Instrumentation in Nuclear Medicine

  • Filip Jacobs
  • Yves D’Asseler
  • John Dickson
  • I. Lemahieu
  • R. Van de Walle


After introducing single photon emission tomography (SPET) and positron emission tomography (PET) scanners, the basic steps of acquiring data and reconstructing and processing tomographic brain images are discussed. Since the field of instrumentation in nuclear medicine is too broad to be covered by a single chapter, certain important instrumentation topics will not be discussed. The combination of PET and CT scanners, for instance, is not covered in this chapter. Also, all instrumentation in a hot lab, the room in which all radiopharmaceuticals are prepared, is not covered. A comparison between commercially available cameras and software packages is omitted. Nevertheless, this chapter forms a good introduction for the novice, providing a better understanding of the instrumentation and methodologies discussed in scientific papers.


Positron Emission Tomography Gamma Camera Positron Emission Tomography Scanner Single Photon Emission Tomography Photon Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashburner J (2000) Computational neuroanatomy. PhD thesis. University College, LondonGoogle Scholar
  2. Ashburner J, Friston KJ (1999) Nonlinear spatial normalization using basis functions. Hum Brain Mapping 7:254–266CrossRefGoogle Scholar
  3. Ashburner J, Friston KJ (2000) Voxel-based morphometry — the methods. Neuroimage 11:805–821PubMedCrossRefGoogle Scholar
  4. Audenaert K, Brans B, Van Laere K, Lahorte P, Versijpt J, Van Heeringen K, Dierckx R (2000) Verbal fluency as a prefrontal activation probe: a validation study using 99mTc-ECD brain SPET. Eur J Nucl Med 27:1800–1808PubMedCrossRefGoogle Scholar
  5. Audenaert K, Lahorte P, Brans B, Van Laere K, Goethals I, Van Heeringen K, Dierckx RA (2001) The classical Stroop interference task as a prefrontal activation probe: a validation study using 99Tcm-ECD brain SPECT. Nucl Med Commun 22:135–143PubMedCrossRefGoogle Scholar
  6. Audenaert K, Goethals I, Van Laere K, Lahorte P, Brans B, Versijpt J, Vervaet M, Beelaert L, Van Heeringen K, Dierckx R (2002) SPECT neuropsychological activation procedure with the Verbal Fluency Test in attempted suicide patients. Nucl Med Commun 23:907–916PubMedCrossRefGoogle Scholar
  7. Beekman FJ, de Jong HWAM, Van Geloven S (2002) Efficient fully 3-D iterative SPECT reconstruction with Monte Carlo-based scatter compensation. IEEE Trans Med Imaging 21:867–877PubMedCrossRefGoogle Scholar
  8. Bellini S, Piacentini M, Cafforio C (1979) Compensation of tissue absorption in emission tomography. IEEE Trans ASSP 27:213–218CrossRefGoogle Scholar
  9. Brinkmann BH, O’Brien TJ, Aharon S, O’Connor MK, Mullan BP, Hanson DP, Robb RA (1999) Quantitative and clinical analysis of SPECT image registration for epilepsy studies. J Nucl Med 40:1098–1105PubMedGoogle Scholar
  10. Bronzino JD (1999) The biomedical engineering handbook, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  11. Camargo EE (2001) Brain SPECT in neurology and psychiatry. J Nucl Med 42:611–623PubMedGoogle Scholar
  12. Catafau AM (2001) Brain SPECT in clinical practice, part I: perfusion. J Nucl Med 42:259–271PubMedGoogle Scholar
  13. Chang LT (1978) A method of attenuation correction in radionuclide computed tomography. IEEE Trans Nucl Sci 25:638–643CrossRefGoogle Scholar
  14. Crivello F, Schormann T, Tzourio-Mazoyer N, Roland PE, Zilles K, Mazoyer BM (2002) Comparison of spatial normalization procedures and their impact on functional maps. Hum Brain Mapp 16:228–250PubMedCrossRefGoogle Scholar
  15. Defrise M, Kinahan PE (1998) Data acquisition and image reconstruction for 3D PET. In: Bendriem B, Townsend DW (eds) The theory and practice of 3D PET. Kluwer Academic, Dortrecht, pp 11–53Google Scholar
  16. Defrise M, Kinahan PE, Townsend DW, Michel C, Sibomana M, Newport D (1997) Exact and approximate rebinning algorithms for 3D PET data. IEEE Trans Med Imag 16:145–158CrossRefGoogle Scholar
  17. Floyd CE, Jaszczak RJ, Greer KL, Coleman RE (1985) Deconvolution of Compton scatter in SPECT. J Nucl Med 26:403–408PubMedGoogle Scholar
  18. Frackowiak RSJ, Friston KJ, Frith CD, Dolan RJ, Mazziotta JC (eds) (1997) Human brain function. Academic, New YorkGoogle Scholar
  19. Friston KJ (2000) Experimental design and statistical issues. In: Mazziotta JC, Toga AW (eds) Brain mapping: the disorders. Academic, New York, pp 33–58CrossRefGoogle Scholar
  20. Friston KJ, Holmes AP, Worsley KJ, Poline JB, Frith CD, Frackowiak RSJ (1995) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapping 2:189–210CrossRefGoogle Scholar
  21. Gilbert P (1972) Iterative methods for the three-dimensional reconstruction of an object from projections. J Theor Biol 36:105–117PubMedCrossRefGoogle Scholar
  22. Glick SJ, Penney BC, King MA, Byrne CL (1994) Noniterative compensation for the distance dependent detector response and photon attenuation in SPECT imaging. IEEE Trans Med Imaging 13:363–374PubMedCrossRefGoogle Scholar
  23. Goethals I, Audenaert K, Jacobs F, Van de Wiele C, Vermeir G, Vandierendonck A, Van Heeringen C, Dierckx R (2002) Toward clinical application of neuropsychological activation probes with SPECT: a spatial working memory task. J Nucl Med 43:1426–1431PubMedGoogle Scholar
  24. Good CD, Johnsrude IS, Ashburner J, Henson RNA, Friston KJ, Frackowiak RSJ (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14: 21–36PubMedCrossRefGoogle Scholar
  25. Gordon R (1974) A tutorial on ART. IEEE Trans Nucl Sci 21:78–93Google Scholar
  26. Green PJ (1990) Bayesian reconstruction from emission tomography data using a modified EM algorithm. IEEE Trans Med Imaging 9:84–93PubMedCrossRefGoogle Scholar
  27. Kretschmann H-J (1998) Neurofunctional systems: 3rd reconstructions in correlated neuroimaging. Thieme Medical, New YorkGoogle Scholar
  28. Herman GT (1980) Image reconstruction from projections, the fundamentals of computerized tomography. Academic, New YorkGoogle Scholar
  29. Hudson HM, Larkin RS (1994) Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 13:601–609PubMedCrossRefGoogle Scholar
  30. Hutton BF, Braun M, Thurfjell L, Lau DY (2002) Image registration: an essential tool for nuclear medicine. Eur J Nucl Med Mol Imaging 29:559–577PubMedCrossRefGoogle Scholar
  31. Ichihara I, Ogawa K, Motomura N, Kubo A, Hashimoto S (1993) Compton scatter compensation using the triple-energy window method for single-and dual-isotope SPECT. J Nucl Med 34: 2216–2221PubMedGoogle Scholar
  32. Kemp PM, Holmes C, Hoffmann SMA, Bolt L, Holmes R, Rowden J, Fleming JS (2003) Alzheimer’s disease: differences in technetium-99m HMPAO SPECT scan findings between early onset and late onset dementia. J Neurol Neurosurg Psychiatry 74:715–719PubMedCrossRefGoogle Scholar
  33. Lewitt R (1992) Alternatives to voxels for image representation in iterative reconstruction algorithms. Phys Med Biol;37:705–716PubMedCrossRefGoogle Scholar
  34. Lewitt R, MMuehllehner G, Karp J (1994) Three-dimensional reconstruction for PET by multi-slice rebinning and axial image filtering. Phys Med Biol 39:321–340CrossRefGoogle Scholar
  35. Li JY, Jasszczak RJ, Greer KL, Coleman RE (1994) Implementation of an accelerated iterative algorithm for cone beam SPECT. Phys Med Biol 39:643–653PubMedCrossRefGoogle Scholar
  36. Llacer J, Veklerov E (1989) Feasible images and practical stopping rules for iterative algorithms in emission tomography. IEEE Trans Med Imaging 8:186–193PubMedCrossRefGoogle Scholar
  37. Miller MI, Snyder DL, Moore SM (1986) An evaluation of the use of sieves for producing estimates of radioactivity distributions with the EM algorithm. IEEE Trans Nucl Sci 33:492–495CrossRefGoogle Scholar
  38. Neter J, Kutner MH, Nachtsheim CJ, Wasserman W (1996) Applied linear statistical models. McGraw-Hill, New YorkGoogle Scholar
  39. O’Brien TJ, O’Connor MK, Mullan BP (1998) Subtraction ictal SPECT coregistered to MRI in partial epilepsy: description and technical validation of the method with phantom and patient studies. Nucl Med Commun 19:31–45PubMedCrossRefGoogle Scholar
  40. Reader AJ, Manavaki R, Zhao S, Julyan PJ, Hastings DL, Zweit J (2001) Accelerated list-mode EM algorithm: IEEE Trans Nucl Sci 49:42–49CrossRefGoogle Scholar
  41. Slomka PJ, Hurwitz G, Stephenson JA, Cradduck TD (1995) Automated alignment and sizing of myocardial stress and rest scans to three-dimensional normal templates using an image registration algorithm: a method for reproducible quantification. J Nucl Med 36:1115–1122PubMedGoogle Scholar
  42. Slomka PJ, Stephenson J, Reid R, Hurwitz GA (1997) Automated template-based quantification of brain SPECT. In: De Deyn PP, Dierckx RA, Alavi A, Pickut BA (eds) SPECT in neurology and psychiatry. Libbey, London, pp 507–512Google Scholar
  43. Radau P, Linke R, Slomka P, Tatsch K (2000) Optimization of the automated quantification of iodine-123-IBZM uptake in the striatum applied to parkinsonism. J Nucl Med 41:220–227PubMedGoogle Scholar
  44. Shepp LA, Vardi Y (1982) Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging 1:113–122PubMedCrossRefGoogle Scholar
  45. Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system: an approach to cerebral imaging. Thieme Medical, New YorkGoogle Scholar
  46. Uemura K, Lassen NA, Jones T, Kanno I (eds) (1993) Quantification of brain function: tracer kinetics and image analysis in brain PET. Elsevier Science, New YorkGoogle Scholar
  47. Vandenberghe S, D’Asseler Y, Koole M, Bouwens L, Van de Walle R, Dierckx RA, Lemahieu I (2000) Iterative list mode reconstruction for coincidence data of gamma camera. Proc SPIE Medical Imaging San Diego 1538–1546Google Scholar
  48. Van Laere K, Versijpt J, Audenaert K, Koole M, Goethals I, Achten E, Dierckx R (2001) 99mTc-ECD brain perfusion SPET: variability, asymmetry and effects of age and gender in healthy adults. Eur J Nucl Med 28:873–887PubMedCrossRefGoogle Scholar
  49. Worsley KJ, Marrett S, Neelin P, Vandal AC, Friston KJ, Evans AC (1996) A unified statistical approach for determining significant voxels in images of cerebral activation. Hum Brain Mapping 4:58–73CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Filip Jacobs
    • 1
  • Yves D’Asseler
    • 2
  • John Dickson
    • 3
  • I. Lemahieu
  • R. Van de Walle
  1. 1.Division of Nuclear MedicineUniversity Hospital GhentGentBelgium
  2. 2.ELIS Research GroupUniversity GhentGentBelgium
  3. 3.Department of Nuclear MedicineRoyal Free HospitalLondonUK

Personalised recommendations