Functional Brain Imaging in the Dog: Perfusion and Serotonin-2A Receptor Imaging in Physiological and Pathophysiological Conditions

  • Kathelijne Peremans
  • Kurt Audenaert
  • Andreas Otte
  • H. van Bree
  • Kees van Heeringen
  • Rudi Dierckx


The development of a canine model for research on both brain physiology and pathophysiology is expounded in this chapter. The results of investigations on brain perfusion and binding index of the specific serotonin-2A radioligand, 123I-5-I-R91150, in normal young dogs (younger than 8 years) and in nondemented old dogs (older than 8 years) are depicted. Concerning pathophysiology, perfusion and serotonin-2A receptor radioligand binding are examined in a group of aggressive, impulsive dogs and compared with a group of dogs without this behaviour. In the last part of this chapter, the influence of pharmacological intervention with selective serotonin re-uptake inhibitors (SSRIs) on measures of perfusion and serotonin-2A radioligand binding in impulsive aggressive dogs is demonstrated.


Brain Perfusion Perfusion Index Transmission Compute Tomographic Partial Volume Effect Binding Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abi-Dargham A, Zea-Ponce Y, Terriere D, Al-Tikriti M, Baldwin RM, Hoffer P, Charney D, Leysen JE, Laruelle M, Mertens J, Innis RB (1997) Preclinical evaluation of (123I)R93274 as a SPECT radiotracer for imaging 5-HT2A receptors. Eur J Pharmacol 321:285–293CrossRefGoogle Scholar
  2. Adams B, Chan A, Callahan H, Milgram N (2000) The canine as a model of human cognitive aging: recent developments. Prog Neuropsychopharmacol Biol Psychiatry 24:675–692PubMedCrossRefGoogle Scholar
  3. Alavi A, Newberg A, Souder E, Berlin J (1993) Quantitative analysis of PET and MRI data in normal aging and Alzheimer’s disease: atrophy weighted total brain metabolism and absolute whole brain metabolism as reliable discriminators. J Nucl Med 34:1681–1687PubMedGoogle Scholar
  4. Audenaert K, Van Laere K, Dumont F, Slegers G, Mertens J, Van Heeringen C, Dierckx R (2001) Decreased frontal serotonin 5-HT2a receptor binding index in deliberate self harm patients. Eur J Nucl Med 28:175–182PubMedCrossRefGoogle Scholar
  5. Baeken C, D’haenen H, Flamen P, Terriere D, Chavatte K, Boumon R, Bossuyt A (1998) 123I-5-I-R91150, a new single photon emission tomography ligand for 5-HT2A receptors: influence of age and gender in healthy subjects. Eur J Nucl Med 25:1617–1622PubMedCrossRefGoogle Scholar
  6. Biver F, Lotstra F, Monclus M, Wikler D, Damhaut P, Mendelwicz J, Goldman S (1996) Sex difference in 5-HT2 receptor in the living human brain. Neurosci Lett 204:25–28PubMedCrossRefGoogle Scholar
  7. Busatto GF, Pilowsky LS, Costa DC, Mertens J, Terriere D, Ell PJ, Mulligan R, Travis MJ, Leysen JE, Lui D, Gacinovic S, Waddington W, Lingford-Hughes A, Kerwin RW (1997) Initial evaluation of 123I-5-I-R91150, a selective 5-HT2A ligand for single photon emission tomography in healthy subjects. Eur J Nucl Med 24:119–124CrossRefGoogle Scholar
  8. Catafau AM, Lomena FJ, Pavia J, Parellada E, Bernardo M, Setoain J, Tolosa E (1996) Regional cerebral blood flow pattern in normal young and aged volunteers: a 99mTc-HMPAO SPET study. Eur J Nucl Med 23:1329–1337PubMedCrossRefGoogle Scholar
  9. Cummings B, Head E, Ruehl W, Milgram N, Cotman C (1996) Beta-amyloid accumulation correlates with cognitive dysfunction in the aged canine. Neurobiol Learn Memory 66:11–23CrossRefGoogle Scholar
  10. Dodman NH, Donnelly R, Shuster L, Mertens P, Rand W, Miczek K (1996) Use of fluoxetine to treat dominance aggression in dogs. J Am Vet Med Assoc 209:1585–1587PubMedGoogle Scholar
  11. Dormehl IC, Oliver DW, Hugo N (1997) The primate model in neuropharmacology for cerebral blood flow determinations with HMPAO SPECT. In: De Deyn PP, Dierckx RA, Alavi A, Pickut BA (eds) A textbook of SPECT in neurology and psychiatry. Libbey, London, pp 521–536Google Scholar
  12. Fairbanks L, Melega W, Jorgensen M, Kaplan J, McGuire M (2001) Social impulsivity inversely associated with CSF 5-HIAA and fluoxetine exposure in vervet monkeys. Neuropsychopharmacology 24:370–378PubMedCrossRefGoogle Scholar
  13. Fuller RW (1996) The influence of fluoxetine on aggressive behavior. Neuropsychopharmacology 14:77–81PubMedCrossRefGoogle Scholar
  14. Gonzales-Soriano J, Marin Garcia P, Contreras-Rodriguez J, Martinez-Sainz P, Rodriguez-Veiga E (2001) Age-related changes in the ventricular system of the dog brain. Ann Anat 183: 283–291CrossRefGoogle Scholar
  15. Goodloe L (1996) Issues in description and measurements of temperament in companion dogs. In: Voith V, Borchelt P (eds) Readings in companion animal behaviour. Trenton, New Jersey, pp 32–39Google Scholar
  16. Gur RC, Mozley LH, Mozley PD, Resnick SM, Karp JS, Alavi A, Arnold SE, Gur RE (1995) Sex differences in regional cerebral glucose metabolism during a resting state. Science 267:528–531PubMedCrossRefGoogle Scholar
  17. Hassoun W, Le Cavorsin M, Ginovart N, Zimmer L, Gualda V, Bonnefoi F, Leviel V (2003) PET study of the [11C]raclopride binding in the striatum of the awake cat: effects of anaesthetics and role of cerebral blood flow. Eur J Nucl Med 30:141–148CrossRefGoogle Scholar
  18. Head E, Callahan H, Muggenburg B, Milgram N, Cotman C (1998) Discrimination learning ability and beta amyloid accumulation in the dog. Neurobiol.Aging 19:415–425PubMedCrossRefGoogle Scholar
  19. Higley JD, Mehlman PT, higley SB, Fernald B, Vickers J, Lindell SG, Taub DM, Suomi SJ, Linnoila M (1996) Excessive mortality in young free-ranging male nonhuman primates with low cerebrospinal fluid 5-hydroxyindoleacetic acid concentrations. Arch Gen Psychiatry 53:537–543PubMedCrossRefGoogle Scholar
  20. Hou Y, White RG, Bobik M, Marks JS, Russell MJ (1997) Distribution of beta-amyloid in the canine brain. Neuroreport 8:1009–1012CrossRefGoogle Scholar
  21. Kakiuchi T, Nishiyama S, Sato K, Ohba H, Nakanishi S, Tsukada H (2000) Age related reduction of [11C] MDL 100,907 binding to central 5-HT2A receptors: PET study on the conscious monkey brain. Brain Res 883:135–142PubMedCrossRefGoogle Scholar
  22. Kiatipattanasakul W, Nakamura S, Hossain M, Nakayama H, Uchino T, Shumiya S, Goto N, Doi K (1996) Apoptosis in the aged dog brain. Acta Neuropathol 92:242–248PubMedCrossRefGoogle Scholar
  23. Koyama M, Kawashima R, Ito H, Ono S, Sato K, Goto R, Kinomura S, Yoshioka S, Sato T, Fukuda H (1997) SPECT imaging of normal subjects with technetium-99m-HMPAO and technetium-99m-ECD. J Nucl Med 38:587–592Google Scholar
  24. Leveille J, Demonceau G, Walovitch RC (1992) Intrasubject comparison between technetium-99m-ECD and technetium-99m-HMPAO in healthy human subjects. J Nucl Med 33:480–484PubMedGoogle Scholar
  25. Loessner A, Alavi A, Lewandrowski K-U, Mozley D, Souder E, Gur R (1995) Regional cerebral function determined by FDG-PET in healthy volunteers: normal patterns and changes with age. J Nucl Med 36:1141–1149PubMedGoogle Scholar
  26. Marder A, Voith V (1996) Canine aggression evaluation. In: Voith V, Borchelt P (eds) Readings in companion animal behaviour. Trenton, New Jersey, pp 227–229Google Scholar
  27. Mehlman PT, Higley JD, Faucher I, Lilly AA, Taub DM, Vickers J, Suomi SJ, Linnoila M (1994) Low CSF 5-HIAA concentrations and severe aggression and impaired impulse control in non human primates. Am J Psychiatry 151:1485–1491PubMedGoogle Scholar
  28. Meltzer C, Zubieta J, Brandt J, Tune L, Mayberg H, Frost J (1996) Regional hypometabolism in Alzheimer’s disease as measured by positron emission tomography after correction for effects of partial volume averaging. Neurology 47:454–461PubMedCrossRefGoogle Scholar
  29. Meltzer CC, Smith G, Price JC, Reynolds CF, Mathis CA, Greer P, Lopresti B, Mintun MA, Pollock BG, Ben-Eliezer D, Cantwell MN, Kaye W, DeKosky ST (1998) Reduced binding of [18F] altanserin to serotonin type 2A receptors in aging: persistence of effect after partial volume correction. Brain Res 813:167–171PubMedCrossRefGoogle Scholar
  30. Mertens J, Terriere D, Sipido V, Gommeren W, Janssen PMF, Leysen JE (1995) Radiosynthesis of a new radioiodinated ligand for serotonin-5HT2-receptors, a promising tracer for gamma-emission tomography. J Label Compd Radiopharm 34:795–801CrossRefGoogle Scholar
  31. Meyer JH, Kapur S, Eisfeld B, Brown GM, Houle S, DaSilva J, Wilson AA, Rafi-Tari S, Mayberg HS, Kennedy SH (2001) The effect of paroxetine on 5-HT(2A) receptors in depression: an [18F]setoperone PET imaging study. Am J Psychiatry 158:78–85PubMedCrossRefGoogle Scholar
  32. Mielke R, Kessler J, Szelies B, Herholz K, Wienhard K, Heiss WD (1998) Normal and pathological aging — findings of positron-emission-tomography. J Neural Transm 105:821–837PubMedCrossRefGoogle Scholar
  33. Morris ED, Chefer SI, Lane MA, Muzic RF, Wong DF, Dannals RF, Matochik JA, Bonab AA, Villemagne V, Grant SJ, Ingram DK, Roth GS, London ED (1999) Loss of D2 receptor binding with age in Rhesus monkeys: importance of correction for differences in striatal size. J Cereb Blood Flow Metab 19:218–229PubMedCrossRefGoogle Scholar
  34. Morys J, Narkiewicz O, Maciejewska B, Wegiel J, Wisniewski HM (1994) Amyloid deposits and loss of neurones in the claustrum of the aged dog. Neuroreport 5:1825–1828PubMedCrossRefGoogle Scholar
  35. Pazos A, Cortes R, Palacios JM (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors. Brain Res 346:231–249PubMedCrossRefGoogle Scholar
  36. Pazos A, Probst A, Palacios J(1987) Serotonin receptors in the human brain-IV. Autoradiographic mapping of serotonin-2 receptors. Neuroscience 21:123–139PubMedCrossRefGoogle Scholar
  37. Peremans K (2002) Functional brain imaging in the dog. Functional emission tomography as a research and clinical tool for the investigation of canine brain physiology and pathophysiology. PhD dissertation, University of GentGoogle Scholar
  38. Peremans K, Audenaert K, Coopman F, Blanckaert P, Jacobs F, Otte A, Verschooten F, Van Bree H, Van Heeringen C, Mertens J, Slegers G, Dierckx R (2003) Estimates of regional cerebral blood flow and 5-HT2A receptor density in impulsive, aggressive dogs with Tc-99m ECD and 1-123 5-I-5-R91150. Eur J Nucl Med Mol Imaging 30:1538–1546PubMedCrossRefGoogle Scholar
  39. Petit-Taboue MC, Landeau B, Desson JF, Desgranges B, Baron JC (1998) Effects of healthy aging on the regional cerebral metabolic rate of glucose assessed with statistical parametric mapping. Neuroimage 7:176–184PubMedCrossRefGoogle Scholar
  40. Popova NK, Kulikov AV, Nikulina EM, Kozlachkova EY, Maslova GB (1991a) Serotonin metabolism and serotonergic receptors in Norway rats selected for low aggressiveness towards man. Aggress Behav 17:207–213CrossRefGoogle Scholar
  41. Popova NK, Voitenko NN, Kulikov AV, Avgustinovich DF (1991b) Evidence for the involvement of central serotonin in mechanism of domestication of silver foxes. Pharmacol Biochem Behav 40:751–756PubMedCrossRefGoogle Scholar
  42. Rapoport JL, Ryland DH, Kriete M (1992) Drug treatment of canine acral lick. An animal model of obsessive-compulsive disorder. Arch Gen Psychiatry 49:517–521PubMedCrossRefGoogle Scholar
  43. Redding RW (1978) Anatomy and physiology. In: Hoerlein BF (ed) Canine neurology. Saunders, Philadelphia, pp 7–52Google Scholar
  44. Reisner IR, Mann JJ, Stanley M, Huang Y, Houpt KA (1996) Comparison of cerebrospinal fluid monoamine metabolite levels in dominant-aggressive and non-aggressive dogs. Brain Res 714:57–64PubMedCrossRefGoogle Scholar
  45. Rosier A, Dupont P, Peuskens J, Bormans G, Vandenberghe R, Maes M, de Groot T, Schiepers C, Verbruggen A, Mortelmans L (1996) Visualisation of loss of 5-HT2A receptors with age in healthy volunteers using (18F)altanserin and positron emission tomographic imaging. Psychiatry Res 68:11–22PubMedCrossRefGoogle Scholar
  46. Roy CS, Sherrington CS (1890)On the regulation of the blood supply of the brain. J Physiol 11: 85–108PubMedGoogle Scholar
  47. Su M, Head E, Brooks W, Wang Z, Muggenburg B, Adam G, Sutherland R, Cotman C, Nalcioglu O (1998) MR imaging of anatomic and vascular characteristics in a canine model of human aging. Neurobiol Aging 19:479–485PubMedCrossRefGoogle Scholar
  48. Tanaka F, Vines D, Tsuchida T, Freedman M, Ichise M (2000) Normal patterns on 99mTc-ECD brain SPECT scans in adults. J Nucl Med 41:1456–1464PubMedGoogle Scholar
  49. Van Laere K, Versijpt J, Audenaert K, Koole M, Goethals I, Achten E, Dierckx R (2001) 99mTc-ECD brain perfusion SPET: variability, asymmetry and effects of age and gender in healthy adults. Eur J Nucl Med 28:873–887PubMedCrossRefGoogle Scholar
  50. Volavka J (1995) Neurobiology of violence. American Psychiatric Press, Washington DCGoogle Scholar
  51. Wang G, Volkow ND, Logan J, Fowler JS, Schlyer DJ, MacGregor RR, Hitzemann R, Gur R, Wolf AP (1995) Evaluation of age-related changes in serotonin 5-HT2 and dopamine D2 receptor availability in healthy human subjects. Life Sci 56:249–253Google Scholar
  52. Westergaard GC, Suomi SJ, Higley JD, Mehlman PT (1999) CSF 5-HIAA and aggression in female macaque monkeys: species and interindividual differences. Psychopharmacology (Berl) 146: 440–446CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Kathelijne Peremans
    • 1
  • Kurt Audenaert
    • 2
  • Andreas Otte
    • 3
  • H. van Bree
    • 4
  • Kees van Heeringen
    • 2
  • Rudi Dierckx
    • 3
  1. 1.Department of Medical ImagingFaculty of Veterinary MedicineMerelbekeBelgium
  2. 2.Department of Psychiatry and Medical PsychologyUniversity Hospital GhentGentBelgium
  3. 3.Division of Nuclear MedicineUniversity Hospital GhentGentBelgium
  4. 4.Department of Medical Imaging, Faculty of Veterinary MedicineGhent UniversityMerelbekeBelgium

Personalised recommendations