Skip to main content

On Computational Glaciology: FE-Simulation of Ice Sheet Dynamics

  • Conference paper
  • 874 Accesses

Summary

The main focus of this paper is on stable FE-discretisations for treating systems of partial differential equations arising in glaciology. The systems are coupled ones, consisting of a flow problem determining stress, pressure and velocity and evolution problems for temperature and mean orientation densities, describing anisotropic material behaviour. The proposed strategies are applied to a standard model for describing ice sheet dynamics and an enhanced one, taking into account the developement of certain fabrics in the structure of the ice.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Calov, A.A. Savvin, R. Greve, I. Hansen, and K. Hutter. Simulation of the antarctic ice sheet with a three-dimensional polythermal ice sheet model. Annals of Glaciology, 27:201–206, 1998.

    Google Scholar 

  2. DEAL. differential equations analysis library. available via http://www-lsx.mathematik.uni-dortmund.de/user/lsx/suttmeier/deal.html, 1995

  3. A. Fabre, A. Letrguilly, and C. Ritz. Sensitivity of a greenland ice sheet model to ice flow and ablation parameters: Consequences on the evolution through the last climatic cycle. Climate Dynamics, 13:11–24, 1997.

    Google Scholar 

  4. A.C. Fowler. Modelling ice sheet dynamics. Geophys. Astrophys. Fluid Dynamics, 63:29–65, 1992.

    Article  MathSciNet  Google Scholar 

  5. O. Gagliardini and J. Meyssonnier. Plane flow of an ice sheet exhibiting straininduced anisotropy. In Y. Wang K. Ilutter and H. Beer, editors, Advances in Cold-Region Thermal Engineering and Sciences, pages 171–182. Springer, 1999.

    Google Scholar 

  6. O. Gagliardini and J. Meyssonnier. About the condition to apply on the lateral boundary of a model for local flow of anisotropic ice. to appear, 2001.

    Google Scholar 

  7. C. Geiger and C. Kanzow. Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben. Springer, 1999.

    Google Scholar 

  8. R. Glowinski. Numerical methods for nonlinear variational problems. Springer Series in Comp. Physics. Springer, 1983.

    Google Scholar 

  9. G. Gödert. Meso-macro model for the description of induced anisotropy of natural ice, including grain interaction. In K. Hutter, Y. Wang, and H. Beer, editors, Advances in Cold-Region Thermal Engineering and Sciences, pages 183–196, 1999.

    Google Scholar 

  10. C. Gödert. The use of structure tensors to model the evolution of textural anisotropy of polar ice. Ann. Glaciol., 2002. submitted.

    Google Scholar 

  11. R. Greve, M. Weis, and K. Nutter. Palaeoclimatic and present conditions of the greenland ice sheet in the vicinity of summit: An approach by large-scale modelling. Paleoclimates, 2:133–161, 1998.

    Google Scholar 

  12. K. Nutter, S. Yakowitz, and F. Szidarovsky. A numerical study of plane ice sheet flow. J. Glacial., 32:139–160, 1986.

    Google Scholar 

  13. P. Huybrechts. The present evolution of the greenland ice sheet: an assessment by modelling. Global Planet. Change, 9:39–51, 1995.

    Article  Google Scholar 

  14. C. Johnson. Numerical solution of partial differential equations by the finite element method. Studentlitteratur, 1987.

    Google Scholar 

  15. L.W. Morland and I.R. Johnson. Steady motion of ice sheets. J. Glaciol., 28:229–246, 1980.

    Google Scholar 

  16. G.K.A. Oswald and G.de Q. Robin. Lakes beneath the antartic ice sheet. Nature, 245:251–254, 1973.

    Article  Google Scholar 

  17. W.S.B. Paterson. The physics of glaciers. Pergamon, Oxford, 1981.

    Google Scholar 

  18. S. Richardson. On the no-slip boundary condition. J. Fluid Mech., 59:707–719, 1973.

    Article  MATH  Google Scholar 

  19. T. Thorsteinsson. Textures and fabrics in the grip ice core, in relation to climate history and ice deformation. Technical Report 206, Reports on Polar Research, 1996. ISSN 0176-5027.

    Google Scholar 

  20. S.S. Vialov. Regularities of glacial ice shields movements and the the theory of plastic viscous flow. Physics of the movements of ice, IAHS, 47:266–275, 1958.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gödert, G., Suttmeier, FT. (2004). On Computational Glaciology: FE-Simulation of Ice Sheet Dynamics. In: Feistauer, M., Dolejší, V., Knobloch, P., Najzar, K. (eds) Numerical Mathematics and Advanced Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18775-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18775-9_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62288-5

  • Online ISBN: 978-3-642-18775-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics