Advertisement

Nuclear Neuroimaging in Child Psychiatry

  • Amy Piepsz
  • Hamphrey Ham
Chapter
  • 124 Downloads

Abstract

Neuroimaging in child psychiatry is a particularly fascinating area of research, but its development is hampered by the obvious ethical reason associated with submitting children to experimental studies involving ionizing radiation. The progress in nuclear imaging in child psychiatry is dependent on the progress accomplished in adults and the availability of specific treatments for specific disorders. A better understanding of neuroimaging findings in adult psychiatry and a proven impact of these findings on the well-being of the patients will constitute a driving force for conducting research in children.

Keywords

Attention Deficit Hyperactivity Disorder Anorexia Nervosa Attention Deficit Hyperactivity Disorder Regional Cerebral Blood Flow Child Psychiatry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abell F, Krams M, Ashburner J, Passingham R, Friston K, Frackowiak R, Happe F, Frith C, Frith U (1999) The neuroanatomy of autism: a voxel-based whole brain analysis of structural scans. Neuroreport 10:1647–1651PubMedCrossRefGoogle Scholar
  2. Amen DG, Paldi F, Thisted RA (1993) Brain SPECT imaging. J Am Acad Child Adolesc Psychiatry 32:1080–1081PubMedCrossRefGoogle Scholar
  3. Arnold LE, Stoff DM, Cook EJr, Cohen DJ, Kruesi M, Wright C, Hattab J, Graham P, Zametkin A, Castellanos FX et al (1995) Ethical issues in biological psychiatric research with children and adolescents. J Am Acad Child Adolesc Psychiatry 34:929–939PubMedCrossRefGoogle Scholar
  4. Audenaert K, Van Laere K, Dumont F, Vervaet M, Goethals I, Slegers G, Mertens J, Van Heeringen C, Dierckx RA (2003) Decreased 5-HT2a receptor binding in patients with anorexia nervosa. J Nucl Med 44:163–169PubMedGoogle Scholar
  5. Aylward EH, Minshew NJ, Goldstein G, Honeycutt NA, Augustine AM, Yates KO, Barta PE, Pearlson GD (1999) MRI volumes of amygdala and hippocampus in non-mentally retarded autistic adolescents and adults. Neurology 53:2145–2150PubMedCrossRefGoogle Scholar
  6. Baron-Cohen S, Ring HA, Wheelwright S, Bullmore ET, Brammer MJ, Simmons A, Williams SC (1999) Social intelligence in the normal and autistic brain: an fMRI study. Eur J Neurosci 11: 1891–1898PubMedCrossRefGoogle Scholar
  7. Bonte FJ, Trivedi MH, Devous MDSr, Harris TS, Payne JK, Weinberg WA, Haley RW (2001) Occipital brain perfusion deficits in children with major depressive disorder. J Nucl Med 42: 1059–1061PubMedGoogle Scholar
  8. Camargo EE (2001) Brain SPECT in neurology and psychiatry. J Nucl Med 42:611–623PubMedGoogle Scholar
  9. Courchesne E, Yeung-Courchesne R, Press GA, Hesselink JR, Jernigan TL (1988) Hypoplasia of cerebellar vermal lobules VI and VII in autism. N Engl J Med 318:1349–1354PubMedCrossRefGoogle Scholar
  10. Critchley HD, Daly EM, Bullmore ET, Williams SC, Van Amelsvoort T, Robertson DM, Rowe A, Phillips M, McAlonan G, Howlin P, Murphy DG (2000) The functional neuroanatomy of social behaviour: changes in cerebral blood flow when people with autistic disorder process facial expressions. Brain 123:2203–2212PubMedCrossRefGoogle Scholar
  11. Eliez S, Reiss AL (2000) MRI neuroimaging of childhood psychiatric disorders: a selective review. J Child Psychol Psychiatry 4:679–694CrossRefGoogle Scholar
  12. Ernst M (1999) PET in child psychiatry: the risks and benefits of studying normal healthy children. Prog Neuropsychopharmacol Biol Psychiatry 23:561–570PubMedCrossRefGoogle Scholar
  13. Ernst M, Rumsey JM (2000) Functional neuroimaging in child psychiatry. Curr Psychiatry Rep 2:124–130PubMedCrossRefGoogle Scholar
  14. Flowers DL, Wood FB, Naylor CE (1991) Regional cerebral blood flow correlates of language processes in reading disability. Arch Neurol 48:637–643PubMedCrossRefGoogle Scholar
  15. Frankle WG, Laruelle M (2002) Neuroreceptor imaging in psychiatric disorders. Ann Nucl Med 16:437–446PubMedCrossRefGoogle Scholar
  16. Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15:870–878PubMedCrossRefGoogle Scholar
  17. Gordon CM, Dougherty DD, Fischman AJ, Emans SJ, Grace E, Lamm R, Alpert NM, Majzoub JA, Rauch SL (2001) Neural substrates of anorexia nervosa: a behavioral challenge study with positron emission tomography. J Pediatr 139:51–57PubMedCrossRefGoogle Scholar
  18. Gordon CT, Frazier JA, McKenna K, Giedd J, Zametkin A, Zahn T, Hommer D, Hong W, Kaysen D, Albus KE et al (1994) Childhood-onset schizophrenia: an NIMH study in progress. Schizophr Bull 20:697–712PubMedCrossRefGoogle Scholar
  19. Gross-Glenn K, Duara R, Barker WW, Loewenstein D, Chang JY, Yoshii F, Apicella AM, Pascal S, Boothe T, Sevush S et al (1991) Positron emission tomographic studies during serial wordreading by normal and dyslexic adults. J Clin Exp Neuropsychol 13:531–544PubMedCrossRefGoogle Scholar
  20. Hagman JO, Wood F, Buchsbaum MS, Tallal P, Flowers L, Katz W (1992) Cerebral brain metabolism in adult dyslexic subjects assessed with positron emission tomography during performance of an auditory task. Arch Neurol 49:734–739PubMedCrossRefGoogle Scholar
  21. Haznedar MM, Buchsbaum MS, Wei TC, Hof PR, Cartwright C, Bienstock CA, Hollander E (2000) Limbic circuitry in patients with autism spectrum disorders studied with positron emission tomography and magnetic resonance imaging. Am J Psychiatry 157:1994–2001PubMedCrossRefGoogle Scholar
  22. Herholz K, Krieg JC, Emrich HM, Pawlik G, Beil C, Pirke KM, Pahl JJ, Wagner R, Wienhard K, Ploog D et al (1987) Regional cerebral glucose metabolism in anorexia nervosa measured by positron emission tomography. Biol Psychiatry 22:43–51PubMedCrossRefGoogle Scholar
  23. Howard MA, Cowell PE, Boucher J, Broks P, Mayes A, Farrant A, Roberts N (2000) Convergent neuroanatomical and behavioural evidence of an amygdala hypothesis of autism. Neuroreport 11:2931–2935PubMedCrossRefGoogle Scholar
  24. Hugdahl K, Heiervang E, Ersland L, Lundervold A, Steinmetz H, Smievoll AI (2003) Significant relation between MR measures of planum temporale area and dichotic processing of syllables in dyslexic children. Neuropsychologia 41:666–675PubMedCrossRefGoogle Scholar
  25. Hynd GW, Hall J, Novey ES, Eliopulos D, Black K, Gonzalez JJ, Edmonds JE, Riccio C, Cohen M (1995) Dyslexia and corpus callosum morphology. Arch Neurol 52:32–38PubMedCrossRefGoogle Scholar
  26. Jacobsen LK, Giedd JN, Castellanos FX, Vaituzis AC, Hamburger SD, Kumra S, Lenane MC, Rapoport JL (1998) Progressive reduction of temporal lobe structures in childhood-onset schizophrenia. Am J Psychiatry 155:678–685PubMedGoogle Scholar
  27. Kates WR, Mostofsky SH, Zimmerman AW, Mazzocco MM, Landa R, Warsofsky IS, Kaufmann WE, Reiss AL (1998) Neuroanatomical and neurocognitive differences in a pair of monozygous twins discordant for strictly defined autism. Ann Neurol 43:782–791PubMedCrossRefGoogle Scholar
  28. Kim BN, Lee JS, Cho SC, Lee DS (2001) Methylphenidate increased regional cerebral blood flow in subjects with attention deficit/hyperactivity disorder. Yonsei Med J 42:19–29PubMedGoogle Scholar
  29. Kowatch RA, Devous MDSr, Harvey DC, Mayes TL, Trivedi MH, Emslie GJ, Weinberg WA (1999) SPECT HMPAO study of regional cerebral blood flow in depressed adolescents and normal controls. Prog Neuropsychopharmacol Biol Psychiatry 23:643–656PubMedCrossRefGoogle Scholar
  30. Langleben DD, Austin G, Krikorian G, Ridlehuber HW, Goris ML, Strauss HW (2001) Interhemispheric asymmetry of regional cerebral blood flow in prepubescent boys with attention deficit hyperactivity disorder. Nucl Med Commun 22:1333–1340PubMedCrossRefGoogle Scholar
  31. Langleben DD, Acton PD, Austin G, Elman I, Krikorian G, Monterosso JR, Portnoy O, Ridlehuber HW, Strauss HW (2002) Effects of methylphenidate discontinuation on cerebral blood flow in prepubescent boys with attention deficit hyperactivity disorder. J Nucl Med 43:1624–1629PubMedGoogle Scholar
  32. Loring DW, Meador KJ, Allison JD, Pillai JJ, Lavin T, Lee GP, Balan A, Dave V (2002) Now you see it, now you don’t: statistical and methodological considerations in fMRI. Epilepsy Behav 3: 539–547PubMedCrossRefGoogle Scholar
  33. Lou HC, Henriksen L, Bruhn P, Borner H, Nielsen JB (1989) Striatal dysfunction in attention deficit and hyperkinetic disorder. Arch Neurol 46:48–52PubMedCrossRefGoogle Scholar
  34. Lou HC, Henriksen L, Bruhn P (1990) Focal cerebral dysfunction in developmental learning disabilities. Lancet 335:8–11PubMedCrossRefGoogle Scholar
  35. Manes F, Piven J, Vrancic D, Nanclares V, Plebst C, Starkstein SE (1999) An MRI study of the corpus callosum and cerebellum in mentally retarded autistic individuals. J Neuropsychiatry Clin Neurosci 11:470–474PubMedGoogle Scholar
  36. Meisenzahl EM, Schlosser R (2001) Functional magnetic resonance imaging research in psychiatry. Neuroimaging Clin North Am 11:365–374Google Scholar
  37. Naruo T, Nakabeppu Y, Sagiyama K, Munemoto T, Homan N, Deguchi D, Nakajo M, Nozoe S (2000) Characteristic regional cerebral blood flow patterns in anorexia nervosa patients with binge/purge behavior. Am J Psychiatry 157:1520–1522PubMedCrossRefGoogle Scholar
  38. Nowell MA, Hackney DB, Muraki AS, Coleman M (1990) Varied MR appearance of autism: fifty-three pediatric patients having the full autistic syndrome. Magn Reson Imaging 8:811–816PubMedCrossRefGoogle Scholar
  39. Nozoe S, Naruo T, Nakabeppu Y, Soejima Y, Nakajo M, Tanaka H (1993) Changes in regional cerebral blood flow in patients with anorexia nervosa detected through single photon emission tomography imaging. Biol Psychiatry 34:578–580PubMedCrossRefGoogle Scholar
  40. Ohnishi T, Matsuda H, Hashimoto T, Kunihiro T, Nishikawa M, Uema T, Sasaki M (2000) Abnormal regional cerebral blood flow in childhood autism. Brain 123:1838–1844PubMedCrossRefGoogle Scholar
  41. Otsuka H, Harada M, Mori K, Hisaoka S, Nishitani H (1999) Brain metabolites in the hippocampus-amygdala region and cerebellum in autism: an 1H-MR spectroscopy study. Neuroradiology 41:517–519PubMedCrossRefGoogle Scholar
  42. Piven J, Arndt S, Bailey J, Havercamp S, Andreasen NC, Palmer P (1995) An MRI study of brain size in autism. Am J Psychiatry 152:1145–1149PubMedGoogle Scholar
  43. Rumsey JM, Andreason P, Zametkin AJ, Aquino T, King AC, Hamburger SD, Pikus A, Rapoport JL, Cohen RM (1992) Failure to activate the left temporoparietal cortex in dyslexia. An oxygen 15 positron emission tomographic study. Arch Neurol 49:527–534PubMedCrossRefGoogle Scholar
  44. Rumsey JM, Zametkin AJ, Andreason P, Hanahan AP, Hamburger SD, Aquino T, King AC, Pikus A, Cohen RM (1994) Normal activation of frontotemporal language cortex in dyslexia, as measured with oxygen 15 positron emission tomography. Arch Neurol 51:27–38PubMedCrossRefGoogle Scholar
  45. Rumsey JM, Nace K, Donohue B, Wise D, Maisog JM, Andreason P (1997) A positron emission tomographic study of impaired word recognition and phonological processing in dyslexic men. Arch Neurol 54:562–573CrossRefGoogle Scholar
  46. Santosh PJ (2000) Neuroimaging in child and adolescent psychiatric disorders. Arch Dis Child 82:412–419PubMedCrossRefGoogle Scholar
  47. Semrud-Clikeman M (1997) Evidence from imaging on the relationship between brain structure and developmental language disorders. Semin Pediatr Neurol 4:117–124CrossRefGoogle Scholar
  48. Shaywitz BA, Shaywitz SE, Pugh KR, Mencl WE, Fulbright RK, Skudlarski P, Constable RT, Marchione KE, Fletcher JM, Lyon GR, Gore JC (2002) Disruption of posterior brain systems for reading in children with developmental dyslexia. Biol Psychiatry 52:101–110PubMedCrossRefGoogle Scholar
  49. Spalletta G, Pasini A, Pau F, Guido G, Menghini L, Caltagirone C (2001) Prefrontal blood flow dysregulation in drug naive ADHD children without structural abnormalities. J Neural Transm 108:1203–1216PubMedCrossRefGoogle Scholar
  50. Takahashi T, Shirane R, Sato S, Yoshimoto T (1999) Developmental changes of cerebral blood flow and oxygen metabolism in children. AJNR Am J Neuroradiol 20:917–922PubMedGoogle Scholar
  51. Takano A, Shiga T, Kitagawa N, Koyama T, Katoh C, Tsukamoto E, Tamaki N (2001) Abnormal neuronal network in anorexia nervosa studied with I-123-IMP SPECT. Psychiatry Res 107:45–50PubMedCrossRefGoogle Scholar
  52. Volkow ND, Wang GJ, Fowler JS, Logan J, Franceschi D, Maynard L, Ding YS, Gatley SJ, Gifford A, Zhu W, Swanson JM (2002) Relationship between blockade of dopamine transporters by oral methylphenidate and the increases in extracellular dopamine: therapeutic implications. Synapse 43:181–187PubMedCrossRefGoogle Scholar
  53. Von Plessen K, Lundervold A, Duta N, Heiervang E, Klauschen F, Smievoll AI, Ersland L, Hugdahl K (2002) Less developed corpus callosum in dyslexic subjects — a structural MRI study. Neuropsychologia 40:1035–1044CrossRefGoogle Scholar
  54. Wilcox J, Tsuang MT, Ledger E, Algeo J, Schnurr T (2002) Brain perfusion in autism varies with age. Neuropsychobiology 46:13–16PubMedCrossRefGoogle Scholar
  55. Zilbovicius M, Boddaert N, Belin P, Poline JB, Remy P, Mangin JF, Thivard L, Barthelemy C, Samson Y (2000) Temporal lobe dysfunction in childhood autism: a PET study. Positron emission tomography. Am J Psychiatry 157:1988–1993PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Amy Piepsz
    • 1
  • Hamphrey Ham
    • 2
  1. 1.Department of Nuclear MedicineCHU Saint PierreBrüsselsBelgium
  2. 2.Division of Nuclear MedicineUniversity Hospital GhentGentBelgium

Personalised recommendations