Perfusion Tracers: Biological Bases and Clinical Implications

  • Daniel O. Slosman
  • Luc Pellerin


Several radiopharmaceuticals are used in the clinical setting for brain imaging by the nuclear medicine modalities PET and SPECT. Among them, HMPAO and ECD are the most widely used, and it is usually assumed that they both reflect regional cerebral perfusion. Study of the biological basis of their cellular mechanisms at the basis of their brain retention highlighted that besides reflecting local flow, regional metabolic patterns may lead to the uncoupling perfusion signal with local retention of the tracer. Furthermore, it appears that very interesting similarities are emerging between astrocytes-neurons deoxyglucose/energy exchange and HMPAO/oxido-reduction equilibrium in normal state as well as in pathophysiological conditions.


Positron Emission Tomography Single Photon Emission Compute Tomography Regional Cerebral Blood Flow Cereb Blood Flow Perfusion Tracer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen AR (1989) 99mTc-D,L-Hexamethylene-propyleneamine oxime (99mTc-HMPAO): basic kinetic studies of a tracer of cerebral blood flow. Cereb Brain Metab Rev 1:288–318Google Scholar
  2. Andersen AR, Friberg H, Friberg H, Lassen NA, Kristensen K, Neirinckx RD (1988) Assessment of the arterial input curve for [99mTc]-d, I-HM-PAO by rapid octanol extraction. J Cereb Blood Flow Metab 8[Suppl 1]:S23–S30PubMedCrossRefGoogle Scholar
  3. Babich JW, Keeling F et al (1988) Initial experience with Tc99m-HMPAO in the study of brain tumors. Eur J Nucl Med 14:39–44PubMedCrossRefGoogle Scholar
  4. Barres BA (1991) New roles for glia. J Neuroscience 11:3685–3694Google Scholar
  5. Corey-Bloom J, Thai LJ et al (1995) Diagnosis and evaluation of dementia. Neurology 45:211–218PubMedCrossRefGoogle Scholar
  6. Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695PubMedCrossRefGoogle Scholar
  7. Davis PC, Gearing M et al (1995) The CERAD experience, part VIII: neuroimaging-neuropathology correlates of temporal lobe changes in Alzheimer’s disease. Neurology 45:178–179PubMedCrossRefGoogle Scholar
  8. Devous MD, Payne JK et al (1993) Comparison of technetium-99m-ECD to Xenon-133 SPECT in normal controls and in patients with mild to moderate regional cerebral blood flow abnormalities. J Nucl Med 34:754–761PubMedGoogle Scholar
  9. Frackowiak RSJ, Pozzilli C, Legg NJ, Du Boulay GH, Marshall J, Lenzi GL, Jones T (1981) Regional cerebral oxygen supply and utilization in dementia. A clinical and physiological study with oxygen-15 and positron tomography. Brain 104:753–778PubMedCrossRefGoogle Scholar
  10. Franceschi M, Alberoni M et al (1995) Correlations between cognitive impairment, middle cerebral artery velocity and cortical glucose metabolism in the early phase of Alzheimer’s disease. Dementia 6:32–38PubMedGoogle Scholar
  11. Gemmell HG, Evans NTS et al (1990) Regional cerebral blood flow imaging: a quantitative comparison of technetium-99m-HMPAO SPECT with C15O2 PET. J Nucl Med 31:1595–1600PubMedGoogle Scholar
  12. Greenberg JH, Araki N et al (1994) Correlation between Tc99m-bicisate and regional CBF measured with iodo-[C-14] antipyrine in a primate focal ischemia model. J Cereb Blood Flow Metab 14[Suppl 1]:S36–S43PubMedGoogle Scholar
  13. Haxby JV, Grady CL et al (1986) Neocortical metabolic abnormalities precede nonmemory cognitive defects in early Alzheimer-type dementia. Arch Neurol 43:882–885PubMedCrossRefGoogle Scholar
  14. Haxby JV, Grady CL et al (1990) Longitudinal study of cerebral metabolic asymmetries and associated neuropsychological patterns in early dementia of the Alzheimer type. Arch Neurol 47:753–760PubMedCrossRefGoogle Scholar
  15. Herholz K (1995) FDG PET and differential diagnosis of dementia. Alzheimer Dis Assoc Disord 9:6–16PubMedCrossRefGoogle Scholar
  16. Herholz K, Schopphoff H et al (2002) Direct comparison of spatially normalized PET and SPECT scans in Alzheimer’s disease. J Nucl Med 43:21–26PubMedGoogle Scholar
  17. Jacquier-Sarlin M, Slosman DO et al (1996a) The cellular basis of ECD brain retention. J Nucl Med 37:1694–1697PubMedGoogle Scholar
  18. Jacquier-Sarlin MR, Polla BS et al (1996b) Oxido-reductive state: the major determinant for cellular retention of technetium-99m-HMPAO. J Nucl Med 37:1413–1416PubMedGoogle Scholar
  19. Junod AF (1985) 5-Hydroxytryptamine and other amines in the lungs. The respiratory system. Handbook of physiology, vol 1. AP Society/Williams and Wilkins, Bethesda, pp 337–349Google Scholar
  20. Kennedy AM, Frackowiack RSJ et al (1995) Deficits in cerebral glucose metabolism demonstrated by positron emission tomography in individuals at risk of familial Alzheimer’s disease. Neurosci Lett 186:17–20PubMedCrossRefGoogle Scholar
  21. Lassen NA, Sperling B (1994) 99mTc-bicisate reliably images CBF in chronic brain diseases but fails to show reflow hyperemia in subacute stroke: report of a multicenter trial of 105 cases comparing 133-Xe and 99mTc-bicisate (ECD, Neurolite) measured by SPECT on the same day. J Cereb Blood Flow Metab 14[Suppl 1]:S44–S48PubMedGoogle Scholar
  22. Lassen NA, Henriksen S et al (1983) Cerebral blood-flow tomography: Xenon-133 compared with isopropylamphetamine-iodine-123. J Nucl Med 24:17–21PubMedGoogle Scholar
  23. Lassen NA, Andersen AR et al (1988) The retention of [99mTc]-d,l-HM-PAO in the human brain after intracarotid bolus injection: a kinetic analysis. J Cereb Blood Flow Metab 8[Suppl 1]: S13–S22PubMedCrossRefGoogle Scholar
  24. Léveillé J, Demonceau G et al (1989) Characterization of technetium-99m-L,L-ECD for brain perfusion imaging, part 2: biodistribution and brain imaging in humans. J Nucl Med 30:1901–1910Google Scholar
  25. Lindegaard MW, Skretting A et al (1986) Cerebral and cerebellar uptake of Tc99m-d,l-hexamethylpropyleneamine oxime (HMPAO) in patients with brain tumor studied by single photon emission computerized tomography. Eur J Nucl Med 14:39–44Google Scholar
  26. Messa C, Perani D et al (1994) High-resolution technetium-99m-HMPAO SPECT in patients with probable Alzheimer’s disease: comparison with fluorine-18-FDG PET. J Nucl Med 35:210–216PubMedGoogle Scholar
  27. Meyer M, Wahner HW (1990) Focal high uptake of HMPAO in brain perfusion studies: a clue in the diagnosis of encephalitis. J Nucl Med 31:1094–1098PubMedGoogle Scholar
  28. Miyazawa N, Koizumi K et al (1998) Discrepancies in brain perfusion SPECT findings between Tc-99m HMPAO and Tc-99m ECD: evaluation using dynamic SPECT in patients with hyperemia. Clin Nucl Med 23:686–690PubMedCrossRefGoogle Scholar
  29. Moretti JL, Defer G et al (1990) “Luxury perfusion” with 99mTc-HMPAO and 123-IMP SPECT imaging during the subacute phase of stroke. Eur Nucl Med 16:17–22CrossRefGoogle Scholar
  30. Moretti JL, Caglar M et al (1995) Cerebral perfusion imaging tracers for SPECT: which one to choose? J Nucl Med 36:359–363PubMedGoogle Scholar
  31. Murase K, Tanada S et al (1992) Kinetic behavior of technetium-99m-HMPAO in the human brain and quantification of cerebral blood flow using dynamic SPECT. J Nucl Med 33:135–143PubMedGoogle Scholar
  32. Nakagawa M, Kuwabara Y et al (2002) 1lC-methionine uptake in cerebrovascular disease: a comparison with 18F-fDG PET and 99mTc-HMPAO SPECT. Ann Nucl Med 16:207–211PubMedCrossRefGoogle Scholar
  33. Neirinckx R, Burke JF et al (1988) The retention mechanism of technetium-99m-HM-PAO: intracellular reaction with glutathione. J Cereb Blood Flow 8:S4–S12CrossRefGoogle Scholar
  34. Ogawa Y, Hashmi R et al (2001) Increased uptake of 99Tcm-ethyl cysteinate dimer in patients with brain tumours. Nucl Med Commun 22:479–483PubMedCrossRefGoogle Scholar
  35. Orlandi C, Crane PD et al (1990) Regional cerebral blood flow and distribution of 99mTc ethyl cysteinate dimer in nonhuman primates. Stroke 21:1059–1063PubMedCrossRefGoogle Scholar
  36. Papazyan JP, Delavelle J et al (1997) Discrepancies between HMPAO and ECD SPECT imaging in brain tumors. J Nucl Med 38:592–596PubMedGoogle Scholar
  37. Pellerin L, Magistretti P (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 91: 10625–10629PubMedCrossRefGoogle Scholar
  38. Peters A, Palay SL et al (1991) The fine structure of the nervous system: neurons and their supporting cells. Saunders, PhiladelphiaGoogle Scholar
  39. Phelps ME, Huang SC et al (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with F-18 2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 6:371–388PubMedCrossRefGoogle Scholar
  40. Pupi A, de Cristofaro MTR et al (1991) An analysis of the arterial input curve for technetium-99mHMPAO: quantification of rCBF using single-photon emission computed tomography. J Nucl Med 32:1501–1506PubMedGoogle Scholar
  41. Pupi A, Castagnoli A et al (1994) Quantitative comparison between 99m Tc-HMPAO and 99m Tc-ECD: measurement of arterial input and brain retention. Eur J Nucl Med 21:124–130PubMedCrossRefGoogle Scholar
  42. Rieck H, Adelwohrer C et al (1998) Discordance of technetium-99m-HMPAO and technetium-99m-ECD SPECT in herpes simplex encephalitis. J Nucl Med 39:1508–1510PubMedGoogle Scholar
  43. Rodrigues M, Fonseca AT et al (1993) Tc99m-HMPAO brain SPECT in the evaluation of prognosis after surgical resection of astrocytoma. Comparison with other noninvasive imaging techniques (CT, MRI and Tl201 SPECT). Nucl Med Com 14:1050–1060CrossRefGoogle Scholar
  44. Roy CS, Sherrington CS (1890) On the regulation of the blood supply of the brain. J Physiol 11: 85–108PubMedGoogle Scholar
  45. Schwartz RB, Carvalho PA, Alexander E 3rd, Loeffler JS, Folkerth R, Holman BL (1992) Radiation necrosis vs high-grade recurrent glioma: differentiation by using dual-isotope SPECT with 201 TI and 99m Tc-HMPAO. AJNR Am J Neuroradiol 12:1187–1192Google Scholar
  46. Slosman DO, Brill AB et al (1987) Evaluation of [Iodine-125] N,N,N′,-trimethyl-N′-[2-Hydroxy-3-methyl-5-iodobenzyl]-propanediamine lung uptake using an isolated-perfused lung model. J Nucl Med 28:203–208PubMedGoogle Scholar
  47. Slosman DO, Donath A et al (1989) 131I-metaiodobenzyl-guanidine and 125I-iodoamphetamine lung extraction in rat: parameters of lung endothelial cell function and pulmonary vascular area. Eur J Nucl Med 15:207–210PubMedCrossRefGoogle Scholar
  48. Slosman DO, Chicherio C et al (2001a) 133Xe SPECT cerebral blood flow study in a healthy population: determination of the T-score values. J Nucl Med 42:864–870PubMedGoogle Scholar
  49. Slosman DO, Ludwig C, Zerarka S, Pellerin L, Chicherio C, de Ribaupierre A, Annoni JM, Bouras C, Herrmann F, Michel JP, Giacobini E, Magistretti PJ (2001b) Brain energy metabolism in Alzheimer’s disease: 99mTc-HMPAO SPECT imaging during verbal fluency and role of astrocytes in the cellular mechanism of 99mTc-HMPAO retention. Brain Res Brain Res Rev 36: 230–240PubMedCrossRefGoogle Scholar
  50. Small GW, Mazziotta JC et al (1995) Apolipoprotein E type 4 allele and cerebral glucose metabolism in relatives at risk for familial Alzheimer disease. JAMA 273:942–947PubMedCrossRefGoogle Scholar
  51. Sokoloff L, Reivich M et al (1977) The (14C)deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916PubMedCrossRefGoogle Scholar
  52. Takahashi S, Driscoll BF et al (1995) Role of sodium and potassium ions in regulation of glucose metabolism in cultured astroglia. Proc Natl Acad Sci U S A 92:4616–4620PubMedCrossRefGoogle Scholar
  53. Tamgac F, Moretti J-L et al (1994) Non-matched images with I-123 IMP and Tc-99m bicisate single-photon emission tomography in the demonstration of focal hyperaemia during the subacute phase of an ischaemic stroke. Eur J Nucl Med 21:254–257PubMedCrossRefGoogle Scholar
  54. Tsacopoulos M, Magistretti PJ (1996) Metabolic coupling between glia and neurons. J Neurosci 16:877–885PubMedGoogle Scholar
  55. Tsuchida T, Nishizawa S et al (1994) SPECT images of technetium-99m-ethyl cysteinate dimer in cerebrovascular diseases: comparison with other cerebral perfusion tracers and PET. J Nucl Med 35:27–31PubMedGoogle Scholar
  56. Walovitch RC, Hill TC et al (1989) Characterization of technetium-99m-L,L-ECD for brain perfusion imaging, part 1: pharmacology of technetium-99m ECD in nonhuman primates. J Nucl Med 30:1892–1901PubMedGoogle Scholar
  57. Walovitch RC, Franceschi M et al (1991) Metabolism of 99mTc-L,L-Ethyl cysteinate dimer in healthy volunteers. Neuropharmacology 30:283–292PubMedCrossRefGoogle Scholar
  58. Walovitch RC, Cheesman EH et al (1994) Studies of the retention mechanism of the brain perfusion imaging agent 99mTc-bicisate (99mTc-ECD). J Cereb Blood Flow Metab 14[Suppl 1]: S4–S11PubMedGoogle Scholar
  59. Wolfe N, Reed BR et al (1995) Temporal lobe perfusion on single photon emission computed tomography predicts the rate of cognitive decline in Alzheimer’s disease. Arch Neurol 52:257–262PubMedCrossRefGoogle Scholar
  60. Yonekura Y, Nishizawa S et al (1988) SPECT with (99mTc)-d,l-hexamethyl-propylene amine oxime (HM-PAO) compared with regional cerebral blood flow measured by PET: effect of linearization. J Cereb Blood Flow 8:S82–S89CrossRefGoogle Scholar
  61. Yonekura Y, Nishizawa S et al (1993) Functional mapping of flow and back-diffusion rate of N-isopropyl-p-iodoamphetamine in human brain. J Nucl Med 34:839–844PubMedGoogle Scholar
  62. Zerarka S, Pellerin L et al (2001) Astrocytes as a predominant cellular site of (99m)Tc-HMPAO retention. J Cereb Blood Flow Metab 21:456–468PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Daniel O. Slosman
    • 1
  • Luc Pellerin
    • 2
  1. 1.Division of Nuclear MedicineGeneva University HospitalGeneva 14Switzerland
  2. 2.Institute of PhysiologyLausanneSwitzerland

Personalised recommendations