Skip to main content

Stress and energy flow field near a rapidly propagating mode I crack

  • Conference paper
Multiscale Modelling and Simulation

Summary

Crack branching and instability phenomena are believed to be closely related to the circumferential or hoop stress in the vicinity of the crack tip. In this paper we show that the hoop stress around a mode I crack in a harmonic solid becomes bimodal at a critical speed of about 73 percent of the Rayleigh speed, in agreement with the continuum mechanics theory. Additionally, we compare the energy flow field predicted by continuum theory with the solution of molecular-dynamics simulations and show that the two approaches yield comparable results for the dynamic Poynting vector field. This study exemplifies joint atomistic and continuum modelling of nanoscale dynamic systems and yields insight into coupling of the atomistic scale with continuum mechanics concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.F. Abraham, D. Brodbeck, R.A. Rafey, and W.E. Rudge. Instability dynamics of fracture: A computer simulation investigation. Phys. Rev. Lett.73(2):272–2751994.

    Article  Google Scholar 

  2. F.F. Abraham, D. Brodbeck, W.E. Rudge, and X. Xu. A molecular dynamics investigation of rapid fracture mechanics. J. Mech. Phys. Solids45(9):1595–16191997.

    Article  MATH  Google Scholar 

  3. M.P. Allen and D.J. Tildesley. Computer Simulation of Liquids. Oxford University Press, 1989.

    Google Scholar 

  4. [AW G+02a]_F.F. Abraham, R. Walkup, H. Gao, M. Duchaineau, T.D. de la Rubia, and M. Seager. Simulating materials failure by using up to one billion atoms and the world’s fastest computer: Brittle fracture. PNAS99(9):5788–57922002.

    Article  Google Scholar 

  5. [AW G+02b]_F.F. Abraham, R. Walkup, H. Gao, M. Duchaineau, T.D. de la Rubia, and M. Seager. Simulating materials failure by using up to one billion atoms and the world’s fastest computer: Work-hardening. PNAS99(9):5783–57872002.

    Article  Google Scholar 

  6. M.J. Buehler, F.F. Abraham, and H. Gao. Hyperelasticity governs dynamic fracture at a critical length scale. Nature426:141–1462003.

    Article  Google Scholar 

  7. B.R. Baker. Dynamic stresses created by a moving crack. Journal of Applied Mechanics29:567–5781962.

    Google Scholar 

  8. A. Boresi and K. P. Chong. Elasticity in Engineering Mechanics. Wiley-Interscience, New York2nd edition2000.

    Google Scholar 

  9. M.J. Buehler, H. Gao, and Y. Huang. Continuum and atomistic studies of a suddenly stopping supersonic crack. Computational Materials Science28(3-4):385–4082003.

    Article  Google Scholar 

  10. M.J. Buehler, H. Gao, and Y. Huang. Continuum and atomistic studies of the near-crack field of a rapidly propagating crack in a harmonic lattice. Theor. Appl. Fract. Mech., in press, 2003.

    Google Scholar 

  11. M. Born and K. Huang. Dynamical Theories of Crystal Lattices. Clarendon, Oxford1956.

    Google Scholar 

  12. M.J. Buehler, A. Hartmeier, and H. Gao. Atomistic and continuum studies of crack-like diffusion wedges and dislocations in submicron thin films. J. Mech. Phys. Solids51:2105–21252003.

    Article  MATH  Google Scholar 

  13. V.K. Kinra B.Q. Vu. Britle fracture of plates in tension — static field radiated by a suddenly stopping crack. Engrg. Fracture Mechanics15(1-2):107–1141981.

    Article  Google Scholar 

  14. K.S. Cheung and S. Yip. A molecular-dynamics simulation of crack tip extension: the brittle-to-ductile transition. Modelling Simul. Mater. Eng.2:865–8921993.

    Article  Google Scholar 

  15. B. deCelis, A.S. Argon, and S. Yip. Molecular-dynamics simulation of crack tip processes in alpha-iron and copper. J. Appl. Phys.54(9):4864–48781983.

    Article  Google Scholar 

  16. J. Fineberg, S.P. Gross, M. Marder, and H.L. Swinney. Instability in dynamic fracture. Phys. Rev. Lett.67:141–1441991.

    Article  Google Scholar 

  17. [FPG+02]_S. Fratini, O. Pla, P. Gonzalez, F. Guinea, and E. Louis. Energy radiation of moving cracks. Phys. Rev. B66(10):1041042002.

    Article  Google Scholar 

  18. L.B. Freund. Dynamic Fracture Mechanics. Cambridge University Press, 1990.

    Google Scholar 

  19. H. Gao, Y. Huang, and F. F. Abraham. Continuum and atomistic studies of intersonic crack propagation. J. Mech. Phys. Solids49:2113–21322001.

    Article  MATH  Google Scholar 

  20. H. Gao and P. Klein. Numerical simulation of crack growth in an isotropic solid with randomized internal cohesive bonds. J. Mech. Phys. Solids46(2):187–2182001.

    Article  MATH  Google Scholar 

  21. K. Huang. On the atomic theory of elasticity. Proc. R. Soc. London203:178–1942002.

    Google Scholar 

  22. P. Klein and H. Gao. Crack nucleation and growth as strain localization in a virtual-bond continuum. Engineering Fracture Mechanics61:21–481998.

    Article  Google Scholar 

  23. M. Marder. Molecular dynamics of cracks. Computing in Science and Engineering1(5):48–551999.

    Article  Google Scholar 

  24. M. Marder and S. Gross. Origin of crack tip instabilities. J. Mech. Phys. Solids43(1):1–481995.

    Google Scholar 

  25. [RKL+02]_C.L. Rountree, R.K. Kalia, E. Lidorikis, A. Nakano, L. van Brutzel, and P. Vashishta. Atomistic aspects of crack propagation in brittle materials: Multimillion atom molecular dynamics simulations. Annual Rev. of Materials Research32:377–4002002.

    Article  Google Scholar 

  26. D.H. Tsai. Virial theorem and stress calculation in molecular-dynamics. J. of Chemical Physics70(3):1375–13821979.

    Article  Google Scholar 

  27. J.J. Weiner. Hellmann-feynmann theorem, elastic moduli, and the cauchy relation. Phys. Rev. B24:845–8481983.

    Article  MathSciNet  Google Scholar 

  28. V. Yamakov, D. Wolf D, S.R. Phillpot, and H. Gleiter. Grain-boundary diffusion creep in nanocrystalline palladium by molecular-dynamics simulation. Acta mater.50:61–732002.

    Article  Google Scholar 

  29. E.H. Yoffe. The moving griffith crack. Philosophical Magazine42:739–7501951.

    MathSciNet  MATH  Google Scholar 

  30. J. Zimmermann. Continuum and atomistic modelling of dislocation nucleation at crystal surface ledges. PhD thesis, Stanford University, 1999.

    Google Scholar 

  31. P. Zhang, P. Klein, Y. Huang, and H. Gao. Numerical simulation of cohesive fracture by the virtual-internal-bond model. CMES-Computer Modeling in Engineering and Sciences3(2):263–2771998.

    Google Scholar 

  32. M. Zhou and D.L. McDowell. Equivalent continuum for dynamically deforming atomistic particle systems. Phil. Mag. A82(13):2547–25742002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Buehler, M.J., Abraham, F.F., Gao, H. (2004). Stress and energy flow field near a rapidly propagating mode I crack. In: Attinger, S., Koumoutsakos, P. (eds) Multiscale Modelling and Simulation. Lecture Notes in Computational Science and Engineering, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18756-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18756-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21180-8

  • Online ISBN: 978-3-642-18756-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics