    CAS  Google Scholar 

  • Hättenschwiler S, Miglietta F, Raschi A, Körner C (1997) 30 years’ in situ tree growth under elevated CO2: a model for future forest responses? Global Change Biol 3:463–471

    Google Scholar 

  • Heath OVS (1948) Control of stomatal movement by a reduction in the normal [CO2] of the air. Nature 161:179–180

    PubMed  CAS  Google Scholar 

  • Heath J, Mansfield T (1999) CO2 enrichment of the atmosphere and the water economy of plants. In: Agrawal SB, Agrawal M (eds) Environmental pollution and plant response. Lewis, Boca Raton, pp 33–42

    Google Scholar 

  • Hocking D, Hocking MB (1977) Equilibrium solubility of trace atmospheric sulfur dioxide in water and its bearing on air pollution injury to plants. Environ Pollut 13:57–64

    CAS  Google Scholar 

  • Houghton JT, Jenkins GJ, Ephraums JJ (1990) (eds) Climate change: the IPCC Scientific Assessment. Cambridge University Press, Cambridge

    Google Scholar 

  • Huang BR, Johnson JW (1995) Root respiration and carbohydrate status of 2 wheat genotypes in response to hypoxia. Ann Bot 75:427–432

    CAS  Google Scholar 

  • IPCC (Intergovernmental Panel for Climatic Change) (1996) Climate change. The second assessment report of IPCC working group I. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Jacob J, Greitner C, Drake BG (1995) Acclimation of photosynthesis in relation to Rubisco and non-structural carbohydrate contents and in situ carboxylase activity in Scirpus olneyi grown at elevated CO2 in the field. Plant Cell Environ 18:875–884

    CAS  Google Scholar 

  • Jahnke S (2001) Atmospheric CO2 concentration does not directly affect leaf respiration in bean or poplar. Plant Cell Environ 24:1139–1151

    CAS  Google Scholar 

  • Jahnke S, Krewitt M (2002) Atmospheric CO2 concentration may directly affect leaf respiration measurement in tobacco, but not respiration itself. Plant Cell Environ 25:641–651

    CAS  Google Scholar 

  • Joel G, Chapin FS, Chiariello NR, Thayer SS, Field CB (2001) Species specific responses of plant communities to altered carbon and nutrient availability. Global Change Biol 7:435–450

    Google Scholar 

  • Jones HG(1992) Plants and microclimate, 2nd edn. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Jongen M, Jones MB, Hebeisen T, Blum H, Hendrey G (1995) The effect of elevated CO2 concentrations on the root growth of Lolium perenne and Trifolium repens in a FACE system. Global Change Biol 1:361–370

    Google Scholar 

  • Kaligariĉ M (2001) Vegetation patterns and responses to elevated CO2 from natural CO2 springs at Strmec (Radenci, Slovenia). Acta Biol Slovenica 44:31–38

    Google Scholar 

  • Kenner AA, Ahmed SI (1975) Measurements of electron transport activities in marine phyto-plankton. Mar Biol 33:117–120

    Google Scholar 

  • Kiefer RH, Amey RG (1992) Concentrations and controls of soil Carbon dioxide in sandy soil in the North Carolina coastal plain. Catena 19:539–559

    CAS  Google Scholar 

  • Kimball BA, Pinter PJ, Garcia RL, Lamorte RL, Wall GW, Hunsaker DJ (1995) Productivity and water-use of wheat under free-air CO2 enrichment. Global Change Biol 1:429–442

    Google Scholar 

  • Krupa SV, Kickert RN (1993) The greenhouse effect-the impacts of carbon dioxide (CO2), ultraviolet B (UV-B) radiation and Ozone (O3) on vegetation (crops). Vegetatio 104:223–238

    Google Scholar 

  • Körner C, Miglietta F (1994) Long term effects of naturally elevated CO2 on Mediterranean grassland and forest trees. Oecologia 99:343–351

    Google Scholar 

  • Kiihny JS, Peet MM, Nelson PV, Willits DH (1991) Nutrient dilution by starch in CO2-enriched Chrysanthemum. J Exp Bot 42:711–716

    Google Scholar 

  • Lambers H, Atkin OK, Scheurwater I (1996a) Respiratory patterns in roots in relation to their functioning. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Decker, New York, pp 232–362

    Google Scholar 

  • Lambers H, Stulen I., van der Werf A (1996b) Carbon use in root respiration as affected by elevated atmospheric CO2. Plant Soil 187:251–263

    CAS  Google Scholar 

  • Lambers H, Atkin OK, Millenaar, FF (2002) Respiratory patterns in roots in relation to their functioning. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 3rd edn. Marcel Dekker, New York, pp 521–552

    Google Scholar 

  • Larcher W (2001) Ökophysiologie der Pflanzen, 6th edn. Ulmer, Stuttgart

    Google Scholar 

  • Leadley PW, Körner C (1996) Effect of elevated CO2 on plant species in a highly diverse calcareous grassland. In: Körner C, Bazzaz FA (eds) Carbon dioxide, populations and communities. Academic Press, San Diego, pp 158–175

    Google Scholar 

  • Leadley PW, Stöcklin J (1996) Effects of elevated CO2 on model calcareous grassland:community, species, and genotype level responses. Global Change Biol 2:389–397

    Google Scholar 

  • Lloyd J, Farquhar GD (1996) The CO2 dependence of photosynthesis, plant-growth responses to elevated atmospheric CO2 concentrations and their interaction with soil nutrient status. I. General principles and forest ecosystems. Funct Ecol 10:4–32

    Google Scholar 

  • Maĉek I, Pfanz H, Vodnik D, Batiĉ F (2002) Growth and root respiration of C4 plants under CO2 enrichment. Acta Biol Slovenica (in press)

    Google Scholar 

  • Manning WJ, von Tiedemann A (1995) Climate change potential effects of increased atmospheric carbon dioxide (CO2), ozone (O3), and ultraviolet-B (UV-B) radiation on plant diseases. Environ Pollut 88:219–245

    PubMed  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London, 889 pp

    Google Scholar 

  • Martini M (1997) CO2 emission in volcanic areas: case histories and hazards. In: Raschi A, Miglietta F, Tognetti R, van Gardingen PR (eds) Plant responses to elevated CO2. Cambridge University Press, Cambridge, pp 35–44

    Google Scholar 

  • Matt P, Geiger M, Walch-Liu P, Engels C, Krapp A, Stitt M (2001) Elevated carbon dioxide increases nitrate uptake and nitrate reductase activity when tobacco is growing on nitrate, but increases ammonium uptake and inhibits nitrate reductase activity when tobacco is growing on ammonium nitrate. Plant Cell Environ 24:1119–1137

    CAS  Google Scholar 

  • McDougal DT, Working EB (1933) The pneumatic system of plants, especially trees. Cam Inst Wash Publ 441

    Google Scholar 

  • McKee IF, Farage PK, Long SP (1995) The interactive effects of elevated CO2 and O3 concentration on photosynthesis in spring wheat. Photosynth Res 45:11–16

    Google Scholar 

  • Meister MH, Bolhar-Nordenkampf HR, Kropf PJ (1999) Plant growth modified by the CO2 gradient along the road ditch at mofeta Strmec. In: Kaligaric M (ed) SNACE, FACE and OTCs CO2 enrichment at the leaf/air interface and/or at the root/soil interface; results in growth and development of plants. Abstracts of International Workshop, Maribor, pp 30–31

    Google Scholar 

  • Melillo J, Callaghan TV, Woodward FI, Salati E, Sinha SK (1990) Effects on ecosystems. In: Houghton JT, Jenkins GJ, Ephraums JJ (eds) Climate change: the IPCC Scientific Assessment. Cambridge University Press, Cambridge, pp 283–310

    Google Scholar 

  • Miglietta F (1997) Non-traumatic responses of natural vegetation to long-term carbon dioxide enrichment. In: Allen LH, Kirkham MB, Olszyk DM, Whitman CE (eds) Advances in carbon dioxide effects research. ASA Special Publ 61. Amer Soc Agronomy, Madison, Wisconsin, pp 101–112

    Google Scholar 

  • Miglietta F, Raschi A (1993) Studying the effect of elevated CO2 in the open in a naturally enriched environment in central Italy. Vegetatio 104:391–400

    Google Scholar 

  • Miglietta F, Raschi A, Bettarini I, Resti R, Selvi F (1993) Natural CO2 springs in Italy: a resource for examining the long-term response of vegetation to rising atmospheric CO2 concentration. Plant Cell Environ 16:873–878

    CAS  Google Scholar 

  • Miglietta F, Badiani M, Bettarini I, van Gadingen PR, Selvi F, Raschi A (1995) Preliminary studies of a long-term CO2 response of Mediterranean vegetation around natural CO2 vents. In: Moreno JM, Dechela EC (eds) Global changes and mediterranean-type ecosystems. Springer, Berlin Heidelberg New York, pp 102–117

    Google Scholar 

  • Miglietta F, Bettarini I, Raschi A, Körner C, Vaccari FP (1998a) Isotope discrimination and photosynthesis of vegetation growing in the II Bossoleto CO2 spring. Chemosphere 36:771–776

    CAS  Google Scholar 

  • Miglietta F, Magliulo V, Bindi M, Cerio L, Vaccari FP, Loduca V, Peressotti A (1998b) Free air CO2 enrichment of potato (Solanum tuberosum L.): development, growth and yield. Global Change Biol 4:163–172

    Google Scholar 

  • Mörner NA, Etiope G (2002) Carbon degassing from the lithosphere. Global Planet Change 33:185–203

    Google Scholar 

  • Mook WG (1986) 13C in atmospheric CO2. Nefh J Sea Res 20:211–223

    CAS  Google Scholar 

  • Navas ML, Guillerm JL, Fabreguettes J, Roy J (1995) The influence of elevated CO2 on community structure, biomass and carbon balance of Mediterranean old-field microcosms. Global Change Biol 1:325–335

    Google Scholar 

  • Nobel PS, Palta JA (1989) Soil O2 and CO2 effects on root respiration of cacti. Plant Soil 120:263–271

    CAS  Google Scholar 

  • O’Neill EG (1994) Responses of soil biota to elevated atmospheric carbon dioxide. Plant Soil 165:55–65

    Google Scholar 

  • Panichi C, Tongiorgi E (1975) Carbon isotopic composition of CO2 from springs, fumaroles, mofettes, and travertines of central and southern Italy: a preliminary prospection method of geothermal area. In: Proceedings of the Second UN Symposium on the development and use of Geothermal Resources. San Francisco, CA, USA, 20-29 May 1975

    Google Scholar 

  • Paoletti E, Nourrisson G, Garrec JP, Raschi A (1998) Modifications of the leaf surface structures of Quercus ilex L. in open, naturally CCh-enriched environments. Plant Cell Environ 21:1071–1075

    Google Scholar 

  • Pearson M, Brooks GL (1996) The effect of elevated CO2 and grazing by Gastrophysa viridula on the physiology and re-growth of Rumex obtusifolius. New Phytol 133:605–611

    Google Scholar 

  • Penuelas J, Filella I, Tognetti R (2001) Leaf mineral concentrations of Erica arborea, Juniperus communis and Myrtus communis growing in the proximity of a natural CO2 spring. Global Change Biol 7:291–301

    Google Scholar 

  • Petit JR, Jouzel J, Raynuad D, Barkov NI, Barnola J-M, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436

    CAS  Google Scholar 

  • Pezdiĉ J, Dolenec T, Pirc S, i ek D (1995) Hydrogeochemical properties and activity of the fluids in the Pomurje Region of the Pannonian Sedimentary Basin. Acta Geol Hung 39:319–340

    Google Scholar 

  • Pezdiĉ J, i ek D, Wolf M, Trettin R, Stichler W, Fritz P (1998) Influence of geogenic carbon dioxide on the plant’s growth. Rud-Metal Zb 45:154–157

    Google Scholar 

  • Pfanz H (1994) Apoplastic and symplastic proton concentrations and their significance for metabolism. In: Schulze E-D, Caldwell MM (eds) Ecophysiology of photosynthesis. Ecological studies 100. Springer, Berlin Heidelberg New York, pp 103–122

    Google Scholar 

  • Pfanz H, Aschan G (2001) The existence of bark and stem photosynthesis in woody plants and its significance for the overall carbon gain. An eco-physiolocigal and ecological approach. In: Esser K, Lüttge U, Kadereit JW, Beyschlag W (eds) Progress in botany 62. Springer, Berlin Heidelberg New York, pp 477–510

    Google Scholar 

  • Pfanz H, Dietz KJ (1987) A fluorescence method for the determination of the apoplastic proton concentration in intact leaf tissues. J Plant Physiol 129:41–48

    CAS  Google Scholar 

  • Pfanz H, Heber U (1986) Buffer capacities of leaves, leaf cells, and leaf cell organelles in relation to fluxes of potentially acidic gases. Plant Physiol 81:597–602

    PubMed  CAS  Google Scholar 

  • Pfanz H, Heber U (1989) Determination of extra-and intracellular pH values in relation to the action of acidic gases on cells. In: Linskens HF, Jackson JF (eds) Modern methods of plant analysis NS, vol 9. Gases in plant and microbial cells. Springer, Berlin Heidelberg New York, pp 322–343

    Google Scholar 

  • Pfanz H, Aschan G, Langenfeld-Heyser R, Wittmann C, Loose M (2002) Tree stem photosynthesis. Naturwissenschaften 89:147–162

    PubMed  CAS  Google Scholar 

  • Poli E (1970) Aspetti della vita vegetale in ambienti vulcanici. Ann Bot (Roma) 30:59–79

    Google Scholar 

  • Ponnamperuma FN (1984) Effects of flooding on soils. In: Kozlowski TT (eds) Flooding and plant growth. Academic Press, London, pp 9–45

    Google Scholar 

  • Pritchard SG, Rogers HH (2000) Spatial and temporal deployment of crop roots in CO2-enriched environments. New Phytol 147:55–71

    CAS  Google Scholar 

  • Qi J, Marshall JD, Mattson KG (1994) High soil carbon dioxide concentrations inhibit root respiration of Douglas fir. New Phytol 128:435–442

    Google Scholar 

  • Radin JW, Kimball BA, Hendrix DL, Mauney JR (1987) Photosynthesis of cotton plants exposed to elevated levels of carbon dioxide in the field. Photosynth Res 12:191–203

    Google Scholar 

  • Rakitina ZG (1970) Effect of an ice crust on gas composition of the internal atmosphere of winter wheat. Sov Plant Physiol 17:907–912

    CAS  Google Scholar 

  • Raschi A, Miglietta F, Tognetti R, van Gardingen PR (eds) (1997) Plant responses to elevated CO2. Cambridge University Press, Cambridge

    Google Scholar 

  • Raschi A, Vaccari FP, Miglietta F (eds) (1999) Ecosystem response to CO2: the MAPLE project results. RDG European Commission, Brussels

    Google Scholar 

  • Raven JA (1985) pH-regulation in plants. Sci Progr 49:495–509

    Google Scholar 

  • Raven JA (1995) The early evolution of land plants: aquatic ancestors and atmospheric interactions. Bot J Scotland 47:151–175

    Google Scholar 

  • Rillig MC, Hernandez GY, Newton PCD (2000) Arbuscular mycorrhiza respond to elevated atmospheric CO2 after long-term exposure: evidence from a CO2 spring in New Zealand supports the resource balance model. Ecol Lett 3:475–478

    Google Scholar 

  • Rogers HH, Brett Runion G, Krupa SV (1994) Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere. Environ Pollut 83:155–160

    Google Scholar 

  • Rogers HH, Prior SA, Runion GB, Mitchell RJ (1996) Root to shoot ratio of crops as influenced by CO2. Plant Soil 187:229–248

    CAS  Google Scholar 

  • Rogie JD, Kerrick DM, Chiodini G, Frondini F (2000) Flux measurements of non-volcanic CO2 emission from some vents in central Italy. J Geophys Res 105:8435–8445

    CAS  Google Scholar 

  • Rogie JD, Kerrick DM, Sorey ML, Chiodini G, Galloway DL (2001) Dynamics of carbon dioxide emission at Mammoth Mountain, California. Earth Planetary Sci Lett 188:535–541

    CAS  Google Scholar 

  • Rosenzweig C, Parry ML (1994) Potential impact of climate change on world food supply. Nature 367:133–138

    Google Scholar 

  • Sage RF, Sharkey TD, Seemann JR (1989) Acclimation of photosynthesis to elevated CO2 in 5 C3 species. Plant Physiol 89:590–596

    PubMed  CAS  Google Scholar 

  • Šajna N, Meister M, Bolhar-Nordenkampf HR, Kaligariĉ M (2002) Possible influence of naturally elevated CO2 concentration on a semi-natural wet meadow. In: Kaligariĉ M, Škornik S (eds) Symposium “Flora and Vegetation in Changing Environment” 6 Abstracts. Maribor, p 46

    Google Scholar 

  • Schwiebert G (1985) CO2-Düngung im Gartenbau. Zierpflanzenbau 20:27–33

    Google Scholar 

  • Selvi F (1997) Acidophilic grass communities in central Italy: composition, structure and ecology. In: Raschi A, Miglietta F, Tognetti R, van Gardingen PR (eds) Plant responses to elevated CO2. Cambridge University Press, Cambridge, pp 114–133

    Google Scholar 

  • Selvi F, Bettarini I (1999) Geothermal biotopes in central-western Italy from a botanical view point. In: Raschi A, Vaccari FP, Miglietta F (eds) Ecosystem response to CO2: the MAPLE project results. Research Directorate general Unit D.l.l. European Commission EUR 19100, pp 1–12

    Google Scholar 

  • Sestak Z, Catsky J, Jarvis PG (1971) Plant photosynthesis production. Manual of methods. W Junk Publ, The Hague

    Google Scholar 

  • Sigurdsson BD (2001) Elevated [CO2] and nutrient status modified leaf phenology and growth rhythm of young Populus trichocarpa trees in a 3-year field study. Trees Struct Funct 15:403–413

    Google Scholar 

  • Sigurdsson H, Devine JD, Tchoua FM, Presser TS, Pringle MKW, Evans WC (1986) Origin of the lethal gas burst from lake Monoun, Cameroun. J Volcanol Geothermal Res 31:1–16

    Google Scholar 

  • Sorrell BK (1999) Effeccts of external oxygen demand on radial oxygen loss by Juncus roots in titanium citrate solutions. Plant Cell Environ 22:1587–1593

    CAS  Google Scholar 

  • Stager C (1987) Silent death from Cameroon’s Killer Lake. Natl Geogr Mag 172:404–420

    Google Scholar 

  • Stitt M (1991) Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells. Plant Cell Environ 14:741–762

    CAS  Google Scholar 

  • Stryer L (1988) Biochemistry, 3rd edn. Freeman, New York

    Google Scholar 

  • Stupfel M, Le Guern F (1989) Are there biomedical criteria to assess an acute carbon dioxide intoxication by a volcanic emission? J Volcanol Geothermal Res 39:247–264

    CAS  Google Scholar 

  • Tognetti R, Minnocci A, Penuelas J, Raschi A, Jones MB (2000) Comparative field water relations of three Mediterranean shrub species co-occurring at a natural CO2 vent. J Exp Bot 51:1135–1146

    PubMed  CAS  Google Scholar 

  • Tuba Z, Csintalan Z, Szente K, Nagy Z, Grace J (1998) Carbon gains by desiccation-tolerant plants at elevated CO2. Funct Ecol 12:39–44

    Google Scholar 

  • Tuba Z, Proctor MCF, Takacs Z (1999) Desiccation-tolerant plants under elevated air CO2: a review. Z Naturwiss 54:788–796

    CAS  Google Scholar 

  • Turk B, Pfanz H, Vodnik D, Batiĉ F, Ŝinkoviĉ T (2002) The effects of elevated CO2 in natural CO2 springs on bog rush (Juncus effusus L.) plants. I. Effects on shoot anatomy. Phyton 42:13–23

    Google Scholar 

  • Vaccari FP, Bettarini I, Giuntoli A, Miglietta F, Raschi A (2001) Mediterranean grassland community under elevated [CO2]:observations from a CO2 spring. J Medit Ecol 2:41–50

    Google Scholar 

  • Van Gardingen PR, Grace J, Harkness DD, Miglietta F, Raschi A (1995) Carbon-dioxide emissions at an Italian mineral spring-measurements of average CO2 concentration and air-temperature. Agric For Meteorol 73:17–27

    Google Scholar 

  • Van Gardingen PR, Grace J, Jeffree CE, Byari SH, Miglietta F, Raschi A, Bettarini I (1997) Long-term effects of enhanced CO2-concentrations of leaf gas exchange:research opportunities using CO2 springs. In: Raschi A, Miglietta F, Tognetti R, van Gardingen PR (eds) Plant responses to elevated CO2. Cambridge University Press, Cambridge, pp 69–86

    Google Scholar 

  • Van Oosten JJ, Besford RT (1995) Some relationships between the gas-exchange, biochemistry and molecular biology of photosynthesis during leaf development of tomato plants after transfer to different carbon-dioxide concentrations. Plant Cell Environ 18:1253–1266

    Google Scholar 

  • Van Vuuren MMI, Robinson D, Fitter AH, Chasalow SD, Williamson L, Raven JA (1997) Effects of elevated atmospheric CO2 and soil water availability on root biomass, root length, and N, P and K uptake by wheat. New Phytol 135:455–465

    Google Scholar 

  • Vartapetian BB, Jackson MB (1997) Plant adaptations to anaerobic stress. Ann Bot 79:3–20

    CAS  Google Scholar 

  • Vodnik D, Turk B, Pfanz H, Batiĉ F, Wittmann C, Kaligariĉ M, Zupan G (2001): Rast in delovanje rastlin pri povecanih koncentracijah oglikovega dioksida ob naravnih virih CO2. (Plant growth and functioning at elevated CO2 concentrations near natural CO2 spring). Proceedings of the Slovenian Congress on elevated CO2. In: Komac M (ed) Varstvo zraka v Sloveniji. Ljubljana, pp 205–211

    Google Scholar 

  • Vodnik D, Pfanz H, Wittmann C, Maĉek I, Kastelec D, Turk B, Batiĉ F (2002a) Photosynthetic acclimation in plants growing near a carbon dioxide spring. Phyton 42:239–244

    Google Scholar 

  • Vodnik D, Pfanz H, Mâcek I, Kastelec D, Lojen S, Batiĉ F (2002b) Photosynthesis of cockspur [Echinochloa crus-galli (L.) Beauv.] at sites of naturally elevated CO2 concentration. Photosynthetica 40:575–579

    CAS  Google Scholar 

  • Vodnik D, Šircelj H, Kastelec D, Maĉek I, Pfanz H, Batiĉ F (2003) The effects of natural CO2 enrichment on the growth of maize. J Crop Prod (in press)

    Google Scholar 

  • Von Faber A (1925) Untersuchungen über die Physiologie der javanischen Solfatarenpflanzen. Flora 118:89–110

    Google Scholar 

  • Wagner U (1990) Kinetik und Mechanismus der pH-Stabilisierung in grünen Blättern höherer Pflanzen. Doctoral Thesis, University of Würzburg

    Google Scholar 

  • Wagner J, Lüscher A, Hillebrand C, Kobald B, Spitaler N, Larcher W (2001) Sexual reproduction of Lolium perenne L. and Trifolium repens L. under free air CO2 enrichment (FACE) at two levels of nitrogen application. Plant Cell Environ 24:957–965

    CAS  Google Scholar 

  • Webber AN, Nie G-Y, Long SP (1994) Acclimation of photosynthetic proteins to rising atmospheric CO2. Photosynth Res 39:413–419

    CAS  Google Scholar 

  • Weigel H, Manderscheid R, Jäger H-J, Mejer GJ (1994) Effects of season-long CO2 enrichment on cereals. I. Growth performance and yield. Agric Ecosyst Environ 48:231–236

    Google Scholar 

  • Weinlich FH, Bräuer K, Kämpf H, Strauch G, Tesar J, Weise SM (1999) An active sub-continental mantle volatile system in the western Eger rift, Central Europe: gas flux, isotopic (He, C, and N) and compositional fingerprints. Geochim Cosmochim Acta 63:3653–3671

    CAS  Google Scholar 

  • Weise SM, Bräuer K, Kämpf H, Strauch G, Koch U (2001) Transport of mantle volatiles through the crust traced by seismically released fluids: a natural experiment in the earthquake swarm area Vogtland/NW Bohemia, central Europe. Tectonophysics 336:137–150

    CAS  Google Scholar 

  • Yoshioka T, Satoh S, Yamasue Y (1998) Effect of increased concentration of soil CO2 on intermittent flushes of seed germination in Echinochloa crus-galli var. crus-galli. Plant Cell Environ 21:1301–1306

    Google Scholar 

  • Zak DR, Pregitzer KS, Curtis PS, Teeri JA, Fogel R, Randlett DI (1993) Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles. Plant Soil 151:105–117

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pfanz, H., Vodnik, D., Wittmann, C., Aschan, G., Raschi, A. (2004). Plants and Geothermal CO2 Exhalations — Survival in and Adaptation to a High CO2 Environment. In: Esser, K., Lüttge, U., Beyschlag, W., Murata, J. (eds) Progress in Botany. Progress in Botany, vol 65. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18819-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18819-0_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62306-6

  • Online ISBN: 978-3-642-18819-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics