Skip to main content

A Boundary Movement Identification Method for a Parabolic Partial Differential Equation

  • Conference paper
  • 875 Accesses

Summary

We study boundary movement identification for a parabolic partial differential equation describing a dynamic diffusion process, on basis of internally recorded data. Formulated as a sideways diffusion equation, the problem is treated by a spatial continuation technique to extend the solution to a known boundary condition at the desired boundary position. Recording the positions traversed in the continuation for each time instant yields the boundary position trajectory and hence the solution of the identification problem. As the problem is ill-posed, a hyperbolic approximation approach is used to regularize the computation and recast the equations into a form amenable to analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alifanov, O. M. (1994): Inverse Heat Transfer Problems. International Series in Heat and Mass Transfer, Springer-Verlag, Berlin

    Google Scholar 

  2. Berntsson, F. (2001): Numerical methods for solving a non-characteristic Cauchy problem for a parabolic equation. Technical Report LiTH-MAT-R-2001-17, Department of Mathematics, Linköping University, Linköping, Sweden

    Google Scholar 

  3. Berntsson, F., Eldén, L., Loyd, D., Garcia-Padrón, R. (1997): A comparison of three numerical methods for an inverse heat conduction problem and an industrial application. In: Proc. Tenth Int. Conf. for Numerical Methdods in Thermal Problems, volume X, Institute for Numerical Methods in Engineering, University of Wales Swansea, Pineridge Press, Swansea, UK

    Google Scholar 

  4. Cannon, J. R., Rundell, W. (1991): Recovering a time dependent coefficient in a parabolic differential equation. Journal of Mathematical Analysis and Applications, 572–582

    Google Scholar 

  5. Carasso, A. (1982): Determining surface temperatures from interior observations. SIAM J. Appl. Math., 42, 558–574

    Article  MathSciNet  MATH  Google Scholar 

  6. Carasso, A. S. (1992): Space marching difference schemes in the nonlinear inverse heat conduction problem. Inverse Problems, 8, 25–43

    Article  MathSciNet  MATH  Google Scholar 

  7. Eldén, L. (1988): Hyperbolic approximations for a Cauchy problem for the heat equation. Inverse Problems, 4, 59–70

    Article  MathSciNet  MATH  Google Scholar 

  8. Eldén, L. (1995): Numerical solution of the sideways heat equation. In: Engl, H. W., Rundell, W. (eds.) Proc. GAMM-SIAM Symp., Gesellschaft für Angewandte Mathematik and Mechanik, GAMM-SIAM, Regensburg, Germany

    Google Scholar 

  9. Eldén, L. (1995): Numerical solution of the sideways heat equation by difference approximation in time. Inverse Problems, 11, 913–923

    Article  MathSciNet  MATH  Google Scholar 

  10. Eldén, L. (1997): Solving an inverse heat conduction problem by a “method of lines”. Transactions of the ASME, 119, 406–412

    Article  Google Scholar 

  11. Eldén, L., Berntsson, F., Regińska, T. (2000): Wavelet and Fourier methods for solving the sideways heat equation. SIAM J. Sci. Comput., 21, 2187–2205

    Article  MathSciNet  MATH  Google Scholar 

  12. Jones, Jr, B. F. (1963): Various methods for finding unknown coefficients in parabolic differential equations. Communications on Pure and Applied Mathematics, XVI, 33–44

    Article  Google Scholar 

  13. Kato, T. (1984): Perturbation Theory for Linear Operators, 2nd edition. A Series of Comprehensive Studies in Mathematics, Springer-Verlag, Berlin

    Google Scholar 

  14. Mejía, C. E., Murio, D. A. (1993): Mollified hyperbolic method for coefficient identification problems. Computers Math. Aplic., 26, 1–12

    Article  MATH  Google Scholar 

  15. Mejía, C. E., Murio, D. A. (1996): Numerical solution of generalized IHCP by discrete mollification. Computers Math. Aplic., 32, 33–50

    Article  MATH  Google Scholar 

  16. Morse, P. M., Feshbach, H. (1953): Methods of Theoretical Physics, volume I of International Series in Pure and Applied Physics. McGraw-Hill Book Company, Inc., New York

    Google Scholar 

  17. Richtmyer, R. D., Morton, K. W. (1967): Difference Methods for Initial-Value Problems, 2nd edition. Tracts in Pure and Applied Mathematics, Wiley Interscience, New York

    Google Scholar 

  18. Seidman, T. I., Eldén, L. (1990): An ‘optimal filtering’ method for the sideways heat equation. Inverse Problems, 6, 681–696

    Article  MathSciNet  MATH  Google Scholar 

  19. Sobolev, S. L. (1989): Partial Differential Equations of Mathematical Physics. Dover Publications Inc., New York

    Google Scholar 

  20. Taler, J., Duda, P. (2001): Solution of non-linear inverse heat conduction problems using the method of lines. Heat and Mass Transfer, 37, 147–155

    Article  Google Scholar 

  21. Tikhonov, A. N., Samarskii, A. A. (1990): Equations of Mathematical Physics. Dover Publications Inc., New York

    Google Scholar 

  22. Weber, C. F. (1981): Analysis and solution of the ill-posed inverse heat conduction problem. Int. J. Heat Mass Transfer, 24, 1783–1792

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fredman, T.P. (2004). A Boundary Movement Identification Method for a Parabolic Partial Differential Equation. In: Feistauer, M., Dolejší, V., Knobloch, P., Najzar, K. (eds) Numerical Mathematics and Advanced Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18775-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18775-9_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62288-5

  • Online ISBN: 978-3-642-18775-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics