Skip to main content

Nuclear Magnetic Resonance Applications to Low-Molecular Metabolites in Plant Sciences

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 65))

Abstract

The basic feature of nuclear magnetic resonance (NMR) spectroscopy is the observation of magnetic properties of atomic nuclei and their changes under the influence of chemical bonds or adjacent atoms. Although restricted to atomic nuclei that possess a nuclear magnetic moment, NMR is universally applicable to analyze the occurrence of such nuclei in the steady state and in dynamic interactions with their chemical environment. Due to this general feasibility, after the discovery by Felix Bloch and Edward Purcel in 1946, who were awarded the 1952 Nobel Prize in physics, NMR was originally established in nuclear physics to accurately determine nuclear magnetic moments. After it had been demonstrated that the NMR frequency depends on the chemical environment (Knight 1949), this technique became an interesting tool in chemistry, e.g. for confirming structures of synthetic organic compounds. It rapidly expanded into different directions and additionally has been applied in various disciplines such as material science, medicine, and biology. Improvements in spectrometer technology (superconducting magnets, wide-bore magnets, ultra-high-field magnets), probe head design, Fourier-transform NMR, computer technology and progress in pulse sequences, especially 2D correlation, multiple resonance spectroscopy, and pulsed field gradients, further extended the possibilities to apply NMR techniques (Fig. 1).

Selected techniques and applications of NMR and MRI in Plant science

A second Nobel Prize was awarded to one of the pioneers of NMR spectroscopy, Richard Ernst, in 1991 for his contribution to NMR methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert K, Dachtier M, Glaser T, Händel H, Lacker T, Schlotterbeck G, Strohschein S, Tseng L-H, Braumann U (1999) On-line coupling of separation techniques to NMR. J High Resolut Chromatogr 22:135–143

    Article  CAS  Google Scholar 

  • Aranìbar N, Bijay KS, Stockton GW, Ott K-H (2001) Automated mode-of-action detection by metabolic profiling. Biochem Biophys Res Commun 286:150–155

    Article  PubMed  CAS  Google Scholar 

  • Aubert S, Curien G, Bligny R, Gout E, Douce R (1998) Transport, compartmentation and metabolism of homoserine in higher plant cells. Carbon-13 and phosphorus-31 nuclear magnetic resonance studies. Plant Physiol 116:547–557

    Article  PubMed  CAS  Google Scholar 

  • Aubert S, Hennion F, Bouchereau A, Gout E, Bligny R, Dorne A-J (1999) Subcellular compartmentation of proline in the leaves of the subantarctic Kerguelen cabbage Pringlea antiscorbutica R. Br. In vivo 13C-NMR study. Plant Cell Environ 22:255–259

    Article  CAS  Google Scholar 

  • Bacher A, Rieder C, Eichinger D, Arigoni D, Fuchs G, Eisenreich W (1999) Elucidation of novel biosynthetic pathways and metabolite flux patterns by retrobiosynthetic NMR analysis. FEMS Microbiol Rev 22:567–598

    Article  Google Scholar 

  • Bailey NJC, Oven M, Holmes E, Nicholson JK, Zenk MH (2003) Metabolomic analysis of the consequences of cadmium exposure in Silene cucubalus via 1H NMR spectroscopy and chemometrics. Phytochemistry 62:851–858

    Article  PubMed  CAS  Google Scholar 

  • Bohlmann F, Zeisberg R (1975) 13C-NMR-Spektren von Monoterpenen. Org Magn Reson 7:426–432

    Article  CAS  Google Scholar 

  • Bringmann G, Feineis D (2001) Stress-related polyketide metabolism of Dioncophyllaceae and Ancistrocladaceae. J Exp Bot 52:2015–2022

    Article  PubMed  CAS  Google Scholar 

  • Bringmann G, Wolf K, Meininger M, Rokitta M, Haase A (2001) In-vivo F-19 NMR chemical-shift imaging of Ancistrocladus species. Protoplasma 218:134–143

    Article  PubMed  CAS  Google Scholar 

  • Chudek JA, Hunter G (1997) Magnetic resonance imaging of plants. Prog Nucl Magn Reson Spect 31:43–62

    Article  CAS  Google Scholar 

  • Crouch RC, Martin GE (1992) Micro inverse-detection-a powerful technique for natural product structure elucidation. J Nat Prod 55:1343–1347

    Article  CAS  Google Scholar 

  • Croasmun WR, Carlson RMK (eds) (1994) Two-dimensional NMR spectroscopy. VCH, New York

    Google Scholar 

  • deGraaf AA, Mahle M, Mollney M, Wiechert W, Stahmann P, Sahm H (2000) Determination of full C-13 isotopomer distributions for metabolic flux analysis using heteronuclear spin echo difference NMR spectroscopy. J Biotech 77:25–35

    Article  Google Scholar 

  • Derome AE (1989) The use of NMR spectroscopy in the structure determination of natural products: two-dimensional methods. Nat Prod Rep 6:111–141

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847

    Article  PubMed  CAS  Google Scholar 

  • Duddeck H, Dietrich W, Toth G (1998) Structure elucidation by modern NMR, 3rd edn. Steinkopf, Darmstadt

    Google Scholar 

  • Fan TW-M (1996) Metabolic profiling by one-and two-dimensional NMR analysis of complex mixtures. Prog Nucl Magn Reson Sped 28:161–219

    CAS  Google Scholar 

  • Fan TW-M, Lane AN, Shenker M, Bartley JP, Crowley D, Higashi RM (2001) Comprehensive chemical profiling of gramineous plant root exudates using high-resolution NMR and MS. Phytochemistry 57:209–221

    Article  PubMed  CAS  Google Scholar 

  • Ferreira MJP, Emerenciano VP, Linia GAR, Romoff P, Macari PAT, Rodrigues GV (1998) 13C NMR spectroscopy of monoterpenoids. Prog Nucl Magn Reson Spect 39:267–300

    Google Scholar 

  • Ford Y-Y, Ratcliffe RG, Robins RJ (1996) In vivo NMR analysis of tropane alkaloid metabolism in transformed root and de-differentiated cultures of Datura stramonium. Phytochemistry 43:115–120

    Article  CAS  Google Scholar 

  • Gersbach PV, Reddy N (2002) Non-invasive localization of thymol accumulation in Carum copticum (Apiaceae) fruits by chemical shift selective magnetic resonance imaging. Ann Bot 90:253–257

    Article  PubMed  CAS  Google Scholar 

  • Glidewell SM, Möller M, Duncan G, Mill RR, Masson D, Williamson B (2002) NMR imaging as a tool for noninvasive taxonomy: comparison of female cones of two Podocarpaceae. New Phytol 154:197–207

    Article  Google Scholar 

  • Hartung W, Ratcliffe RG (2002) Utilization of glycine and serine as nitrogen sources in the roots of Zea mays and Chamaegigas intrepidus. J Exp Bot 53:2305–2314

    Article  PubMed  CAS  Google Scholar 

  • Heidenreich M, Köckenberger W, Kimmich R, Chandrakumar N, Bowtell R (1998) Investigation of carbohydrate metabolism and transport in castor bean seedlings by cyclic J cross polarization imaging and spectroscopy. J Magn Reson 132:109–124

    Article  CAS  Google Scholar 

  • Hinse C, Sheludko YV, Provenzani A, Stöckigt JHH (2001) In vivo NMR at 800 MHz to monitor alkaloid metabolism in plant cell cultures without tracer labeling. J Am Chem Soc 123:5118–5119

    Article  PubMed  CAS  Google Scholar 

  • Hölscher D, Schneider B (1999) HPLC-NMR analysis of phenylphenalenones and a stilbene from Anigozanthos flavidus. Phytochemistry 50:155–161

    Article  Google Scholar 

  • Hudson AMJ, Köckenberger W, Heidenreich M, Chandrakumar N, Bowtell R (2002) H-l detected C-13 planar imaging. J Magn Reson 155:64–71

    Article  PubMed  CAS  Google Scholar 

  • Knight WD (1949) Nuclear magnetic resonance shift in metals. Phys Rev 76:1259–1260

    Article  CAS  Google Scholar 

  • Köckenberger W (2001a) Nuclear magnetic resonance micro-imaging in the investigation of plant cell metabolism. J Exp Bot 52:641–652

    Article  PubMed  Google Scholar 

  • Köckenberger W (2001b) Functional imaging of plants by magnetic resonance experiments. Trends Plant Sci 6:286–292

    Article  PubMed  Google Scholar 

  • Lacey ME, Tan ZJ, Webb AG, Sweedler JV (2001) Union of capillary high-performance liquid chromatography and microcoil nuclear magnetic resonance spectroscopy applied to the separation and identification of terpenoids. J Chromatogr A 922:139–149

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK (1999) The l-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65

    Article  PubMed  CAS  Google Scholar 

  • Lee PC, Schmidt-Dannert C (2002) Metabolic engineering towards biotechnological production of carotenoids in microorganisms. Appl Microbiol Biotech 60:1–11

    Article  CAS  Google Scholar 

  • Logan TM, Murali N, Wang G, Jolivet J (1999) Application of a high-resolution superconducting NMR probe in natural product structure determination. Magn Reson Chem 37:512–515

    Article  CAS  Google Scholar 

  • Lundberg P, Harmsen E, Ho C, Vogel HJ (1990) Nuclear magnetic resonance studies of cellular metabolism. Anal Biochem 191:193–222

    Article  PubMed  CAS  Google Scholar 

  • Martin F (1985) Monitoring plant metabolism by C, N and N nuclear magnetic resonance spectroscopy. A review of the applications to algae, fungi, and higher plants. Physiol Vég 23:463–490

    CAS  Google Scholar 

  • Martin GE, Crouch RC (1994) Inverse-detected 2D-NMR applications in alkaloid chemistry. In: Linskens HF, Jackson JF (eds) Alkaloids. Modern methods of plant analysis, vol 15. Springer, Berlin Heidelberg New York, pp 25–89

    Google Scholar 

  • Meininger M, Jakob PM, von Kienlin M, Koppler D, Bringmann G, Haase A (1997) Radial spectroscopic imaging. J Magn Reson 125:325–331

    Article  CAS  Google Scholar 

  • Metzler A, Izquierdo M, Ziegler A, Köckenberger A, Komor E, von Kienlin M, Haase A, Decorps M (1995) Plant histochemistry by correlation-peak imaging. Proc Natl Acad Sci USA 92:11912–11915

    Article  PubMed  CAS  Google Scholar 

  • Nyberg NT, Baumann H, Kenne L (2001) Application of solid-phase extraction coupled to an NMR flow-probe in the analysis of HPLC fractions. Magn Reson Chem 39:236–240

    Article  CAS  Google Scholar 

  • Olson DL, Peck TL, Webb AG, Magin RL, Sweedler JV (1995) High-resolution microcoil H-l-NMR for mass-limited, nanoliter-volume samples. Science 270:1967–1970

    Article  CAS  Google Scholar 

  • Olt S, Krotz E, Komor E, Rokitta M, Haase A (2000) Na-23 and H-l NMR microimaging of intact plants. J Magn Reson 144:297–304

    Article  PubMed  CAS  Google Scholar 

  • Opitz S, Schneider B (2003) Oxidative biosynthesis of phenylbenzoisochromenones from phenylphenalenones. Phytochemistry. Phytochemistry 62:307–312

    Article  PubMed  CAS  Google Scholar 

  • Otálvaro F, Görls H, Hölscher D, Schmitt B, Echeverri F, Quiñones W, Schneider B (2002) Dimeric phenylphenalenones from Musa acuminata and various Haemodoraceae species. Crystal structure of anigorootin. Phytochemistry 60:61–66

    Article  PubMed  Google Scholar 

  • Park S-U, Yu M, Facchini PJ (2003) Modulation of berberine bridge enzyme levels in transgenic root cultures of California poppy alters the accumulation of benzophenan-thridine alkaloids. Plant Mol Biol 51:153–164

    Article  PubMed  CAS  Google Scholar 

  • Pfeffer PE, Bago B, Shachar-Hill Y (2001) Exploring mycorrhizal function with NMR spectroscopy. New Phytol 150:543–553

    Article  CAS  Google Scholar 

  • Ratcliffe RG (1994) In vivo NMR studies of higher plants and algae. In: Woolhouse HW (ed) Advances in botanical research, vol 20. Academic Press, London, pp 43–123

    Chapter  Google Scholar 

  • Ratcliffe RG (1996) In vivo NMR spectroscopy: biochemical and physiological applications to plants. In: Shachar-Hill Y, Pfeffer PE (eds) Nuclear magnetic resonance in plant biology. The American Society of Plant Physiologists, Rockville, Maryland, pp 1–32

    Google Scholar 

  • Ratcliffe RG (1997) In vivo NMR studies of the metabolic response of plant tissues to anoxia. Ann Bot 7 (suppl A) 9:39–48

    Article  Google Scholar 

  • Ratcliffe RG, Roscher A, Shachar-Hill Y (2001) Plant NMR spectroscopy. Prog Nucl Magn Reson Spect 39:267–300

    Article  Google Scholar 

  • Roberts JKM (2000) NMR adventures in the metabolic labyrinth within plants. Trends Plant Sci 5:30–34

    Article  PubMed  CAS  Google Scholar 

  • Roberts JKM, Xia J-H (1996) NMR contributions to understanding of plant responses to low oxygen stress. In: Shachar-Hill Y, Pfeffer PE (eds) Nuclear magnetic resonance in plant biology. The American Society of Plant Physiologists, Rockville, Maryland, pp 155–180

    Google Scholar 

  • Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295:517–524

    PubMed  CAS  Google Scholar 

  • Rokitta M, Rommel E, Zimmermann U, Haase A (2000) Portable nuclear magnetic resonance imaging system. Rev Sci Instr 71:4257–4262

    Article  CAS  Google Scholar 

  • Roscher A, Kruger NJ, Ratcliffe RG (2000) Strategies for metabolic flux analysis in plants using isotope labelling. J Biotech 77:81–102

    Article  CAS  Google Scholar 

  • Russell DJ, Hadden CE, Martin, GE, Gibson AA, Zens AP, Carolan JL (2000) A comparison of inverse-detected heteronuclear NMR performance: conventional vs cryogenic microprobe performance. J Nat Prod 63:1047–1049

    Article  PubMed  CAS  Google Scholar 

  • Sadler IH (1988) The use of NMR spectroscopy in the structure determination of natural products: One-dimensional methods. Nat Prod Rep 5:101–127

    Article  PubMed  CAS  Google Scholar 

  • Saglio PH, Raymond P, Pradet A (1980) Metabolic activity and energy charge of excised maize root tips under anoxia. Plant Physiol 66:1053–1057

    Article  PubMed  CAS  Google Scholar 

  • Sato F, Hashimoto T, Hachiya A, Tamura K-I, Choi K-B, Morishige T, Fujimoto H, Yamada Y (2001) Metabolic engineering of plant alkaloid biosynthesis. Proc Natl Acad Sci USA 98:367–372

    Article  PubMed  CAS  Google Scholar 

  • Schlotterbeck G, Ross A, Hochstrasser R, Senn H, Kühn T, Marek D, Schett O (2002) High-resolution capillary tube NMR. A miniaturized 5-μL high-sensitivity TXI probe for mass-limited samples, off-line LC NMR, and HT NMR. Anal Chem 74:4464–4471

    Article  PubMed  CAS  Google Scholar 

  • Schmitt B, Schneider B (2001) Phenylpropanoid interconversion in Anigozanthos preissii observed by high-performance liquid chromatography-nuclear magnetic resonance spectroscopy. Phytochem Anal 12:43–47

    Article  PubMed  CAS  Google Scholar 

  • Schneider B (2000) Natural products: Liquid chromatography-nuclear magnetic resonance. In: Wilson ID, Adlard TR, Cooke M, Poole CF (eds) Encyclopedia of separation science, vol 7. Academic Press, London, pp 3434–3445

    Chapter  Google Scholar 

  • Schneider B, Gershenzon J, Graser G, Hölscher D, Schmitt B (2003) Carbon-13 and deuterium labeling in biosynthetic studies observed by one-dimensional 13C NMR and HPLC-1H NMR techniques. Phytochem Rev (in press)

    Google Scholar 

  • Shachar-Hill Y (2002) Nuclear magnetic resonance and plant metabolic engineering. Metab Eng 4:90–97

    Article  PubMed  CAS  Google Scholar 

  • Simpson TJ (1998) Application of isotopic methods to secondary metabolic pathways biosynthesis. Topics Curr Chem 195:1–48

    Article  CAS  Google Scholar 

  • Skibbe U, Cristeller JT, Callaghan PT, Eccles CD, Laing WA (1996) Visualization of pH gradients in the larval midgut of Spodoptera litura using 31P-NMR microscopy. J Insect Physiol 42:777–790

    Article  CAS  Google Scholar 

  • Steglich W, Fugmann B, Lang-Fugmann S (eds) (1997) Römpp Lexikon Naturstoffe. Thieme, Stuttgart

    Google Scholar 

  • Styles P, Soffe NF, Scott CA, Cragg DA, Row F, White DJ, White PCJ (1984) A high-resolution NMR probe in which the coil and preamplifier are cooled with liquid helium. J Magn Reson 60:397–404

    CAS  Google Scholar 

  • Styles P, Soffe NF, Scott CA (1989) An improved cryogenically cooled probe for high-resolution NMR. J Magn Reson 84:376–378

    Google Scholar 

  • Szyperski T (1998) 13C-NMR, MS and metabolic flux balancing in biotechnology research. Q Rev Biophys 31:41–106

    Article  PubMed  CAS  Google Scholar 

  • Thiel R, Adam KP (2002) Incorporation of [1-13C]l-deoxy-D-xylulose into isoprenoids of the liverwort Conocephalum conicum. Phytochemistry 59:269–274

    Article  PubMed  CAS  Google Scholar 

  • Van der Toorn A, Zemah H, Van As H, Bendel P, Kamenetsky R (2000) Developmental changes and water status in tulip bulbs during storage: visualization by NMR imaging. J Exp Bot 51:1277–1287

    Article  PubMed  Google Scholar 

  • Vederas JC (1985) The use of stable isotopes in biosynthetic studies. Nat Prod Rep 4:77–337

    Google Scholar 

  • Verscht J, Kalusche B, Köhler J, Köckenberger W, Metzler A, Haase A, Komor E (1998) The kinetics of sucrose concentration in the phloem of individual vascular bundles of the Ricinus communis seedling measured by magnetic resonance micro-imaging. Planta 205:132–139

    Article  CAS  Google Scholar 

  • Wang C-Z, Maier UH, Eisenreich W, Adam P, Obersteiner I, Keil M, Bacher A, Zenk MH (2001) Unexpected biosynthetic precursor of amarogentin-a retrobiosynthetic 13C NMR study. Eur J Org Chem 14591459-1465

    Article  Google Scholar 

  • Watanabe N, Niki E (1978) Direct coupling of FT-NMR to high-performance liquid-chromatography. Proc Jpn Acad Ser B Phys Biol Sci 54:194–199

    Article  CAS  Google Scholar 

  • Weichert W (2001) 13C metabolic flux analysis. Metab Eng 3:195–206

    Article  CAS  Google Scholar 

  • Wolf C, van der Thoorn A, Hartmann K, Schreiber L, Schwab W, Haase A, Bringmann G (2000) Metabolite monitoring in plants with double-quantum filtered chemical shift imaging. J Exp Bot 51:2109–2117

    Article  PubMed  CAS  Google Scholar 

  • Wolfender J-L, Ndjoko K, Hostettmann K (2001) The potential of LC-NMR in phytochemical analysis. Phytochem Anal 12:2–22

    Article  PubMed  CAS  Google Scholar 

  • Wolters AM, Jayawickrama DA, Sweedler JV (2002) Microscale NMR. Curr Opin Chem Biol 6:711–716

    Article  PubMed  CAS  Google Scholar 

  • Ziegler A, Metzler A, Köckenberger A, Izquierdo M, Komor E, Haase A, Decorps M, von Kienlin M (1996) Correlation-peak imaging. J Magn Reson B 112:141–150

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schneider, B. (2004). Nuclear Magnetic Resonance Applications to Low-Molecular Metabolites in Plant Sciences. In: Esser, K., Lüttge, U., Beyschlag, W., Murata, J. (eds) Progress in Botany. Progress in Botany, vol 65. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18819-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18819-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62306-6

  • Online ISBN: 978-3-642-18819-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics