Ligand Tracer Kinetics: Theory and Application

  • Mark Slifstein
  • W. Gordon Frankle
  • Marc Laruelle


In this chapter we have presented the basic theory underlying the quantitative modeling of neuroreceptor imaging studies using PET and SPECT. Quantitative estimates of receptor parameters that are independent of effects such as clearance and regional cerebral blood flow require fitting data to a mathematical model that takes these factors into account. We have shown how basic models of the relevant physiological processes are combined into a comprehensive compartment model of the time course of the radioligand during a scan. The standard compartment model described in this chapter incorporates transport of ligand into brain tissue and subsequent binding of ligand to receptors into a coupled set of differential equations. Provided that the experimental conditions satisfy the assumptions of the model (tracer dose, constant regional cerebral blood flow and an available receptor population that is unchanged during the course of the scan), outcome measures that are proportional to available receptor density can be estimated. A good understanding of the approximations and assumptions that are incorporated in the models and the relationships between the various components of the measured signal will lead to more insightful interpretation of data obtained using PET and SPECT.


Reference Region Impulse Response Function Cereb Blood Flow Arterial Plasma Plasma Input 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abi-Dargham A, Lamelle M, Seibyl J, Rattner Z, Baldwin RM, Zoghbi SS, Zea-Ponce Y, Bremner JD, Hyde TM, Charney DS, Hoffer PB, Innis RB (1994) SPECT measurement of benzodiazepine receptors in human brain with [123I]iomazenil: kinetic and equilibrium paradigms. J Nucl Med 35:228–238PubMedGoogle Scholar
  2. Abi-Dargham A, Martinez D, Mawlawi 0, Simpson N, Hwang DR, Slifstein M, Pidcock J, Guo N, Lombardo I, van Heertum R, Foged C, Halldin C, Mann JJ, Lamelle M (2000) Measurement of striatal and extrastriatal dopamine D1 receptor binding potential with [11C]NNC 112 in humans: validation and reproducibility. J Cereb Blood Flow Metab 20:225–243PubMedCrossRefGoogle Scholar
  3. Bonab A, Fischman A, Alpert N (2000) Comparison of 4 methods for quantification of dopamine transporters by SPECT with [123I]IACFT. J Nucl Med 41:1086–1092PubMedGoogle Scholar
  4. Buck A, Gucker PM, Schonbachler RD, Arigoni M, Kneifel S, Vollenweider FX, Ametamey SM, Burger C (2000) Evaluation of serotonergic transporters using PET and [C-11](+)McN-5652: assessment of methods. J Cereb Blood Flow Metab 20:253–262PubMedCrossRefGoogle Scholar
  5. Carson RE, Channing MA, Blasberg RG, Dunn BB, Cohen RM, Rice KC, Herscovitch P (1993) Comparison of bolus and infusion methods for receptor quantitation: application to [18F]cyclofoxy and positron emission tomography. J Cereb Blood Flow Metab 13:24–42PubMedCrossRefGoogle Scholar
  6. Carson RE, Breier A, deBartolomeis A, Saunders RC, Su TP, Schmall B, Der MG, Pickar D, Eckelman WC (1997) Quantification of amphetamine-induced changes in [C-11]raclopride binding with continuous infusion. J Cereb Blood Flow Metab 17:437–447CrossRefGoogle Scholar
  7. Cunningham VJ, Jones T (1993) Spectral analysis of dynamic PET studies. J Cereb Blood Flow Metab 13:15–23PubMedCrossRefGoogle Scholar
  8. Ginovart N, Wilson AA, Meyer JH, Hussey D, Houle S (2001) PET quantification of C-11-DASB binding to the serotonin transporter in human. J Nucl Med 42:105p–105pGoogle Scholar
  9. Gunn RN, Lammertsma AA, Hume SP, Cunningham VJ (1997) Parametric imaging of ligand-receptor binding in PET using a simplified reference region model. Neuroimage 6:279–2787CrossRefGoogle Scholar
  10. Gunn RN, Sargent PA, Bench CJ, Rabiner EA, Osman S, Pike VW, Hume SP, Grasby PM, Lammertsma AA (1998) Tracer kinetic modeling of the 5-HT1A receptor ligand [carbonyl-11C]WAY-100635 for PET. Neuroimage 8:426–440PubMedCrossRefGoogle Scholar
  11. Gunn RN, Gunn SR, Turkheimer FE, Aston JAD, Cunningham TJ (2002) Positron emission tomography compartmental models: a basis pursuit strategy for kinetic modeling. J Cereb Blood Flow Metab 22:1425–1439PubMedCrossRefGoogle Scholar
  12. Houle S, Ginovart N, Hussey D, Meyer JH, Wilson AA (2000) Imaging the serotonin transporter with positron emission tomography: initial human studies with [C-11]DAPP and [C-11]DASB. Eur J Nucl Med 27:1719–1722PubMedCrossRefGoogle Scholar
  13. Huang TY, Hwang DR, Narendran R, Sudo Y, Chatterjee R, Bae SA, Mawlawi T, Kegeies TS, Wilson AA, Kung HF, Lamelle M (2002) Comparative evaluation in nonhuman primates of five PET radiotracers for imaging the serotonin transporters: [C-ll]McN 5652, [C-ll]ADAM, [C-11]DASB, [C-11]DAPA,and [C-11]AFM. J Cereb Blood Flow Metab 22:1377–1398PubMedCrossRefGoogle Scholar
  14. Ikoma T, Suhara T, Toyama H, Ichimiya T, Takano A, Sudo T, Inoue M, Yasuno T, Suzuki K (2002) Quantitative analysis for estimating binding potential of the brain serotonin transporter with [C-ll]McN5652. J Cereb Blood Flow Metab 22:490–501PubMedCrossRefGoogle Scholar
  15. Koeppe RA, Holthoff VA, Frey KA, Kilbourn MR, Kuhl DE (1991) Compartmental analysis of [11C]flumazenil kinetics for the estimation of ligand transport rate and receptor distribution using positron emission tomography. J Cereb Blood Flow Metab 11:735–744PubMedCrossRefGoogle Scholar
  16. Koeppe RA, Frey KA, Kume A, Albin R, Kilbourn MR, Kuhl DE (1997) Equilibrium versus compartmental analysis for assessment of the vesicular monoamine transporter using (+)-alpha-[C-1l]dihydrotetrabenazine (DTBZ) and positron emission tomography. J Cereb Blood Flow Metab 17:919–931CrossRefGoogle Scholar
  17. Lammertsma AA, Hume SP (1996) Simplified reference tissue model for PET receptor studies. Neuroimage 4:153–158PubMedCrossRefGoogle Scholar
  18. Lammertsma AA, Bench CJ, Hume SP, Osman S, Gunn K, Brooks DJ, Frackowiak RS (1996) Comparison of methods for analysis of clinical [11C]raclopride studies. J Cereb Blood Flow Me-tab 16:42–52CrossRefGoogle Scholar
  19. Landlaw EM, DiStefano JJ III (1984) Multiexponential, multicompartmental, and noncompart-mental modeling. II. Data analysis and statistical considerations. Am J Physiol 246:R665–R677Google Scholar
  20. Lamelle M, Baldwin RM, Rattner Z, Al-Tikriti MS, Zea-Ponce Y, Zoghbi SS, Charney DS, Price JC, Frost JJ, Hoffer PB, Innis RB (1994a) SPECT quantification of [123I]iomazenil binding to benzodiazepine receptors in nonhuman primates. I. Kinetic modeling of single bolus experiments. J Cereb Blood Flow Metab 14:439–452CrossRefGoogle Scholar
  21. Lamelle M, Abi-Dargham A, Al-Tikriti MS, Baldwin RM, Zea-Ponce Y, Zoghbi SS, Charney DS, Hoffer PB, Innis RB (1994b) SPECT quantification of [123I]iomazenil binding to benzodiazepine receptors in nonhuman primates. II. Equilibrium analysis of constant infusion experiments and correlation with in vitro parameters. J Cereb Blood Flow Metab 14:453–465CrossRefGoogle Scholar
  22. Lamelle M, Al-Tikriti MS, Zea-Ponce Y, Zoghbi SS, Baldwin RM, Charney DS, Hoffer PB, Kung HF, Innis RB (1994c) In vivo quantification of dopamine D2 receptors parameters in nonhuman primates with [123I]iodobenzofuran and single photon emission computerized tomography. Eur J Pharmacol 263:39–51CrossRefGoogle Scholar
  23. Lamelle M, Abi-Dargham A, van Dyck CH, Rosenblatt W, Zea-Ponce Y, Zoghbi SS, Baldwin RM, Charney DS, Hoffer PB, Kung HF, Innis RB (1995) SPECT imaging of striatal dopamine release after amphetamine challenge. J Nucl Med 36:1182–1190Google Scholar
  24. Levenberg K (1944) A method for the solution of certain problems in least squares. Quart Appl Math 2:164–168Google Scholar
  25. Logan J, Fowler J, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, MacGregor RR, Hitzermann R, Bendriem B, Gatley SJ, Christman DR (1990) Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(−)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab 10:740–747PubMedCrossRefGoogle Scholar
  26. Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL (1996) Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab 16: 834–840PubMedCrossRefGoogle Scholar
  27. Logan J, Fowler J, Ding Y, Volkow N, Alexoff D (2000) Removing the bias in the graphical analysis method. J Nucl Med 41:188Google Scholar
  28. Marquardt D (1963) An algorithm for least-squares estimation of nonlinear parameters. J Appl Math 11:431–441Google Scholar
  29. Martinez D, Hwang DR, Mawlawi O, Slifstein M, Kent J, Simpson N, Parsey RV, Hashimoto T, Huang YY, Shinn A, Van Heertum R, Abi-Dargham A, Caltabiano S, Malizia A, Cowley H, Mann JJ, Lamelle M (2001) Differential occupancy of somatodendritic and postsynaptic 5HT(1A) receptors by pindolol: a dose-occupancy study with [C-11]WAY 100635 and positron emission tomography in humans. Neuropsychopharmacology 24:209–229PubMedCrossRefGoogle Scholar
  30. Meyer JH, Wilson AA, Ginovart N, Goulding V, Hussey D, Hood K, Houle S (2001) Occupancy of serotonin transporters by paroxetine and Citalopram during treatment of depression: a [C-11]DASB PET imaging study. Am J Psychiatry 158:1843–1849PubMedCrossRefGoogle Scholar
  31. Ogden RT, Parsey RV, Mann JJ (2002) Likelihood approach to parameter estimation in logan graphical analysis. Neuroimage 16:S73–S73Google Scholar
  32. Parsey RV, Hwang D, Simpson N, Kegeles L, Anjilvel S, Zea-Ponce Y, Lombardo I, Popilskis S, Van Heerthum R, Mann JJ, Lamelle M (1998) Kinetic derivation of serotonin 5HT-1A receptor binding potential with [HC]carbonyl-way 100635 and competition studies with endogenous serotonin. Neuroimage 7:A10Google Scholar
  33. Parsey RV, Hwang DR, Slifstein M, Simpson N, Guo NN, Mawlawi OR, Pidcock J, Abi-Dargham A, Mann JJ, Lamelle M (1999) Reproducibility studies of [11C-Carbonyl]-WAYl00635 binding potential measurement in humans. J Nucl Med 40:262PGoogle Scholar
  34. Parsey RV, Kegeles L, Hwang DR, Simpson N, Abi-Dargham A, Mawlawi O, Slifstein M, Van Heertum R, Mann JJ, Lamelle M (2000a) Quantification of brain serotonin transporters in humans with (+) and (−)McNeil 5652. J Nucl Med 41:1465–1467PubMedGoogle Scholar
  35. Parsey RV, Slifstein M, Hwang DR, Abi-Dargham A, Simpson N, Mawlawi O, Guo NN, Van Heer-turn R, Mann JJ, Laruelle M (2000b) Validation and reproducibility of measurement of 5-HT1A receptor parameters with [carbonyl-11C] WAY-100635 in humans: comparison of arterial and reference tissue input functions (in process citation). J Cereb Blood Flow Metab 20: 1111–1133PubMedCrossRefGoogle Scholar
  36. Slifstein M, Laruelle M (2000) Effects of statistical noise on graphical analysis of PET neuroreceptor studies. J Nucl Med 41:2083–2088PubMedGoogle Scholar
  37. Slifstein M, Parsey R, Lamelle M (2000) Derivation of [11C]WAY-100635 binding parameters with reference tissue models: effect of violations of model assumptions. Nucl Med Bio 27: 487–492CrossRefGoogle Scholar
  38. Slifstein M, Lamelle M (2001) Models and methods for derivation of in vivo neuroreceptor parameters with PET and SPECT reversible radiotracers. Nucl Med Biol 28:595–608PubMedCrossRefGoogle Scholar
  39. Suehiro M, Scheffel U, Dannals RF, Ravert HT, Ricaurte GA, Wagner H Jr (1993) A PET radiotracer for studying serotonin uptake sites: carbon-11-McN-5652Z. J Nucl Med 34:120–127PubMedGoogle Scholar
  40. Szabo Z, Scheffel U, Suehiro M, Dannals RF, Kim SE, Ravert HT, Ricaurte GA, Wagner H Jr (1995) Positron emission tomography of 5-HT transporter sites in the baboon brain with [11C]McN5652. J Cereb Blood Flow Metab 15:798–805PubMedCrossRefGoogle Scholar
  41. Szabo Z, McCann UD, Wilson AA, Scheffel U, Owonikoko T, Mathews WB, Ravert HT, Hilton J, Dannals RF, Ricaurte GA (2002) Comparison of (+)-C-11-McN5652 and C-11-DASB as serotonin transporter radioligands under various experimental conditions. J Nucl Med 43:678–692PubMedGoogle Scholar
  42. Van Dyck CH, Tan PZ, Baldwin RM, Amici LA, Garg PK, Ng CK, Soufer R, Charney DS, Innis RB (2000) PET quantification of 5-HT2A receptors in the human brain: a constant infusion paradigm with [18F]altanserin. J Nucl Med 41:234–241PubMedGoogle Scholar
  43. Varga J, Szabo Z (2002) Modified regression model for the Logan plot. J Cereb Blood Flow Metab 22:240–244PubMedCrossRefGoogle Scholar
  44. Wilson AA, Ginovart N, Schmidt M, Meyer JH, Threlkeld PG, Houle S (2000) Novel radiotracers for imaging the serotonin transporter by positron emission tomography: synthesis, radio-synthesis, and in vitro and ex vivo evaluation of C-l1-labeled 2-(phenylthio)araalkylamines. J Med Chem 43:3103–3110PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Mark Slifstein
    • 1
  • W. Gordon Frankle
    • 1
  • Marc Laruelle
    • 1
  1. 1.Department of Radiology and Division of Functional Brain Mapping, Department of PsychiatryColumbia University and New York State Psychiatric InstituteNew YorkUSA

Personalised recommendations