Skip to main content

Large Scale Density Functional Calculations

  • Conference paper
Multiscale Modelling and Simulation

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 39))

Summary

New developments in algorithms for density functional calculations within the Kohn-Sham methods allow to study systems with several hundreds of atoms. We present a linear scaling method for the construction of the Kohn-Sham Hamiltonian based on fast Fourier transforms. To solve the Kohn-Sham equation the orbital rotation method provides an efficient scheme for small to medium sized systems, where methods depending on the sparsity of the density matrix are not yet applicable. Combining these methods with multiscale algorithms will make it possible to access length and time scales relevant for many problems in materials science, life sciences or catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Berghold, M. Parrinello, and J. Hutter. Polarized atomic orbitals for linear scaling methods. J. Chem. Phys.116:1800, 1810, 2002.

    Article  Google Scholar 

  2. C. Cavazzoni, G. L. Chiarotti, S. Scandalo, E. Tosatti, M. Bernasconi, and M. Parrinello. Superionic and metallic states of water and ammonia at giant planet conditions. Science283:44, 46, 1999.

    Article  Google Scholar 

  3. R. Car and M. Parrinello. Unified Approach for Molecular Dynamics and Density-Functional Theory. Physical Review Letters55:2471, 2474, 1985.

    Article  Google Scholar 

  4. CPMD V3.7 Copyright IBM Corp 1990-2003, Copyright MPI fur Festkorperforschung Stuttgart 1997-2001. see also www.cmpd.org.

    Google Scholar 

  5. P. Carloni and U. Rothlisberger. Simulations of enzymatic systems: Perspectives from Car-Parrinello molecular dynamics simulations. In L. Eriksson, editorTheoetical Biochemistry — Processes and Properties of Biological Systems, page 215. Elsevier Science, 2001.

    Google Scholar 

  6. J. R. Chelikowsky, N. Troullier, and Y. Saad. Finite-differencepseudopotential method — electronic-structure calculations without a basis. Phys. Rev. Lett.72:1240, 1243, 1994.

    Article  Google Scholar 

  7. A. Edelman, T. A. Arias, and S. T. Smith. The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl.20:303, 353, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  8. K. Eichkorn, O. Treutler, H. Ohm, M. Haser, and R. Ahlrichs. Auxiliary basis-sets to approximate coulomb potentials. Chem. Phys. Lett.240:283, 289, 1995.

    Article  Google Scholar 

  9. L. Fusti-Molnar and P. Pulay. Accurate molecular integrals and energies using combined plane wave and Gaussian basis sets in molecular electronic structure theory. J. Chem. Phys.116:7795, 7805, 2002.

    Article  Google Scholar 

  10. L. Fusti-Molnar and P. Pulay. The fourier transform coulomb method: E.cient and accurate calculation of the coulomb operator in a Gaussian basis. J. Chem. Phys.117:7827, 7835, 2002.

    Article  Google Scholar 

  11. F. L. Gervasio, P. Carloni, and M. Parrinello. Electronic structure of wet DNA. Phys. Rev. Lett.89:1081022002.

    Article  Google Scholar 

  12. C. K. Gan, P. D. Haynes, and M. C. Payne. First-principles densityfunctional calculations using localized spherical-wave basis sets. Phys. Rev. B63:2051092001.

    Article  Google Scholar 

  13. S. Goedecker. Linear scaling electronic structure methods. Rev. Mod. Phys.71:1085, 1123, 1999.

    Article  Google Scholar 

  14. E. Hern.andez, M. J. Gillan, and C. M. Goringe. Basis functions for linear-scaling first-principles calculations. Phys. Rev. B55:13485, 13493, 1997.

    Article  Google Scholar 

  15. T. Helgaker, P. J. rgensen, and J. Olsen. Molecular Electronic-structure Theory. John Wiley & Sons Ltd, Chichester2000.

    Google Scholar 

  16. P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev.136:B864, B871, 1964.

    Article  MathSciNet  Google Scholar 

  17. J. Hutter, M. Parrinello, and S. Vogel. Exponential transformation of molecular-orbitals. J. Chem. Phys.101:3862, 3865, 1994.

    Article  Google Scholar 

  18. H. Horn, H. Weiss, M. Haser, M. Ehrig, and R. Ahlrichs. Prescreening of 2-electron integral derivatives in SCF gradient and hessian calculations. J. Comp. Chem.12:1058, 1064, 1991.

    Article  Google Scholar 

  19. M. Krack and M. Parrinello. All-electron ab-initio molecular dynamics. Phys. Chem. Chem. Phys.2:2105, 2112, 2000.

    Article  Google Scholar 

  20. W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev.140:A1133, A1139, 1965.

    Article  MathSciNet  Google Scholar 

  21. M. S. Lee and M. Head-Gordon. Polarized atomic orbitals for selfconsistent field electronic structure calculations. J. Chem. Phys.107:9085, 9095, 1997.

    Article  Google Scholar 

  22. G. Lippert, J. Hutter, and M. Parrinello. A hybrid Gaussian and plane wave density functional scheme. Mol. Phys.92:477, 487, 1997.

    Google Scholar 

  23. G. Lippert, J. Hutter, and M. Parrinello. The Gaussian and augmentedplane-wave density functional method for ab initio molecular dynamics simulations. Theor. Chem. Acc.103:124, 140, 1999.

    Article  Google Scholar 

  24. D. Marx and J. Hutter. ab-initio Molecular Dynamics: Theory and Implementation. In J. Grotendorst, editorModern Meth-ods and Algorithms of Quantum Chemistry, volume 1 of NIC Series, pages 329, 477. FZ Julich, Germany2000. see also www.fz-juelich.de/nic-series/Volume1.

    Google Scholar 

  25. P. Ordej.on, E. Artacho, and J. M. Soler. Self-consistent order-N density-functional calculations for very large systems. Phys. Rev. B53:R10441, R10444, 1996.

    Article  Google Scholar 

  26. R. G. Parr and W. Yang. Density-Functional Theory of Atoms and Molecules. Oxford University Press, New York1989.

    Google Scholar 

  27. U. Rothlisberger. 15 years of Car-Parrinello simulations in physics,chemistry and biology. In J. Leszczynski, editorComputational Chemistry: Reviews of Current Trends, pages 33, 68. World Scientific, Singapore2001.

    Chapter  Google Scholar 

  28. H. Sambe and R. H. Felton. New computational approach to slaters SCF-χa equation. J. Chem. Phys.62:1122, 1126, 1975.

    Article  Google Scholar 

  29. J. VandeVondele and J. Hutter. An e.cient orbital transformation method for electronic structure calculations. J. Chem. Phys.118:4365, 4369, 2003.

    Article  Google Scholar 

  30. T. Van Voorhis and M. Head-Gordon. A geometric approach to direct minimization. Mol. Phys.100:1713, 1721, 2002.

    Article  Google Scholar 

  31. C. A. White, B. G. Johnson, P. M. W. Gill, and M. Head-Gordon. The continuous fast multipole method. Chem. Phys. Lett.230:8, 16, 1994.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hutter, J. (2004). Large Scale Density Functional Calculations. In: Attinger, S., Koumoutsakos, P. (eds) Multiscale Modelling and Simulation. Lecture Notes in Computational Science and Engineering, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18756-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18756-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21180-8

  • Online ISBN: 978-3-642-18756-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics