Skip to main content

Flow of Aqueous Solutions in Carbon Nanotubes

  • Conference paper
Multiscale Modelling and Simulation

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 39))

Summary

We conduct simulations of water flowing inside carbon nanotubes using non-equilibrium molecular dynamics simulations. A new adaptive forcing scheme is proposed to enforce a mean center of mass velocity. This scheme is compared to the non-adaptive, constant body/gravity force for the flow of methane in a carbon nanotube. The two schemes produce similar streaming velocity profiles and practically identical slip lengths. The wall slip predicted in the present simulations is found to be considerably shorter than the one observed in earlier studies using the constant body/gravity force scheme at considerably lower pressures. This observation is reminiscent of the slip length reduction with pressure increase that has been observed in the case of Couette flow of water. For water flowing through carbon nanotubes with diameters of 2.712, 4.068 and 5.424 nmand with flow speeds of 100 m s-1 we find slip lengths of 10, 12, and 18 nm. In addition, we consider mixtures of nitrogen and water flowing in a (20,20) carbon nanotube with diameter of 2.712 nm. For the mixture we find that the slip length is reduced to 6 nm as compared to 10 nm slip for the pure water. The shorter slip length is attributed to the fact that nitrogen forms droplets at the carbon surface, thus partially shielding the bulk flow from the hydrophobic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Attard, M. P. Moody, and J. W. G. Tyrrell. Nanobubbles: the big picture. Physica A314(1-4):696–7052002.

    Article  Google Scholar 

  2. Jean-Louis Barrat and Lydéric Bocquet. Large slip effect at a nonwetting fluid-solid interface. Phys. Rev. Lett.82(23):4671–46741999.

    Article  Google Scholar 

  3. J. Baudry, E. Charlaix, A. Tonck, and D. Mazuyer. Experimental evidence for a large slip effect at a nonwetting fluid-solid interface. Langmuir17:5232–52362001.

    Article  Google Scholar 

  4. H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma. The missing term in effective pair potentials. J. Phys. Chem.91:6269–62711987.

    Article  Google Scholar 

  5. Elmar Bonaccurso, Michael Kappl, and Hans-Jürgen Butt. Hydrodynamic force measurements: Boundary slip of water on hydrophilic surfaces and electrokinetic effects. Phys. Rev. Lett.88(7):0761032002.

    Article  Google Scholar 

  6. Mary J. Bojan and William A. Steele. Interactions of diatomic molecules with graphite. Langmuir3(6):1123–11271987.

    Article  Google Scholar 

  7. Marek Cieplak, Joel Koplik, and Jayanth R. Banavar. Boundary conditions at a fluid-solid interface. Phys. Rev. Lett.86(5):803–8062001.

    Article  Google Scholar 

  8. N. V. Churaev, V. D. Sobolev, and A. N. Somov. Slippage of liquids over lyophobic solid surfaces. J. Coll. Interface Sci.97(2):574–5811984.

    Article  Google Scholar 

  9. G. Hummer, J. C. Rasaiah, and J. P. Noworyta. Water conduction through the hydrophobic channel of a carbon nanotube. Nature414:188–1902001.

    Article  Google Scholar 

  10. H. Helmholtz and G. von Piotrowski. Über reibung tropfbarer flussigkeiten. Sitzungsberichte der Kaiserlich Akademie der Wissenschaften40:607–6581860.

    Google Scholar 

  11. Joel Koplik and Jayanth R. Banavar. Continuum deductions from molecular hydrodynamics. Annu. Rev. Fluid Mech.27:257–2921995.

    Article  Google Scholar 

  12. Amrit Kalra, Shekhar Garde, and Gerhard Hummer. Osmotic water transport through carbon nanotube membranes. Proc. Natl. Acad. Sci. USA100(18):10175–101802003.

    Google Scholar 

  13. B. Jirage Kshama, John C. Hulteen, and Charles R. Martin. Nanotube-based molecular-filtration membranes. Science278(5338):655–6581997.

    Article  Google Scholar 

  14. Ka Lum, David Chandler, and John D. Weeks. Hydrophobicity at small and large length scales. J. Phys. Chem. B103:4570–45771999.

    Article  Google Scholar 

  15. W. Loose and S. Hess. Rheology of dense model fluids via nonequilibrium molecular dynamics: shear thinning and ordering transition. Rheol. Acta28:91–1011989.

    Article  Google Scholar 

  16. C. Y. Lee, J. A. McCammon, and P. J. Rossky. The structure of liquid water at an extended hydrophobic surface. J. Chem. Phys.80(9):4448–44551984.

    Article  Google Scholar 

  17. M. W. J. Prins, W. J. J. Welters, and J. W. Weekamp. Fluid control in multichannel structures by electrocapillary pressure. Science291:277–2802001.

    Article  Google Scholar 

  18. Erhard Schnell. Slippage of water over nonwettable surfaces. J. Appl. Phys.27(10):1149–11521956.

    Article  Google Scholar 

  19. V. P. Sokhan, D. Nicholson, and N. Quirke. Fluid flow in nanopores: An examination of hydrodynamic boundary conditions. J. Chem. Phys.115(8):3878–38872001.

    Article  Google Scholar 

  20. Vladimir P. Sokhan, David Nicholson, and Nicholas Quirke. Fluid flow in nanopores: Accurate boundary conditions for carbon nanotubes. J. Chem. Phys.117(18):8531–85392002.

    Article  Google Scholar 

  21. Karl P. Travis and Keith E. Gubbins. Poiseuille flow of Lennard-Jones fluids in narrow slit pores. J. Chem. Phys.112(4):1984–19942000.

    Article  Google Scholar 

  22. Peter A. Thompson and Mark O. Robbins. Shear flow near solids: Epitaxial order and flow boundary conditions. Phys. Rev. A41(12):6830–68411990.

    Article  Google Scholar 

  23. Peter A. Thompson and Sandra M. Troian. A general boundary condition for liquid flow at solid surfaces. Nature389:360–3621997.

    Article  Google Scholar 

  24. Karl P Travis, B. D. Todd, and Denis J. Evans. Departure from Navier-Stokes hydrodynamics in confined liquids. Phys. Rev.E 55(4):4288–42951997.

    Google Scholar 

  25. W. F. van Gunsteren and H. J. C. Berendsen. Algorithms for macromolecular dynamics and constraint dynamics. Mol. Phys.37(5):1311–13271977.

    Article  Google Scholar 

  26. Olga I. Vinogradova. Slippage of water over hydrophobic surfaces. Int. J. Miner. Process.56:31–601999.

    Article  Google Scholar 

  27. J. H. Walther, R. Jaffe, T. Halicioglu, and P. Koumoutsakos. Carbon nanotubes in water: Structural characteristics and energetics. J. Phys. Chem. B105:9980–99872001.

    Article  Google Scholar 

  28. [WJW+02]_J. H. Walther, R. Jaffe, T. Werder, T. Halicioglu, and P. Koumoutsakos. On the boundary condition for water at a hydrophobic surface. In Proceedings of the Summer Program 2002, pages 317–329, Center for Turbulence Research, Stanford University/NASA Ames, 2002.

    Google Scholar 

  29. [WWJ+01]_T. Werder, J. H. Walther, R. Jaffe, T. Halicioglu, F. Noca, and P. Koumoutsakos. Molecular dynamics simulations of contact angles of water droplets in carbon nanotubes. Nano Letters1(12):697–7022001.

    Article  Google Scholar 

  30. [WWJ+03 ]_T. Werder, J. H. Walther, R. L. Jaffe, T. Halicioglu, and P. Koumoutsakos. On the water-graphite interaction for use in MD simulations of graphite and carbon nanotubes. J. Phys. Chem. B107:1345–13522003.

    Article  Google Scholar 

  31. Fangquian Zhu and Klaus Schulten. Water and proton conduction through carbon nanotubes as models for biological channels. Biophys. J.85(1):236–2442003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kassinos, S.C., Walther, J.H., Kotsalis, E., Koumoutsakos, P. (2004). Flow of Aqueous Solutions in Carbon Nanotubes. In: Attinger, S., Koumoutsakos, P. (eds) Multiscale Modelling and Simulation. Lecture Notes in Computational Science and Engineering, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18756-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18756-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21180-8

  • Online ISBN: 978-3-642-18756-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics