Skip to main content

Phosphoinositide Involvement in Phagocytosis and Phagosome Maturation

  • Chapter
Phosphoinositides in Subcellular Targeting and Enzyme Activation

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 282))

Abstract

Abstract Cells of the innate immune system engulf invading microorganisms into plasma membrane-derived vacuoles called phagosomes. Newly formed phagosomes gradually acquire microbicidal properties by a maturation process which involves sequential and coordinated rounds of fusion with endomembranes and concomitant fission. Some pathogens interfere with this maturation sequence and thereby evade killing by the immune cells, managing to survive intracellularly as parasites. Phosphoinositides seem to be intimately involved in the processes of phagosome formation and maturation, and initial observations suggest that the ability of some microorganisms to survive intracellularly is associated with alterations in phosphoinositide metabolism. This chapter presents a brief overview of phosphoinositides in cells of the immune system, their metabolism in the context of phagocytosis and phagosome maturation and their possible derangements during infectious pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi R, Takeuchi K, and Suzuki K (2002) Antisense oligonucleotide to cofilin enhances respiratory burst and phagocytosis in opsonized zymosan-stimulated mouse macrophage J774.1 cells. J Biol Chem 23:23

    Google Scholar 

  • Aderem A, and Underhill DM (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17:593–623

    Article  PubMed  CAS  Google Scholar 

  • Aderem AA, Wright SD, Silverstein SC, and Cohn ZA. (1985) Ligated complement receptors do not activate the arachidonic acid cascade in resident peritoneal macrophages. J Exp Med 161:617–622

    Article  PubMed  CAS  Google Scholar 

  • Ahmed S, Kozma R, Monfries C, Hall C, Urn HH, Smith P,and Lim L (1990) Human brain n-chimaerin cDNA encodes a novel phorbol ester receptor. Biochem J 272:767–773

    PubMed  CAS  Google Scholar 

  • Allen LA, and Aderem A (1996) Molecular definition of distinct cytoskeletal structures involved in complement-and Fc receptor-mediated phagocytosis in macrophages. J Exp Med 184:627–637

    Article  PubMed  CAS  Google Scholar 

  • Andersson T, Fallman M, Lew DP, and Stendahl O (1988) Does protein kinase C control receptor-mediated phagocytosis in human neutrophils? FEBS Lett 239:371–375

    Article  PubMed  CAS  Google Scholar 

  • Araki N, Johnson MT, and Swanson JA (1996) A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages. J Cell Biol 135:1249–1260

    Article  PubMed  CAS  Google Scholar 

  • Bajno L, Peng XR, Schreiber AD, Moore HP, Trimble WS, and Grinstein S (2000) Focal exocytosis of VAMP3-containing vesicles at sites of phagosome formation. J Cell Biol 149:697–706

    Article  PubMed  CAS  Google Scholar 

  • Baumruker T, and Prieschl EE (2002) Sphingolipids and the regulation of the immune response. Semin Immunol 14:57–63

    Article  PubMed  CAS  Google Scholar 

  • Botelho RJ, Teruel M, Dierckman R, Anderson R, Wells A, York JD, Meyer T, and Grinstein S (2000) Localized biphasic changes in phosphatidylinositol-4,5-bis-phosphate at sites of phagocytosis. J Cell Biol 151:1353–1368

    Article  PubMed  CAS  Google Scholar 

  • Brown FD, Rozelle AL, Yin HL, Balla T, and Donaldson JG (2001) Phosphatidylinositol 4,5-bisphosphate and Arf6-regulated membrane traffic. J Cell Biol 154:1007–1017

    Article  PubMed  CAS  Google Scholar 

  • Brumell JH, Howard JC, Craig K, Grinstein S, Schreiber AD, and Tyers M (1999) Expression of the protein kinase C substrate pleckstrin in macrophages: association with phagosomal membranes. J Immunol 163:3388–3395

    PubMed  CAS  Google Scholar 

  • Burd CG, and Emr SD (1998) Phosphatidylinositol-(3)-phosphate signaling mediated by specific binding to RING FYVE domains. Mol Cell 2:157–162

    Article  PubMed  CAS  Google Scholar 

  • Caloca MJ, Fernandez N, Lewin NE, Ching D, Modali R, Blumberg PM, and Kazanietz MG (1997) β2-Chimaerin is a high affinity receptor for the phorbol ester tumor promoters. J Biol Chem 272:26488–26496

    Article  PubMed  CAS  Google Scholar 

  • Caloca MJ, Garcia-Bermejo ML, Blumberg PM, Lewin NE, Kremmer E, Mischak H, Wang S, Nacro K, Bienfait B, Marquez YE, and Kazanietz MG (1999) β2-Chimaerin is a novel target for diacylglycerol: binding properties and changes in subcellular localization mediated by ligand binding to its C1 domain. Proc Natl Acad Sci USA 96:11854–11859

    Article  PubMed  CAS  Google Scholar 

  • Caron E, and Hall A (1998) Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 282:1717–1721

    Article  PubMed  CAS  Google Scholar 

  • Caron E, Self AJ, and Hall A (2000) The GTPase Rap1 controls functional activation of macrophage integrin α M/β z by LPS and other inflammatory mediators. Curr Biol 10:974–978

    Article  PubMed  CAS  Google Scholar 

  • Cheever ML, Sato TK, de Beer T, Kutateladze TG, Emr SD, and Overduin M (2001) Phox domain interaction with PtdIns(3)P targets the Vam7 t-SNARE to vacuole membranes. Nat Cell Biol 3:613–618

    Article  PubMed  CAS  Google Scholar 

  • Ching TT, Wang DS, Hsu AL, Lu PJ, and Chen CS (1999) Identification of multiple phosphoinositide-specific phospholipases D as new regulatory enzymes for phosphatidylinositol-3,4,5-trisphosphate. J BiolChem 274:8611–8617

    CAS  Google Scholar 

  • Christoforidis S, Miaczynska M, Ashman K, Wilm M, Zhao L, Yip SC, Waterfield MD, Backer JM, and Zerial M (1999) Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nat Cell Biol 1:249–252

    Article  PubMed  CAS  Google Scholar 

  • Cockcroft S, and De Matteis MA (2001) Inositollipids as spatial regulators of membrane traffic. J Membr Biol 180:187–194

    Article  PubMed  CAS  Google Scholar 

  • Collins RF, Schreiber AD, Grinstein S, and Trimble WS (2002) Syntaxins 13 and 7 function at distinct steps during phagocytosis. J Immunol 169:3250–3256

    PubMed  CAS  Google Scholar 

  • Coppolino MG, Dierckman R, Loijens J, Collins RF, Pouladi M, Jongstra-Bilen J, Schreiber AD, Trimble WS, Anderson R, and Grinstein S (2002) Inhibition of phosphatidylinositol-4-phosphate 5-kinase Iα impairs localized actin remodelling and suppresses phagocytosis. J Biol Chem 277:43849–43857

    Article  PubMed  CAS  Google Scholar 

  • Cox D, Berg JS, Cammer M, Chinegwundoh JO, Dale BM, Cheney RE, and Greenberg S (2002) Myosin X is a downstream effector of PI(3)K during phagocytosis. Nat Cell Biol 4:469–477

    PubMed  CAS  Google Scholar 

  • Cox D, Chang P, Zhang Q, Reddy PG, Bokoch GM, and Greenberg S (1997) Requirements for both Racl and Cdc42 in membrane ruffling and phagocytosis in leukocytes. J Exp Med 186:1487–1494

    Article  PubMed  CAS  Google Scholar 

  • Cox D, Dale BM, Kashiwada M, Helgason CD, and Greenberg S (2001) A regulatory role for Src homology 2 domain-containing inositol 5′-phosphatase (SHIP) in phagocytosis mediated by Fcγ receptors and complement receptor 3 (α M β 2; CD11b/CD18). J Exp Med 193:61–71

    Article  PubMed  CAS  Google Scholar 

  • Cox D, Tseng CC, Bjekic G, and Greenberg S (1999) A requirement for phosphatidyl-inositol 3-kinase in pseudopod extension. J Biol Chem 274:1240–1247

    Article  PubMed  CAS  Google Scholar 

  • Cullen PJ, Cozier GE, Banting G, and Mellor H (2001) Modular phosphoinositide-binding domains—their role in signalling and membrane trafficking. Curr Biol 11: R882–893

    Article  PubMed  CAS  Google Scholar 

  • De Corte V, Gettemans J, and Vandekerckhove J (1997) Phosphatidylinositol 4,5-bis-phosphate specifically stimulates PP60(c-src) catalyzed phosphorylation of gelsolin and related actin-binding proteins. FEBS Lett 401:191–196

    Article  PubMed  Google Scholar 

  • de Renzis S, Sonnichsen B, and Zerial M (2002) Divalent Rab effectors regulate the sub-compartmental organization and sorting of early endosomes. Nat Cell Biol 4:124–133

    Article  PubMed  CAS  Google Scholar 

  • Della Bianca V, Grzeskowiak M, Dusi S, and Rossi F (1993) Transmembrane signaling pathways involved in phagocytosis and associated activation of NADPH oxidase mediated by FcγRs in human neutrophils. J Leukoc Biol 53:427–438

    Google Scholar 

  • Della Bianca V, Grzeskowiak M, Lissandrini D, and Rossi F (1991) Source and role of diacylglycerol formed during phagocytosis of opsonized yeast particles and associated respiratory burst in human neutrophils. Biochem Biophys Res Commun 177:948–955

    Google Scholar 

  • Della Bianca V, Grzeskowiak M, and Rossi F (1990) Studies on molecular regulation of phagocytosis and activation of the NADPH oxidase in neutrophils. IgG-and C3b-mediated ingestion and associated respiratory burst independent of phospholipid turnover and Ca2+ transients. J Immunol 144:1411–1417

    Google Scholar 

  • Deretic V, and Fratti RA (1999) Mycobacterium tuberculosis phagosome. Mol Microbiol 31:1603–1609

    Article  PubMed  CAS  Google Scholar 

  • Desjardins M, Huber LA, Parton RG,and Griffiths G (1994) Biogenesis of phagolysosomes proceeds through a sequential series of interactions with the endocytic apparatus. J Cell Biol 124:677–688

    Article  PubMed  CAS  Google Scholar 

  • Desjardins M, Nzala NN, Corsini R, and Rondeau C (1997) Maturation of phagosomes is accompanied by changes in their fusion properties and size-selective acquisition of solute materials from endosomes. J Cell Sci 110:2303–2314

    PubMed  CAS  Google Scholar 

  • Divecha N, Roefs M, Halstead JR, D’Andrea S, Fernandez-Borga M, Oomen L, Saqib KM, Wakelam MJ, and D’Santos C (2000) Interaction of the type Iα PIP kinase with phospholipase D: a role for the local generation of phosphatidylinositol-4,5-bisphosphate in the regulation of PLD2 activity. EMBO J 19:5440–5449

    Article  PubMed  CAS  Google Scholar 

  • Duclos S, and Desjardins M (2000) Subversion of a young phagosome: the survival strategies of intracellular pathogens. Cell Micro Biol 2:365–377

    Article  CAS  Google Scholar 

  • Ebinu JO, Bottorff DA, Chan EY, Stang SL, Dunn RJ, and Stone JC (1998) RasGRP, a Ras guanyl nucleotide-releasing protein with calcium-and diacylglycerol-binding motifs. Science 280:1082–1086

    Article  PubMed  CAS  Google Scholar 

  • Ellson CD, Anderson KE, Morgan G, Chilvers ER, Lipp P, Stephens LR, and Hawkins PT (2001) Phosphatidylinositol 3-phosphate is generated in phagosomal membranes. Curr Biol 11:1631–1635

    Article  PubMed  CAS  Google Scholar 

  • Ellson CD, Gobert-Gosse S, Anderson KE, Davidson K, Erdjument-Bromage H, Tempst P, Thuring JW, Cooper MA, Lim ZY, Holmes AB, Gaffney PR, Coadwell J, Chilvers ER, Hawkins PT, and Stephens LR (2001) PtdIns(3)P regulates the neutrophil oxidase complex by binding to the PX domain of p40(phox). Nat Cell Biol 3:679–682

    Article  PubMed  CAS  Google Scholar 

  • Fallman M, Gullberg M, Hellberg C, and Andersson T (1992) Complement receptor-mediated phagocytosis is associated with accumulation of phosphatidylcholine-derived diglyceride in human neutrophils. Involvement of phospholipase D and direct evidence for a positive feedback signal of protein kinase. J Biol Chem 267:2656–2663

    PubMed  CAS  Google Scholar 

  • Fallman M, Lew DP, Stendahl O, and Andersson T (1989) Receptor-mediated phagocytosis in human neutrophils is associated with increased formation of inositol phosphates and diacylglycerol. Elevation in cytosolic free calcium and formation of inositol phosphates can be dissociated from accumulation of diacylglycerol. J Clin Invest 84:886–891

    Article  PubMed  CAS  Google Scholar 

  • Franc NC, White K, and Ezekowitz RA (1999) Phagocytosis and development: back to the future. Curr Opin Immunol 11:47–52

    Article  PubMed  CAS  Google Scholar 

  • Fratti RA, Backer JM, Gruenberg J, Corvera S, and Deretic V (2001) Role of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest. J Cell Biol 154:631–644

    Article  PubMed  CAS  Google Scholar 

  • Fruman DA, Meyers RE, and Cantley LC (1998) Phosphoinositide kinases. Annu Rev Biochem 67:481–507

    Article  PubMed  CAS  Google Scholar 

  • Fushman D, Najmabadi-Haske T, Cahill S, Zheng J, LeVine H, 3rd, and Cowburn D (1998) The solution structure and dynamics of the pleckstrin homology domain of G protein-coupled recepto r kinase 2 (β-adrenergic receptor kinase 1). A binding partner of Gβγ subunits. J Biol Chem 273:2835–2843

    Article  PubMed  CAS  Google Scholar 

  • Gagnon E, Duclos S, Rondeau C, Chevet E, Cameron PH, Steele-Mortimer O, Paiement J, Bergeron JJ, and Desjardins M (2002) Endoplasmic reticulum-mediated phagocytosis is a mechanism of entry into macrophages. Cell 110:119–131

    Article  PubMed  CAS  Google Scholar 

  • Gessner JE, Heiken H, Tamm A, and Schmidt RE (1998) The IgG Fe receptor family. Ann Hematol 76:231–248

    Article  PubMed  CAS  Google Scholar 

  • Ghazizadeh S, Bolen JB, and Fleit HB (1994) Physical and functional association of Src-related protein tyros ine kinases with FcγRH in monocytic THP-1 cells. J Biol Chem 269:8878–8884

    PubMed  CAS  Google Scholar 

  • Gillooly DJ, Morrow IC, Lindsay M, Gould R, Bryant NJ, Gaullier JM, Parton RG, and Stenmark H (2000) Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J 19:4577–4588

    Article  PubMed  CAS  Google Scholar 

  • Godi A, Pertile P, Meyers R, Marra P, Di Tullio G, Iurisci C, Luini A, Corda D, and De Matteis MA (1999) ARF mediates recruitment of PtdIns-4-OH kinase-β and stimulates synthes is of PtdIns(4,5)P2 on the Golgi complex. Nat Cell Biol 1:280–287

    Article  PubMed  CAS  Google Scholar 

  • Haft CR, de la Luz Sierra M, Barr VA, Haft DH, and Taylor SI (1998) Identification of a family of sorting nexin molecules and characterization of their association with receptors. Mol Cell Biol 18:7278–7287

    Google Scholar 

  • Han J, Luby-Phelps K, Das B, Shu X, Xia Y, Mosteller RD, Krishna UM, Falck JR, White MA, and Broek D (1998) Role of substrates and products of PI 3-kinase in regulating activation of Rac-related guanosine triphosphatases by Vav. Science 279:558–560

    Article  PubMed  CAS  Google Scholar 

  • Heiss SG, and Cooper JA (1991) Regulation of CapZ, an actin capping protein of chicken muscle, by anionic phospholipids. Biochemistry 30:8753–8758

    Article  PubMed  CAS  Google Scholar 

  • Higgs HN, and Pollard TD (2000) Activation by Cdc42 and PIP(2) ofWiskott-Aldrich syndrome protein (WASp) stimulates actin nucleation by Arp2/3 complex. J Cell Biol 150:1311–1320

    Article  PubMed  CAS  Google Scholar 

  • Hinchliffe KA, Giudici ML, Letcher AJ, and Irvine RF (2002) Type IIα phosphatidyl-inositol phosphate kinase associates with the plasma membrane via interaction with type I isoforms. Biochem J 363:563–570

    Article  PubMed  CAS  Google Scholar 

  • Hinkovska-Galcheva V, Boxer LA, Mansfield PJ, Schreiber AD, and Shayman JA (2002) Enhanced phagocytosis through inh ibition of de novo ceramide synthesis. J Biol Chem (in press)

    Google Scholar 

  • Honda A, Nogami M, Yokozeki T, Yamazaki M, Nakamura H, Watanabe H, Kawamoto K, Nakayama K, Morris AJ, Frohman MA, and Kanaho Y (1999) Phosphatidyl-inositol 4-phosphate 5-kinase α is a downstream effector of the small G protein ARF6in membrane ruffle formation. Cell 99:521–532

    Article  PubMed  CAS  Google Scholar 

  • Hughes WE, Cooke FT, and Parker PJ (2000) Sac phosphatase domain proteins. Biochem J 350:337–352

    Article  PubMed  CAS  Google Scholar 

  • Itoh F, Divecha N, Brocks L, Oomen L, Janssen H, Calafat J, Itoh S, and Dijke Pt P (2002) The FYVE domain in Smad anchor for receptor activation (SARA) is sufficient for localization of SARA in early endosomes and regulates TGF-β/Smad signalling. Genes Cells 7:321–331

    Article  PubMed  CAS  Google Scholar 

  • Jabril-Cuenod B, Zhang C, Scharenberg AM, Paolini R, Numerof R, Beaven MA, and Kinet JP (1996) Syk-dependent phosphorylation of Shc. A potential link between FcεRI and the Ras/mitogen-activated protein kinase signaling pathway through SOS and Grb2. J Biol Chem 271:16268–16272

    Article  PubMed  CAS  Google Scholar 

  • Jahraus A, Tjelle TE, Berg T, Habermann A, Storrie B, Ullrich O, and Griffiths G (1998) In vitro fusion of phagosomes with different endocytic organelles from J774 macrophages. J Biol Chem 273:30379–30390

    Article  PubMed  CAS  Google Scholar 

  • Jankowski A, and Grinstein S (2002) Modulation of the cytosolic and phagosomal pH by the NADPH oxidase. Antioxid Redox Signal 4:61–68

    Article  PubMed  CAS  Google Scholar 

  • Jenkins GH, Fisette PL, and Anderson RA (1994) Type I phosphatidylinositol 4-phosphate 5-kinase isoforms are specifically stimulated by phosphatidic acid. J Biol Chem 269:11547–11554

    PubMed  CAS  Google Scholar 

  • Jones DH, Morris JB, Morgan CP, Kondo H, Irvine RF, and Cockcroft S (2000) Type I phosphatidylinositol 4-phosphate 5-kinase directly interacts with ADP-ribosylation factor 1 and is responsible for phosphatidylinositol 4,5-bisphosphate synthesis in the golgi compartment. J Biol Chem 275:13962–13966

    Article  PubMed  CAS  Google Scholar 

  • Kaplan G (1977) Differences in the mode of phagocytosis with Fc and C3 receptors in macrophages. Scand J Immunol 6:797–807

    Article  PubMed  CAS  Google Scholar 

  • Karimi K, Gemmill TR, and Lennartz MR (1999) Protein kinase C and a calcium-independent phospholipase are required for IgG-mediated phagocytosis by MonoMac-6 cells. J Leukoc Biol 65:854–862

    PubMed  CAS  Google Scholar 

  • Klarlund JK, Guilherme A, Holik JJ, Virbasius JV, Chawla A, and Czech MP (1997) Signaling by phosphoinositide-3,4,5-trisphosphate through proteins containing pleckstrin and Sec7 homology domains. Science 275:1927–1930

    Article  PubMed  CAS  Google Scholar 

  • Kunz J, Wilson MP, Kisseleva M, Hurley JH, Majerus PW, and Anderson RA (2000) The activation loop of phosphatidylinositol phosphate kinases determines signaling specificity. Mol Cell 5:1–11

    Article  PubMed  CAS  Google Scholar 

  • Kurosu H, and Katada T (2001) Association of phosphatidylinositol 3-kinase composed of p110β-catalytic and p85-regulatory subunits with the small GTPase Rab5. J Biochem (Tokyo) 130:73–78

    Article  CAS  Google Scholar 

  • Kusner DJ, Hall CF, and Jackson S (1999) Fcγ receptor-mediated activation of phospholipase D regulates macrophage phagocytosis of IgG-opsonized particles. J Immunol 162: 2266–2274

    PubMed  CAS  Google Scholar 

  • Kutateladze TG, Ogburn KD, Watson WT, de Beer T, Emr SD, Burd CG, and Overduin M (1999) Phosphatidylinositol 3-phosphate recognition by the FYVE domain. Mol Cell 3:805–811

    Article  PubMed  CAS  Google Scholar 

  • Kwiatkowska K, and Sobota A (1999) Signaling pathways in phagocytosis. Bioessays 21:422–431

    Article  PubMed  CAS  Google Scholar 

  • Larsen EC, DiGennaro JA, Saito N, Mehta S, Loegering DJ, Mazurkiewicz JE, and Lennartz MR (2000) Differential requirement for classic and novel PKC isoforms in respiratory burst and phagocytosis in RAW 264.7 cells. J Immunol 165:2809–2817

    PubMed  CAS  Google Scholar 

  • Laux T, Fukami K, Thelen M, Golub T, Prey D, and Caroni P (2000) GAP43, MARCKS, and CAP23 modulate PI(4,5)P2 at plasmalemmal rafts, and regulate cell cortex actin dynamic s through a common mechanism. J Cell Biol 149:1455–1472

    Article  PubMed  CAS  Google Scholar 

  • Lawe DC, Chawla A, Merithew E, Dumas J, Carrington W, Fogarty K, Lifshitz L, Tuft R, Lambright D, and Corvera S (2002) Sequential roles for phosphatidylinositol 3-phosphate and Rab5 in tethering and fusion of early endosomes via their interaction with EEA1. J Biol Chem 277:8611–8617

    Article  PubMed  CAS  Google Scholar 

  • Lennartz MR (1999) Phospholipases and phagocytosis: the role of phospholipid-derived second messengers in phagocytosis. Int J Biochem Cell Biol 31:415–430

    Article  PubMed  CAS  Google Scholar 

  • Lorenzi R, Brickell PM, Katz DR, Kinnon C, and Thrasher AJ (2000) Wiskott-Aldrich syndrome protein is necessary for efficient IgG-mediated phagocytosis. Blood 95:2943–2946

    PubMed  CAS  Google Scholar 

  • Lowry MB, Duchemin AM, Coggeshall KM, Robinson JM, and Anderson CL (1998) Chimeric receptors composed of phosphoinositide 3-kinase domains and Fcγ receptor ligand-binding domains mediate phagocytosis in COS fibroblasts. J Biol Chem 273:24513–24520

    Article  PubMed  CAS  Google Scholar 

  • Maehama T, and Dixon JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273:13375–13378

    Article  PubMed  CAS  Google Scholar 

  • Marshall JG, Booth JW, Stambolic V, Mak T, Balla T, Schreiber AD, Meyer T, and Grinstein S (2001) Restricted accumulation of phosphatidylinositol 3-kinase products in a plasmalemmal subdomain during Fcγ receptor-mediated phagocytosis. J Cell Biol 153:1369–1380

    Article  PubMed  CAS  Google Scholar 

  • Massol P, Montcourrier P, Guillemot JC, and Chavrier P (1998) Fc receptor-mediated phagocytosis requires CDC42and Rac1. EMBO J 17:6219–6229

    Article  PubMed  CAS  Google Scholar 

  • May RC (2001) Phagocytosis in C. elegans: CED-1 reveals its secrets. Trends Cell Biol 11:150

    Article  PubMed  CAS  Google Scholar 

  • May RC, Caron E, Hall A, and Machesky LM (2000) Involvement of the Arp2/3 complex in phagocytosis mediated by FcγR or CR3. Nat Cell Biol 2:246–248

    Article  PubMed  CAS  Google Scholar 

  • May RC, and Machesky LM (2001) Phagocytosis and the actin cytoskeleton. J Cell Sci 114:1061–1077

    PubMed  CAS  Google Scholar 

  • Mayorga LS, Bertini F, and Stahl PD (1991) Fusion of newly formed phagosomes with endosomes in intact cells and in a cell-free system. J Biol Chem 266:6511–6517

    PubMed  CAS  Google Scholar 

  • McLaughlin S, Wang J, Gambhir A, and Murray D (2002) PIP2 and proteins: interactions, organization, and information flow. Annu Rev Biophys Biomol Struct 31:151–175

    Article  PubMed  CAS  Google Scholar 

  • Murray JT, Panaretou C, Stenmark H, Miaczynska M, and Backer JM (2002) Role of Rab5 in the recruitment of hVps34/p150 to the early endosome. Traffic 3:416–427

    Article  PubMed  CAS  Google Scholar 

  • Nagaishi K, Adachi R, Matsui S, Yamaguchi T, Kasahara T, and Suzuki K (1999) Herbimycin A inhibits both dephosphorylation and translocation of cofilin induced by opsonized zymosan in macrophagelike U937 cells. J Cell Physiol 180:345–354

    Article  PubMed  CAS  Google Scholar 

  • Newman SL, Mikus LK, and Tucci MA (1991) Differential requirements for cellular cytoskeleton in human macrophage complement receptor-and Fc receptor-mediated phagocytosis. J Immunol 146:967–974

    PubMed  CAS  Google Scholar 

  • Nielsen E, Christoforidis S, Uttenweiler-Joseph S, Miaczynska M, Dewitte F, Wilm M, Hoflack B, and Zerial M (2000) Rabenosyn-5, a novel Rab5 effector, is complexed with hVPS45 and recruited to endosomes through a FYVE finger domain. J Cell Biol 151:601–612

    Article  PubMed  CAS  Google Scholar 

  • Ninomiya N, Hazeki K, Fukui Y, Seya T, Okada T, Hazeki O, and Ui M (1994) Involvement of phosphatidylinositol 3-kinase in Fcγ receptor signaling. J Biol Chem 269:22732–22737

    PubMed  CAS  Google Scholar 

  • Oancea E, Teruel MN, Quest AF, and Meyer T (1998) Green fluorescent protein (GFP)-tagged cysteine-rich domains from protein kinase C as fluorescent indicators for diacylglycerol signaling in living cells. J Cell Biol 140:485–498

    Article  PubMed  CAS  Google Scholar 

  • Ofek I, Goldhar J, Keisari Y, and Sharon N (1995) Nonopsonic phagocytosis of microorganisms. Annu Rev Microbiol 49:239–276

    Article  PubMed  CAS  Google Scholar 

  • Oldham S, Stocker H, Laffargue M, Wittwer F, Wymann M, and Hafen E (2002) The Drosophila insulin/IGF receptor controls growth and size by modulating PtdInsP(3) levels. Development 129:4103–4109

    PubMed  CAS  Google Scholar 

  • O’Shea JJ, Siwik SA, Gaither TA, and Frank MM (1985) Activation of the C3b receptor: effect of diacylglycerols and calcium mobilization. J Immunol 135:3381–3387

    PubMed  Google Scholar 

  • Payrastre B, Missy K, Giuriato S, Bodin S, Plantavid M, and Gratacap M (2001) Phosphoinositides: key players in cell signalling, in time and space. Cell Signal 13:377–387

    Article  PubMed  CAS  Google Scholar 

  • Petiot A, Ogier-Denis E, Blommaart EF, Meijer AJ, and Codogno P (2000) Distinct classes of phosphatidylinositol 3′’-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 275:992–998

    Article  PubMed  CAS  Google Scholar 

  • Prehoda KE, Scott JA, Mullins RD, and Lim WA (2000) Integration of multiple signals through cooperative regulation of the N-WASP-Arp2/3 complex. Science 290:801–806

    Article  PubMed  CAS  Google Scholar 

  • Raiborg C, Bache KG, Mehlum A, Stang E, and Stenmark H (2001a) Hrs recruits clathrin to early endosomes. EMBO J 20:5008–5021

    Article  PubMed  CAS  Google Scholar 

  • Raiborg C, Bache KG, Mehlum A, and Stenmark H (2001b). Function of Hrs in endocytic trafficking and signalling. Biochem Soc Trans 29:472–475

    Article  PubMed  CAS  Google Scholar 

  • Rameh LE, Tolias KF, Duckworth BC, and Cantiey LC(1997) A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate. Nature 390:192–196

    Article  PubMed  CAS  Google Scholar 

  • Raucher D, Stauffer T, Chen W, Shen K, Guo S, York JD, Sheetz MP, and Meyer T (2000) Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. Cell 100:221–228

    Article  PubMed  CAS  Google Scholar 

  • Roggo L, Bernard V, Kovacs AL, Rose AM, Savoy F, Zetka M, Wymann MP, and Muller F (2002) Membrane transport in Caenorhabditis elegans: an essential role for VPS34 at the nuclear membrane. EMBO J 21:1673–1683

    Article  PubMed  CAS  Google Scholar 

  • Rohatgi R, Ho HY, and Kirschner MW (2000) Mechanism of N-WASP activation by CDC42 and phosphatidylinositol-4,5-bisphosphate. J Cell Biol 150:1299–1310

    Article  PubMed  CAS  Google Scholar 

  • Rupper A, and Cardelli J (2001) Regulation of phagocytosis and endo-phagosomal trafficking pathways in Dictyostelium discoideum. Biochim Biophys Acta 1525:205–216

    Article  PubMed  CAS  Google Scholar 

  • Sakisaka T, Itoh T, Miura K, and Takenawa T (1997) Phosphatidylinositol-4,5-bisphosphate phosphatase regulates the rearrangement of actin filaments. Mol Cell Biol 17:3841–3849

    PubMed  CAS  Google Scholar 

  • Self AJ, Caron E, Paterson HF, and Hall A (2001) Analysis of R-Ras signalling pathways. J Cell Sci 114:1357–1366

    PubMed  CAS  Google Scholar 

  • Serrander L, Skarman P, Rasmussen B, Witke W, Lew DP, Krause KH, Stendahl O, and Nusse O (2000) Selective inhibition of IgG-mediated phagocytosis in gelsolin-deficient murine neutrophils. J Immunol 165:2451–2457

    PubMed  CAS  Google Scholar 

  • Shisheva A (2001) PIKfyve: the road to PtdIns-5-P and PtdIns-3,5-P2. Cell Biol Int 25:1201–1206

    Article  PubMed  CAS  Google Scholar 

  • Simonsen A, Lippe R, Christoforidis S, Gaullier JM, Brech A, Callaghan J, Toh BH, Murphy C, Zerial M, and Stenmark H (1998) EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature 394:494–498

    Article  PubMed  CAS  Google Scholar 

  • Song X, Xu W, Zhang A, Huang G, Liang X, Virbasius JV, Czech MP, and Zhou GW (2001) Phox homology domains specifically bind phosphatidylinositol phosphates. Biochemistry 40:8940-8944 **ai]Stauffer TP, Ahn S, and Meyer T (1998) Receptor-induced transient reduction in plasma membrane PtdIns(4,5)P2 concentration monitored in living cells. Curr Biol 8:343–346

    Google Scholar 

  • Stenmark H, Aasland R, and Driscoll PC (2002) The phosphatidylinositol-3-phosphate-binding FYVE finger. FEBS Lett 513:77–84

    Article  PubMed  CAS  Google Scholar 

  • Stephens L, Cooke FT, Waiters R, Jackson T, Volinia S, Gout I, Waterfield MD, and Hawkins PT (1994) Characterization of a phosphatidylinositol-specific phosphoinositide 3-kinase from mammalian cells. Curr Biol 4:203–214

    Article  PubMed  CAS  Google Scholar 

  • Stephens L, Ellson C, and Hawkins P (2002) Roles of PI3Ks in leukocyte chemotaxis and phagocytosis. Curr Opin Cell Biol 14:203–213

    Article  PubMed  CAS  Google Scholar 

  • Suchard SJ, Hinkovska-Galcheva V, Mansfield PJ, Boxer LA, and Shayman JA (1997) Ceramide inhibits IgG-dependent phagocytosis in human polymorphonuclear leukocytes. Blood 89:2139–2147

    PubMed  CAS  Google Scholar 

  • Swanson JA, Johnson MT, Beningo K, Post P, Mooseker M, and Araki N (1999) A contractile activity that closes phagosomes in macrophages. J Cell Sci 112:307–316

    PubMed  CAS  Google Scholar 

  • Takenawa T, and Itoh T (2001) Phosphoinositides, key molecules for regulation of actin cytoskeletal organization and membrane traffic from the plasma membrane. Biochim Biophys Acta 1533:190–206

    Article  PubMed  CAS  Google Scholar 

  • Terebiznik MR, Vieira OV, Marcus SL, Slade A, Yip CM, Trimble WS, Meyer T, Finlay BB, and Grinstein S (2002) Elimination of host cell PtdIns(4,5)P2 by bacterial SigD promotes membrane fission during invasion by Salmonella. Nat Cell Biol 4:766–773

    Article  PubMed  CAS  Google Scholar 

  • Tjelle TE, Lovdal T, and Berg T (2000) Phagosome dynamics and function. Bioessays 22:255–263

    Article  PubMed  CAS  Google Scholar 

  • Tognon CE, Kirk HE, Passmore LA, Whitehead IP, Der CJ, and Kay RJ (1998) Regulation of RasGRP via a phorbol ester-responsive C1 domain. Mol Cell Biol 18:6995–7008

    PubMed  CAS  Google Scholar 

  • Tolias KF, Hartwig JH, Ishihara H, Shibasaki Y, Cantley LC, and Carpenter CL (2000) Type 1α phosphatidylinositol-4-phosphate 5-kinase mediates Rac-dependent actin assembly. Curr Biol 10:153–156

    Article  PubMed  CAS  Google Scholar 

  • Vanhaesebroeck B, and Waterfield MD (1999) Signaling by distinct classes of phosphoinositide 3-kinases. Exp Cell Res 253:239–254

    Article  PubMed  CAS  Google Scholar 

  • Varnai P, Lin X, Lee SB, Tuymetova G, Bondeva T, Spat A, Rhee SG, Hajnoczky G, and Balla T (2002) Inositol lipid binding and membrane localization of isolated pleckstrin homology (PH) domains. Studies on the PH domains of phospholipase cs1 and p130. J Biol Chem 277:27412–27422

    Article  PubMed  CAS  Google Scholar 

  • Venkateswarlu K, Oatey PB, Tavare JM, and Cullen PJ (1998) Insulin-dependent translocation of ARNO to the plasma membrane of adipocytes requ ires phosphatidylinositol 3-kinase. Curr Biol 8:463–466

    Article  PubMed  CAS  Google Scholar 

  • Verkleij AJ, and Post JA (2000) Membrane phospholipid asymmetry and signal transduction. J Membr Biol 178:1–10

    Article  PubMed  CAS  Google Scholar 

  • Vieira OV, Botelho RJ, and Grinstein S (2002) Phagosome maturation: aging gracefully. Biochem J 366:689–704

    PubMed  CAS  Google Scholar 

  • Vieira OV, Botelho RJ, Rameh L, Brachmann SM, Matsuo T, Davidson HW, Schreiber A, Backer JM, Cantley LC, and Grinstein S (2001) Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation. J Cell Biol 155:19–25

    Article  PubMed  CAS  Google Scholar 

  • Volinia S, Dhand R, Vanhaesebroeck B, MacDougall LK, Stein R, Zvelebil MJ, Domin J, Panaretou C, and Waterfield MD (1995) A human phosphatidylinositol 3-kinase complex related to the yeast Vps34p-Vps15p protein sorting system. EMBO J 14:3339–3348

    PubMed  CAS  Google Scholar 

  • Wang J, Gambhir A, Hangyas-Mihalyne G, Murray D, Golebiewska U, and McLaughlin S (2002) Lateral sequestration of phosphatidylinositol-4,5-bisphosphate by the basic effector domain of myristoylated alanine-rich C kinase substrate is due to nonspecific electrostatic interactions. J Biol Chem 277:34401–34412

    Article  PubMed  CAS  Google Scholar 

  • Witke W, Li W, Kwiatkowski DJ, and Southwick FS (2001) Comparisons of CapG and gelsolin-null macrophages: demonstration of a unique role for CapG in receptor-mediated ruffling, phagocytosis, and vesicle rocketing. J Cell Biol 154:775–784

    Article  PubMed  CAS  Google Scholar 

  • Wright SD, and Silverstein SC (1983) Receptors for C3b and C3bi promote phagocytosis but not the release of toxic oxygen from human phagocytes. J Exp Med 158:2016–2023

    Article  PubMed  CAS  Google Scholar 

  • Wurmser AE, and Emr SD (2002) Novel PtdIns(3)P-binding protein Etf1 functions as an effector of the Vps34 Ptdlns 3-kinase in autophagy. J Cell Biol 158:761–772

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Hortsman H, Seet L, Wong SH, and Hong W (2001) SNX3 regulates endosomal function through its PX-domain-mediated interaction with PtdIns(3)P. Nat Cell Biol 3:658–666

    Article  PubMed  CAS  Google Scholar 

  • Yin HL, Hartwig JH, Maruyama K, and Stossel TP (1981) Ca2+ control of actin filament length. Effects of macrophage gelsolin on actin polymerization. J Biol Chem 256:9693–9697

    PubMed  CAS  Google Scholar 

  • Yu JW, and Lemmon MA (2001) All phox homology (PX) domains from Saccharomyces cerevisiae specifically recognize phosphatidylinositol 3-phosphate. J Biol Chem 276:44179–44184

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Cox D, Tseng CC, Donaldson JG, and Greenberg S (1998) A requirement for ARF6 in Fcγ receptor-mediated phagocytosis in macrophages. J Biol Chem 273:19977–19981

    Article  PubMed  CAS  Google Scholar 

  • Zhao R, Qi Y, Chen J, and Zhao ZJ (2001) FYVE-DSP2, a FYVE domain-containing dual specificity protein phosphatase that dephosphorylates phosphotidylinositol 3-phosphate. Exp Cell Res 265:329–338

    Article  PubMed  CAS  Google Scholar 

  • Zheleznyak A, and Brown EJ (1992) Immunoglobulin-mediated phagocytosis by human monocytes requires protein kinase C activation. Evidence for protein kinase C translocation to phagosomes. J Biol Chem 267:12042–12048

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Botelho, R.J., Scott, C.C., Grinstein, S. (2004). Phosphoinositide Involvement in Phagocytosis and Phagosome Maturation. In: Stenmark, H. (eds) Phosphoinositides in Subcellular Targeting and Enzyme Activation. Current Topics in Microbiology and Immunology, vol 282. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18805-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18805-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62299-1

  • Online ISBN: 978-3-642-18805-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics