Skip to main content

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

Handoff is a process of transferring a mobile station from one base station or channel, to another. The channel change due to handoff occurs through a change in a time slot, frequency band, codeword, or a combination of these, for time division multiple access (TDMA), frequency division multiple access (FDMA), code division multiple access (CDMA), or a hybrid scheme, respectively. The handoff process determines the spectral efficiency (i.e., the maximum number of calls that can be served in a given area) and the quality perceived by users. Efficient handoff algorithms cost-effectively preserve and enhance the capacity and Quality of Service (QoS) of communication systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Liodakis G, Stavroulakis P (1994) A Novel Approach in Handover Initiation for Microcellular Systems, Proc. 44th IEEE VTC, pp. 1820–1823.

    Google Scholar 

  2. Lee W C Y (1993) Mobile Communications Design Fundamentals, 2nd ed. John Wiley & Sons Inc.

    Google Scholar 

  3. Pollini G P (1996) Trends in Handover Design, IEEE Communications Magazine, pp. 82–90.

    Google Scholar 

  4. Anagnostou M E, Manos G C (1994) Handover related performance of mobile communication networks, Proc. 44th IEEE VTC, pp. 111–114.

    Google Scholar 

  5. Frech E A, Mesquida C L (1989) Cellular Models and Handoff Criteria, Proc. 39th IEEE VTC, pp. 128–135.

    Google Scholar 

  6. Mende W R (1990) Evaluation of a Proposed Handover Algorithm for the GSM Cellular System, Proc. 40th IEEE VTC, pp. 264–269.

    Google Scholar 

  7. Munoz-Rodriguez D, Cattermole K W (1987) Multicriteria for Handoff in Cellular Mobile Radio, IEE Proc.,Vol. 134, pp. 85–88.

    Google Scholar 

  8. Senarath G H, Everitt D (1994) Comparison of Alternative Handoff Strategies for Microcellular Mobile Communication Systems, Proc. 44th IEEE VTC, pp. 1465–1469.

    Google Scholar 

  9. Kanai T, Furuya Y (1988) A Handoff Control Process for Microcellular Systems, Proc. 38th IEEE VTC, pp. 170–175.

    Google Scholar 

  10. Falciasecca G, Frullone M, Riva G, Serra A M (1989) Comparison of Different Handover Strategies for High Capacity Cellular Mobile Radio Systems, Proc. 39th IEEE VTC, pp. 122–127.

    Google Scholar 

  11. Corazza G E, Giancristofaro D, Santucci F (1994) Characterization of Handover Initialization in Cellular Mobile Radio Networks, Proc. 44th IEEE VTC, pp. 1869–1872.

    Google Scholar 

  12. Rappaport S S (1993) Blocking, Handoff and Traffic Performance for Cellular Communication Systems with Mixed Platforms,” IEE Proceedings-I, Vol. 140.

    Google Scholar 

  13. Ott G D (1977) Vehicle Location in Cellular Mobile Radio Systems, Vol. VT-26, No. 1, IEEE Trans.Veh. Tech.,Vol.VT-26, No. 1, pp. 43–36.

    Article  Google Scholar 

  14. Lee W C Y (1995) Mobile Cellular Telecommunications, 2nd ed. McGraw Hill.

    Google Scholar 

  15. Holtzman J M, Sampath A (1995) Adaptive Averaging Methodology for Handoffs in Cellular Systems, IEEE Trans. on Veh. Tech.,Vol. 44,No. 1, pp. 59–66.

    Article  Google Scholar 

  16. Sampath A, Holtzman J M (1994) Adaptive Handoffs Through Estimation of Fading Parameters, Proc. ICC.

    Google Scholar 

  17. Dassanayake P (1993) Effects of Measurement Sample on Performance of GSM Handover Algorithm, Electronic Letters,Vol. 29, pp. 1127–1128.

    Article  Google Scholar 

  18. Dassanayake P (1994) Dynamic Adjustment of Propagation Dependent Parameters in Handover Algorithms, Proc. 44th IEEE VTC, pp. 73–76.

    Google Scholar 

  19. Rolle G (1986) The Mobile Telephone System C 450-a First Step Towards Digital, Proc. Second Nordic Seminar.

    Google Scholar 

  20. Chuah C N, Yates R D, Goodman D J (1995) Integrated Dynamic Radio Resource Management, Proc. 45th IEEE VTC, pp. 584–88.

    Google Scholar 

  21. Austin M D, Stuber G L (1994) Velocity Adaptive Handoff Algorithms for Microcellular Systems, IEEE Trans.Veh. Tech., Vol. 43,No. 3, pp. 549–561.

    Article  Google Scholar 

  22. Kawabata K, Nakamura T, Fukuda E (1994) Estimating Velocity Using Diversity Reception, Proc. 44th IEEE VTC, pp. 371–74.

    Google Scholar 

  23. Austin M D, Stuber G L (1994) Directed Biased Handoff Algorithm for Urban Microcells, Proc. 44th IEEE VTC, pp. 101–5.

    Google Scholar 

  24. Chuah C N, Yates R D (1995) Evaluation of a Minimum Power Handoff Algorithm, Proc. IEEE PIMRC, pp. 814–818.

    Google Scholar 

  25. Chia S T S, Warburton R J (1990) Handover Criteria for a City Microcellular Radio Systems, Proc 40th IEEE VTC, pp. 276–281.

    Google Scholar 

  26. Asawa M, Stark W E (1994) A Framework for Optimal Scheduling of Handoffs in Wireless Networks, “Proc. IEEE Globecom,” pp. 1669–1673.

    Google Scholar 

  27. Kelly O E, Veeravalli V V (1995) A Locally Optimal Handoff Algorithm, Proc. IEEE PIMRC, pp. 809–813.

    Google Scholar 

  28. Rezaiifar R, Makowski A M, Kumar S (1995) Optimal Control of Handoffs in Wireless Networks, Proc. 45th IEEE VTC, pp. 887–91.

    Google Scholar 

  29. Kapoor V, Edwards G, Sankar R (1994) Handoff Criteria for Personal Communication Networks, pp. 1297–1301, Proc. ICC.

    Google Scholar 

  30. Munoz-Rodriguez D, Moreno-Cadenas J A, Ruiz-Sanchez M C, Gomez-Casaneda F (1992) Neural Supported Handoff Methodology in Microcellular Systems, Proc. 42nd IEEE VTC, Vol. 1, pp. 431–434.

    Google Scholar 

  31. Kinoshita Y, Itoh T (1993) Performance Analysis of a New Fuzzy Handoff Algorithm by an Indoor Propagation Simulator, Proc. 43rd IEEE VTC, pp. 241–245.

    Google Scholar 

  32. Maturino-Lozoya H, Munoz-Rodriguez D, Tawfik H (1994) Pattern Recognition Techniques in Handoff and Service Area Determination, Proc. 44th IEEE VTC, Vol. 1, pp. 96–100.

    Google Scholar 

  33. Munoz-Rodriguez D (1987) Handoff Procedure for Fuzzy Defined Radio Cells, Proc. 37th IEEE VTC, pp. 38–44.

    Google Scholar 

  34. Vijayan R, Holtzman J M (1993) Sensitivity of Handoff Algorithms to Variations in the Propagation Environment, Proc. 2nd IEEE Intl. Conf. on Universal Personal Communications.

    Google Scholar 

  35. Zhang N, Holtzman J (1994) Analysis of Handoff Algorithms using both Absolute and Relative Measurements, Proc. 44th IEEE VTC, Vol. 1, pp. 82–86.

    Google Scholar 

  36. Viterbi A J, Viterbi A J, Gilhousen K S, Zehavi E (1994) Soft Handoff Extends CDMA Cell Coverage and Increases Reverse Link Capacity, IEEE JSAC, Vol. 12,No. 8, pp. 1281–1288.

    Google Scholar 

  37. Rappaport T S (1996) Wireless Communications, Prentice-Hall Inc.

    Google Scholar 

  38. Berg J E, Bownds R, Lotse F (1992) Path Loss and Fading Models for Microcells at 900 MHz, Proc. 42nd IEEE VTC, pp. 666–671.

    Google Scholar 

  39. Gudmundson M (1991) Correlation Model for Shadow Fading in Mobile Radio Systems, Electronic Letters, Vol. 27,No. 23, pp. 2145–2146.

    Article  Google Scholar 

  40. Tripathi N D (1997) Generic Adaptive Handoff Algorithms Using Fuzzy Logic and Neural Networks, Ph.D.Dissertation,Virginia Tech.

    Google Scholar 

  41. Tripathi N D, Reed J H, VanLandingham H F (2001) Radio Resource Management in Cellular Systems, Kluwer Academic Publishers.

    Google Scholar 

  42. Mamdani E H (1974) Applications of Fuzzy Algorithms for Simple Dynamic Plant, Proc. IEE, Vol. 121,No. 12, pp. 1585–1588.

    Google Scholar 

  43. Chheda A (1999) A Performance Comparison of the DS-CDMA IS-95B and IS-95A Soft Handoff Algorithms, IEEE VTC.

    Google Scholar 

References

  1. Viterbi A J (1995) Principles of Spread Spectrum Communication, Addison Wesley.

    Google Scholar 

  2. Togo T, Yoshii I, Kohno R (1998) Dynamic Cell-Size Control according to Geographical Mobile Distribution in a DS/CDMA Cellular System, The 9th IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications, pp. 677–681.

    Google Scholar 

  3. Chen X H (1994) A Novel Adaptive Load Shedding Scheme for CDMA Cellular Mobile System, Proc. SINGAPORE ICC’ 94, Singapore, pp. 566–570.

    Google Scholar 

  4. Jeon H G, Hwang S H, Kwon S K (1997) A Channel Assignment Scheme for Reducing Call Blocking Rate in a DS-CDMA Cellular System, IEEE 6th International Conference on Personal Comm Record, Vol. 2, pp. 637–641.

    Google Scholar 

  5. Worley B, Takawira F (1998) Handoff Scheme in CDMA Cellular Systems, IEEE COMSIG’ 98, South Africa, pp. 255–260.

    Google Scholar 

  6. Hwang S H, Kim S L, Oh H S, Kang C E, Son J Y (1997) Soft Handoff Algorithm with Variable Thresholds in the CDMA Cellular Systems, IEEE Electronics Letters, Vol. 33, No. 19, pp. 1602–1603.

    Article  Google Scholar 

  7. TR45 TIA/EIA/IS-95B (1998) Mobile Station-Base Station Compatibility Standard for Dual-Mode Spread Spectrum Systems.

    Google Scholar 

  8. TIA/EIA/IS-2000-5 (1999) Upper Layer (Layer 3) Signaling Standard for cdma2000 Spread Spectrum Systems.

    Google Scholar 

  9. Chheda A (1999) A Performance Comparison of the CDMA IS-95B and IS-95A Soft Handoff Algorithms, IEEE VTC’ 99, 49th, Vol. 2, pp. 1407–1412.

    Google Scholar 

  10. Kinoshita Y, Omata Y (1992) Advanced Handoff Control using Fuzzy Inference for Indoor Radio Sytems, IEEE 42nd VTC, Vol. 2, pp. 649–653.

    Google Scholar 

  11. Kinoshita Y, Oku K (1995) Robustness Analysis of New Fuzzy Handover Control for Indoor Cellular, IEEE UPC, pp. 667–671.

    Google Scholar 

  12. Homnan B, Benjapolakul W (1998) A Handover Decision Procedure for Mobile Telephone Systems Using Fuzzy Logic, IEEE APCCAS’ 98, pp. 503–506.

    Google Scholar 

  13. Homnan B, Kunsriruksakul V, Benjapolakul W (2000) Adaptation of CDMA Soft Handoff Thresholds Using Fuzzy Inference System, IEEE ICPWC 2000, pp. 259–263.

    Google Scholar 

  14. Homnan B, Kunsriruksakul V, Benjapolakul W (2000) Fuzzy Inference System based Adaptation of CDMA Soft Handoff Thresholds with Different Defuzzification Schemes, Proc. 5th CDMA International Conference, pp. 347–351.

    Google Scholar 

  15. Kunsriruksakul V, Homnan B, Benjapolakul W (2001) Comparative Evaluation of Fixed and Adaptive Soft Handoff Parameters using Fuzzy Inference Systems in CDMA Mobile Communication Systems, IEEE VTC 2001,Greece, pp. 1077–1081.

    Google Scholar 

  16. Wong D, Lim T J (1993) Soft Handoff in CDMA Mobile Systems, IEEE Personal Communications, pp. 6–17.

    Google Scholar 

  17. TIA/EIA/IS-95A (1993) Mobile Station-Base Station Compatibility Standard for Dual-Mode Spread Spectrum Systems.

    Google Scholar 

  18. Furukawa H (1998) Site Selection Transmission Power Control in DS-CDMA Cellular Downlink, IEEE ICUPC’ 98, pp. 987–991.

    Google Scholar 

  19. Lo K R, Chang C J, Shung C B (1999) A QoS-Guaranteed Fuzzy Channel Allocation Controller for Hierachical Cellular Systems, IEEE VTC’ 99, pp. 2428–2432.

    Google Scholar 

  20. Farinwata S S, Filev D, Langari R (2000) Fuzzy Control: Synthesis and Analysis, John Wiley & Sons.

    Google Scholar 

  21. Jang J S R, Sun C T, Mizutani E (1997) Neuro-Fuzzy and Soft Computing, Prentice Hall.

    Google Scholar 

  22. Klir G J, Yuan B (1995) Fuzzy Sets and Fuzzy Logic; Theory and Application, Prentice Hall.

    Google Scholar 

  23. Altrock C V (1995) Fuzzy Logic and Neuro-Fuzzy Applications Explained, Prentice Hall.

    Google Scholar 

  24. Saade J J, Diab H B (2000) Defuzzification Techniques for Fuzzy Controllers, IEEE Trans Syst,Man, Cybern,Vol. 30, pp. 223–229.

    Article  Google Scholar 

  25. Kandel A, Friedman M (1998) Defuzzification Using Most Typical Values, IEEE Trans Syst,Man, Cybern, Vol. 28, pp. 901–906.

    Article  Google Scholar 

  26. Homnan B, Benjapolakul W (2001) Trunk-Resource-Efficiency-Controlling Soft Handoff based on Fuzzy Logic and Gradient Descent Method, IEEE VTC 2001, Greece, pp. 1017–1021.

    Google Scholar 

  27. Viterbi A J, Viterbi A M, Gilhousen K S, Zehavi E (1994) Soft Handoff Extends CDMA Cell Coverage and Increases Reverse Link Capacity, IEEE Journal on Selected Areas in Communications, Vol. 12,No. 8, pp. 1281–1288.

    Article  Google Scholar 

  28. Lee W C Y (1989) Mobile Cellular Telecommunication Systems, McGraw-Hill, NY.

    Google Scholar 

  29. Yang J, Lee W C Y (1997) Design Aspects and System Evaluations of IS-95 based CDMA Systems, IEEE Universal Personal Comm Record, 6th, Vol. 2, pp. 381–385.

    Google Scholar 

  30. Homnan B, Kunsriruksakul V, Benjapolakul W (2000) The Evaluation of Soft Handoff Performance between IS-95A and IS-95B/cdma2000, IASTED SPC 2000, Spain, pp. 38–42.

    Google Scholar 

  31. Homnan B, Kunsriruksakul V, Benjapolakul W (2000) A Comparative Performance Evaluation of Soft Handoff between IS-95A and IS-95B/cdma2000, IEEE APCCAS’ 2000, China, pp. 34–37.

    Google Scholar 

  32. Qualcomm (1992) The CDMA Network Engineering Handbook, Vol. 1.

    Google Scholar 

  33. Viterbi A M, Viterbi A J (1993) Erlang Capacity of a Power Controlled CDMA System, IEEE Journal on Selected Areas in Communications,Vol. 11,No. 6, pp. 892–900.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stavroulakis, P. (2004). Fuzzy-Neural Applications in Handoff. In: Stavroulakis, P. (eds) Neuro-Fuzzy and Fuzzy-Neural Applications in Telecommunications. Signals and Communication Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18762-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18762-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62281-6

  • Online ISBN: 978-3-642-18762-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics