Skip to main content

Dissipative Particle Dynamics for Modeling Complex Fluidics

  • Conference paper
Multiscale Modelling and Simulation

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 39))

  • 789 Accesses

Abstract

In this paper we present a new formulation of a Dissipative Particle Dynamics (DPD) model which is computationally less expensive than Voronoi-based DPD while preserving most of the advantages of Voronoi DPD over simple spherical-particle models. Aiming at fully three-dimensional flows an alternative to the straight-forward application of Voronoi DPD is desirable. The new model presented here can be derived from the Molecular Dynamics level by a coarse graining procedure (bottom-up approach) as well as from the continuum or macro-scale level conservation equations (top-down approach). In this paper the bottom-up derivation is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bonet Avalos J., Mackie A. D.: Dissipative particle Dynamics with Energy Conservation. Europhys. Lett.40141–146 (1997)

    Article  Google Scholar 

  2. Czerwinska J., Adams N. A.: Numerical modeling of micro-channel flows by a DPD method, In: ASME FED’03, (2003)

    Google Scholar 

  3. Español, P., Revenga M.: Smoothed dissipative particle dynamics. Phys. Rev. E67026705–1–12 (2003)

    Article  Google Scholar 

  4. Español P., Warren, P. B.: Statistical mechanics of dissipative particle dynamics. Europhys. Lett. 30, 191-196 (1995)

    Google Scholar 

  5. Flekkøy E.G., Coveney P.V., de Fabritiis G.: Foundations of dissipative particle dynamics. Phys. Rev. E622140–2157 (2000)

    Article  Google Scholar 

  6. Fortune S.: A Sweepline algorithm for Voronoi Diagrams. In: 2nd Annu. ACM Symp. on Comp. Geom.313–322 (1986)

    Google Scholar 

  7. Hoogerbrugge P. J., Koelman J. M. V. A.: Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics. Europhys. Lett.19155–160 (1992)

    Article  Google Scholar 

  8. Okabe A., Boots B., Sugihara K.: Spatial Tessellation: Concepts and Applications of Voronoi Diagrams.John Wileyand Sons, Chichester, UK (1992)

    Google Scholar 

  9. Serrano M., Español P.: Thermodynamically consistent mesoscopic fluid particle model. Phys. Rev. E641–18 (2001)

    Article  Google Scholar 

  10. Shamos M. I., Hoey D.: Closest point problem. In: 16th Annu. IEEE Symp. Found. Comp. Sci.151–162 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Czerwinska, J., Adams, N.A. (2004). Dissipative Particle Dynamics for Modeling Complex Fluidics. In: Attinger, S., Koumoutsakos, P. (eds) Multiscale Modelling and Simulation. Lecture Notes in Computational Science and Engineering, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18756-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18756-8_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21180-8

  • Online ISBN: 978-3-642-18756-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics