Skip to main content

Die Parkinson-Krankheit

  • Chapter
  • 196 Accesses

Part of the book series: Molekulare Medizin ((MOLMED))

Zusammenfassung

Die Parkinson-Krankheit, auch Morbus Parkinson, ist mit einer Prävalenz von 1:1000 eine der häufigsten neurologischen Erkrankungen, wobei die Inzidenz mit dem Alter zunimmt. So leiden von den 55-Jährigen bereits 1,4%, von den 75-Jährigen 3,4% an Symptomen dieser neurodegenerativen Erkrankung (De Rijk et al. 1997). Aufgrund der Altersentwicklung der Bevölkerung wird eine Zunahme der Prävalenz des Morbus Parkinson um das Vierfache für die nächsten 20 Jahre in den westlichen Industrieländern vorausgesagt (World Health Organization 1998). Trotz intensiver Forschung ist die Ursache der Neurodegeneration bei der Parkinson-Krankheit bis heute nicht geklärt. Die therapeutisch nach wie vor nur unzureichend zu behandelnden Symptome mit allen Einschränkungen im täglichen Leben für die Betroffenen und ihre Angehörigen sowie die damit verbundenen sozialen und finanziellen Folgen für die Gesellschaft stellen weiterhin eine wissenschaftliche Herausforderung dar. Dabei kann jedoch auf eine bald 200-jährige Geschichte des zunehmenden Verständnisses des Krankheitsbildes, der pathologischen Veränderungen und therapeutischen Möglichkeiten zurückgeschaut werden, wobei die in den letzten Jahren gewonnenen Erkenntnisse molekularbiologischer, biochemischer und genetischer Zusammenhänge wichtige und z.T. vielversprechende Perspektiven für zukünftige Forschungsprojekte und therapeutische Ansätze liefern.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Alexander GE, De Long MR, Strick PL (1986) Parallel organisation of functionally segregated circuits linking basal ganglia and cortex. Ann Rev Neurobiol 9:357–381

    CAS  Google Scholar 

  • Alexander GE, Crutcher MD, De Long MR (1990) Basal-ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, „prefrontal“ and „limbic“ functions. Prog Brain Res 85:119–146

    PubMed  CAS  Google Scholar 

  • Ambani LM, Van Woert MH, Murphy S (1975) Brain peroxides and catalase in Parkinson’s disease. Arch Neurol 32:114–118

    PubMed  CAS  Google Scholar 

  • Anglade P, Vyas S, Hirsch EC, et al(1997) Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol Histopathol 12:25–31

    PubMed  CAS  Google Scholar 

  • Antonini A, Leenders KL, Meier D, Oertel WH, Boesinger P, Anliker M (1993) T2 relaxation time in patients with Parkinson’s disease. Neurology 43:697–700

    PubMed  CAS  Google Scholar 

  • Armstrong M, Daly AK, Cholerton S, Bateman DN, Idle JR, et al (1992) Mutant debrisoquine hydroxylation genes in Parkinson’s disease. Lancet 339:1017–1018

    PubMed  CAS  Google Scholar 

  • Barbeau AT, Sourkes L, Murphy G (1962) Les catécholamines dans la maladie de Parkinson. In: De Ajuriaguerra J (ed) Monoamines et système nerveux central. Georg, Geneva and Masson, Paris, pp 247–262

    Google Scholar 

  • Barbeau A, Roy M, Cloutier T, Piasse L, Paris S (1987) Environmental and genetic factors in the etiology of Parkinson’s disease. Adv Neurol 45:299–306

    PubMed  CAS  Google Scholar 

  • Beal MF, Hyman BT, Koroshetz W (1993) Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases? Trends Neurosci 16:125–131

    PubMed  CAS  Google Scholar 

  • Beck KD, Knusel B, Hefti F (1993) The nature of the trophic action of brain-derived neurotrophic factor, des(T-3)-in-sulin-like growth factor, and basic fibroblast growth factor on mesencephalic dopaminergic neurons developing in culture. Neurosci 52:855–866

    CAS  Google Scholar 

  • Becker G, Seufert J, Bogdahn U, Reichmann H, Reiners K (1995) Degeneration of substantia nigra in chronic Parkinson’s disease visualized by transcranial color-coded real-time sonography. Neurology 45:182–184

    PubMed  CAS  Google Scholar 

  • Beckmann JS, Beckmann TW, Chen J, Marshall PA, Freeman PA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad USA 87:1620–1624

    Google Scholar 

  • Berg D, Becker G, Zeiler B, Tucha O, Hofmann E, Preier P, et al (1999a) Vulnerability of the nigrostriatal system as detected by transcranial ultrasound. Neurology 53:1026–1031

    PubMed  CAS  Google Scholar 

  • Berg D, Grote C, Rausch WD, Mäurer M, Wesemann W, Riederer P, et al (1999b) Iron accumulation of the substantia nigra in rats visualized by ultrasound. Ultrasound Med Biol 25:901–904

    PubMed  CAS  Google Scholar 

  • Berg D, Gerlach M, Youdim MB, Douvle KL, Zecca L, Riederer P, Becker G (2001) Brain iron pathways and their relevance to Parkinson’s disease. J Neurochem 79:225–236

    PubMed  CAS  Google Scholar 

  • Biggins CA, Boyd JL, Harrop FM, et al(1992) A controlled, longitudinal study of dementia in Parkinson’s disease. J Neurol Neurosurg Psychiatry 55:566–571

    PubMed  CAS  Google Scholar 

  • Birkmayer W, Mentasti M (1967) Further experimental studies on the catecholamine metabolism in extrapyramidal diseases (Parkinson and chorea syndromes). Arch Psychiatr Nervenkr 210:29–35

    PubMed  CAS  Google Scholar 

  • Birkmayer W, Knoll J, Riederer P, Youdim MB, Hars V, Marton J (1985) Increased life expectancy resulting from addition of L-deprenyl to madopar treatment in Parkinson’s disease: a longterm study. J Neural Transm 64:113–127

    PubMed  CAS  Google Scholar 

  • Blocq PO, Marinesco G (1893) Sur en cas de tremblement parkinsonien hemiplégique symptomatique d’une tumeur du pédoncule cérébral. CR Soc de Biol 5:105–111

    Google Scholar 

  • Blum-Degen D, Müller T, Kuhn W, et al(1995) Interleukin1-beta and interleukin 6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Lett 202:17–20

    PubMed  CAS  Google Scholar 

  • Boka G, Anglade P, Wallach D, Javoy-Agid F, Agdi Y, Hirsch EC (1994) Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson’s disease. Neurosci Lett 172:151–154

    PubMed  CAS  Google Scholar 

  • Boll MC, Sotelo J, Otero E, Alcaraz-Zubeldia M, Rios C (1999) Reduced ferroxidase activity in the cerebrospinal fluid from patients with Parkinson’s disease. Neurosci Lett 265:155–158

    PubMed  CAS  Google Scholar 

  • Braak H, Braak E (2000) Pathoanatomy of Parkinson’s disease. J Neurol 247:3–10

    Google Scholar 

  • Braak H, Braak E, Yilzmar D, Schlutz C, De Vos RA, Jansen EN (1995) Nigral and extranigral pathology in Parkinson’s disease. J Neural Transm 46:15–31

    CAS  Google Scholar 

  • Braak H, De Vos RA, Jansen EN, Bratzke H, Braak E (1998) Neuropathological hallmarks of Alzheimer’s and Parkinson’ disease. Prog Brain Res 117:267–285

    PubMed  CAS  Google Scholar 

  • Brannan T, Prikhojan A, Yahr MD (1997) Peripheral and central inhibitors of catechol-O-methyl transferase: effects on liver and brain COMT activity and L-DOPA metabolism. J Neural Transm 104:77–87

    PubMed  CAS  Google Scholar 

  • Bringmann G, Feineis D, Grote C, et al (1998) Highly halogenated tetrahydro-α-carbolines as a new class of dopaminergic neurotoxines. In: Moser A (ed) Pharmacology of endogenous neurotoxins. A handbook. Birkhäuser, Boston, pp 151–169

    Google Scholar 

  • Brissaud E (1895) Leçons sur le maladies nerveuses. Masson, Paris

    Google Scholar 

  • Brooks DJ, Ibanez V, Sawle GV, et al(1990) Differing patterns of striatal [18F]-dopa uptake in Parkinson’s disease, multiple system atrophy and progressive supranuclear palsy. Ann Neurol 28:547–555

    PubMed  CAS  Google Scholar 

  • Calne DB (1994) Is idiopathic parkinsonism the consequence of an event or a process? Neurology 44:5–10

    PubMed  CAS  Google Scholar 

  • Carlsson A, Lundqvist M, Magnusson T (1957) 3,4-Dihydroxyphenylalanine and 5-hydroxy-tryptophan as reserpine antagonists. Nature 180:1200

    PubMed  CAS  Google Scholar 

  • Castellani RJ, Siedlak SL, Perry S, Smith MA (2000) Sequestration of iron by Lewy bodies in Parkinson’s disease. Acta Neuropathol 100:111–114

    PubMed  CAS  Google Scholar 

  • Charcot JM (1869) De la paralysie agitante (leçon 5) oeuvres complètes 1:161–188. Bureaux du progrès médical

    Google Scholar 

  • Chen R, Kumar S, Garg RR, Lang AE (2001) Impairment of motor cortex activation and deactivation in Parkinson’s disease. Clin Neurophysiol 112:600–607

    PubMed  CAS  Google Scholar 

  • Clayton DF, George JM (1999) Synucleins in synaptic plasticity and neurodegenerative disorders. J Neurosci Res 58:120–129

    PubMed  CAS  Google Scholar 

  • Cleeter MWJ, Cooper JM, Darley Usmar VM, Moncada S, Schapira AHV (1994) Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide: implications for neurodegenerative disorders. Acta Biochem Biophys 288:481–487

    Google Scholar 

  • Conway KA, Harper JD, Landsbury PT (1998) Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early onset Parkinson disease. Nature Med 4:1318–1320

    PubMed  CAS  Google Scholar 

  • Cummings JL (1992) Depression and Parkinson’s disease: a review. Am J Psychiatry 149:443–454

    PubMed  CAS  Google Scholar 

  • Curtis AR, Fey C, Morris CM, et al(2001) Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease. Nat Genet 28:350–354

    PubMed  CAS  Google Scholar 

  • Damier P, Hirsch EC, Zhang P, Agid Y, Javoy-Agid F (1993) Glutathione peroxidase, glial cells and Parkinson’s disease. Neuroscience 52:1–6

    PubMed  CAS  Google Scholar 

  • David GC, Williams AC, Markey SP, et al(1979) Chronic Parkinsonism secondary to intravenous injection of meperidine analogues. Psychiat Res 1:249–253

    Google Scholar 

  • Davidson WS, Lin W, Liu WK, Yen SH (1998) Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem 273:9443–9449

    PubMed  CAS  Google Scholar 

  • Davis MD, Heffner TG, Cooke LW (1997) Dopamine agonistinduced inhibition of neurotransmitter release from the awake squirrel monkey putamen as measured by microdialysis. J Neurochem 68:659–666

    PubMed  CAS  Google Scholar 

  • De Rijk MC, Tzourio C, Breteler MM, et al for the European PARKINSON Study Group (1997) Prevalence of parkinsonism and Parkinson’s disease in Europe: The EUROPARKINSON collaborative study. J Neurol Neurosurg Psychiatry 62:10–15

    PubMed  Google Scholar 

  • Desagher S, Glowinski J, Premont J (1997) Pyruvate protects neurons against hydrogen peroxide-induced toxicity. J Neurosci 17:9060–9067

    PubMed  CAS  Google Scholar 

  • Dexter DT, Wells FR, Lees AJ, Agid F, Agid Y, Jenner P, Marsden CD (1989) Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. J Neurochem 52:1830–1836

    PubMed  CAS  Google Scholar 

  • Dexter DT, Sian J, Jenner P, Marsden CD (1993) Implications of alterations in trace element levels in brain in Parkinson’s disease and other neurological disorders affecting the basal ganglia. Adv Neurol 60:273–281

    PubMed  CAS  Google Scholar 

  • Dioszeghy P, Hidasi E, Mechler F (1999) Study of central motor functions using magnetic stimulation in Parkinson’s disease. Electromyogr Clin Neurophysiol 39:101–105

    PubMed  CAS  Google Scholar 

  • Double KL, Maywald M, Schmittel M, Riederer P, Gerlach M (1998) In vitro studies of ferritin iron release and neurotoxicity. J Neurochem 70:2492–2499

    PubMed  CAS  Google Scholar 

  • Double KL Riederer P, Gerlach M (1999) Significance of neuromelanin for neurodegeneration in Parkinson’s disease. Drug News Perspect 12:333–340

    CAS  Google Scholar 

  • Du Y, Dodel RC, Bales K, et al(1997) Involvement of caspase-3-related cystein protease in 1-methyl-4-phenylpyridimium (MPP+) mediated apoptosis of cultured cerebellar granule neurons. J Neurochem 69:1382–1388

    PubMed  CAS  Google Scholar 

  • Duda JE, Lee VM, Trojanowsky JQ (2000) Neuropathology of synuclein aggregates: new insights into mechanisms of neurodegenerative diseases. J Neurosci Research 61:121–127

    CAS  Google Scholar 

  • Duijn CM van, Dekker MC, Bonifati V, et al(2001) PARK7, a novel locus for autosomal recessive early-onset parkinsonism, on chromosome 1p36. Am J Hum Genet 69:629–634

    PubMed  Google Scholar 

  • Duvoisin RC, Zahr MD, Schweitzer MD, et al(1963) Parkinsonism before and since the epidemic of encephalitis lethargica. Arch Neurol 9:232–236

    PubMed  CAS  Google Scholar 

  • Ehringer H, Hornykievicz O (1962) Verteilung von Noradrenalin und Dopamin (3-Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems. Klin Wschr 38:1236–1239

    Google Scholar 

  • El Agnaf OM, Jakes R, Curran MD, Wallace A (1998) Effects of the mutations Ala30 to Pro and Ala53 to Thr on the physical and morphological properties of alpha-synuclein protein implicated in Parkinson’s disease. FEBS Lett 440:67–70

    PubMed  CAS  Google Scholar 

  • Farrer M, Gwinn K, Muenter M, et al(1999) 4p haplotype segregating with Parkinson’s disease and postural tremor. Hum Mol Genet 8:81–85

    PubMed  CAS  Google Scholar 

  • Faucheux BA, Nillesse N, Damier P, Spik G, Mouatt-Prigent A, et al (1995) Expression of lactoferrin receptors is increased in the mesencephalon of patients with Parkinson’s disease. Proc Natl Acad Sci USA 92:9603–9607

    PubMed  CAS  Google Scholar 

  • Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114:2283–2301

    PubMed  Google Scholar 

  • Foley P, Riederer P (1999) Pathogenesis and preclinical course of Parkinson’s disease. J Neural Transm 56:31–74

    CAS  Google Scholar 

  • Foley P, Riederer P (2000) The motor circuit of the human basal ganglia reconsidered. J Neural Transm (Suppl) 58:97–110

    Google Scholar 

  • Forno LS (1996) Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 55:259–272

    PubMed  CAS  Google Scholar 

  • Fowler JS, Volkow ND, Wand GJ, et al(1996) Inhibition of monoamine oxidase B in the brains of smokers. Nature 379:733–736

    PubMed  CAS  Google Scholar 

  • Galvin JE, Uryu K, Lee VM, Trojanowski JQ (1999a) Axon pathology in Parkinson’s disease and Lewy body dementia hippocampus contains alpha-, beta-, and gamma synuclein. Proc Natl Acad USA 96:13450–13455

    CAS  Google Scholar 

  • Galvin JF, Lee VM, Schmidt L, et al (1999b) Pathology of the Lewy body. In: Stern G (ed) Advances in neurology, vol 80, Parkinson’s disease. Lippincott Williams&Wilkins, Philadelphia, pp 313–324

    Google Scholar 

  • Gamboa ET, Wolf A, Yahr MD, et al(1974) Influenca virus antigen in postencephalic parkinsonism brain. Arch Neurol 31:228–232

    PubMed  CAS  Google Scholar 

  • Gash DM, Zhang Z, Ovadia A, et al(1996) Functional recovery in Parkinsonian monkeys treated with GDNF. Nature 380:252–255

    PubMed  CAS  Google Scholar 

  • Gaspar P, Gray F (1984) Dementia in idiopathic Parkinson’s disease. A neuropathological study of 32 cases. Acta Neuropathol 64:43–52

    PubMed  CAS  Google Scholar 

  • Gasser T (2001) Molecular genetics of Parkinson’s disease. In: Calne D, Calne S (eds) Advances in Neurology, vol 86, Parkinson’s disease. Lippincott Williams&Wilkins, Philadelphia, pp 23–32

    Google Scholar 

  • Gasser T, Müller-Myhsok B, Wszolek, ZK et al(1998) A susceptibility locus for Parkinson’s disease maps to chromosome 2pl3. Nature Genet 18:262–265

    PubMed  CAS  Google Scholar 

  • Gerlach M, Ben-Shachar D, Riederer P, et al(1994) Altered brain metabolism of iron as a cause of neurodegenerative diseases. J Neurochem 63:793–807

    PubMed  CAS  Google Scholar 

  • Gerlach M, Riederer P, Youdim MBH (1996) Molecular mechanisms for neurodegeneration: synergism between reactive oxygen species, calcium and excitotoxic amino acids. In: Battistin L, Scarlato G, Caraceni T, Ruggieri S (eds) Advances in Neurology, vol 69, Parkinson’s disease. Lippincott-Raven, Philadelphia, pp 177–194

    Google Scholar 

  • Gerlach M, Reichmann H, Riederer P (2001) Die Parkinson-Krankheit. Grundlagen, Klinik, Therapie. Springer, Wien New York

    Google Scholar 

  • Gibb WR, Lees AJ (1988) The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry 349:704–706

    Google Scholar 

  • Glass J (1983) Untersuchung zur Bedeutung chemischer Noxen in der Ätiologie des Parkinson Syndroms. In: Pathophysiologie, Klinik und Therapie des Parkinsonismus. Roche, Basel, S 103–107

    Google Scholar 

  • Goedert M, Spillantini MG, Davies SW (1998) Filamentous nerve cell inclusions in neurodegenerative diseases. Curr Opin Neurobiol 8:619–632

    PubMed  CAS  Google Scholar 

  • Götz ME, Künig G, Riederer P, Youdim MB (1994) Oxidative stress. Free radical production in neural degeneration. Pharmac Ther 63:37–122

    Google Scholar 

  • Graham JM, Paley MN, Grunewald RA, Hoggard N, Griffiths PD (2000) Brain iron deposition in Parkinson’s disease imaged using the PRIME magnetic resonance sequence. Brain 123:2423–2431

    PubMed  Google Scholar 

  • Greenfield JG, Bosanquet FD (1953) The brain-stem lesions in Parkinsonism. J Neurol Neurosurg Psychiatry 16:213–226

    PubMed  CAS  Google Scholar 

  • Griffiths PD, Dobson BR, Jones GR, Clarke DT (1999) Iron in the basal ganglia in Parkinson’s disease. An in vitro study using extended X-ray absorption find structure and cryo-electron microscopy. Brain 122:667–673

    PubMed  Google Scholar 

  • Grünblatt E, Mandel S, Maor G, Youdim MB (2001) Gene expression analysis in N-methyl-4-phenyl-1,2,3,6 tetrahydropyridine mice model of Parkinson’s disease using cDNA microarray: effect of R-apomporhine. J Neurochem 78:1–12

    PubMed  Google Scholar 

  • Gu M, Cooper JM, Taanman JW, Schapira AH (1998) Mitochondrial DNA transmission of the mitochondrial defect in Parkinson’s disease. Ann Neurol 44:177–186

    PubMed  CAS  Google Scholar 

  • Halliday GM, Blumbergs PC, Cotton RC, et al(1990a) Loss of brainstem serotonin-and substance P-containing neurons in Parkinson’s disease. Brain Res 510:104–107

    PubMed  CAS  Google Scholar 

  • Halliday GM, Li YW, Blumbergs PC, et al(1990b) Neuropathology of immunohistochemically identified brainstem neurons in Parkinson’s disease. Ann Neurol:27:373–385

    PubMed  CAS  Google Scholar 

  • Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59:1609–1623

    PubMed  CAS  Google Scholar 

  • Hartmann A, Hunot S, Michel PP, et al(2000) Caspase-3: a vulnerability factor and a final effector in the apoptotic death of dopaminergic neurons in Parkinson’s disease. Proc Natl Acad USA 97:2875–2880

    CAS  Google Scholar 

  • Hashimoto M, Hsu LJ, Xia Y, et al(1999) Oxidative stress induces amyloid-like aggregate formation of NACP/a-sy-nuclein in vitro. Neuroreport 10:717–721

    PubMed  CAS  Google Scholar 

  • Hassler R (1938) Zur Pathologie der Paralysis agitans und des postenzephalitischen Parkinsonismus. J Psychol Neurol 48:387–476

    Google Scholar 

  • Heiss WD, Würker M (1999) Möglichkeiten und Grenzen funktioneller bildgebender Verfahren beim Parkinsonsyndrom. Nervenarzt 70:2–10

    Google Scholar 

  • Hellenbrand W, Seidler A, Robra BP, et al(1997) Smoking and Parkinson’s disease: a case-control study in Germany. Int J Epidemiol 26:328–339

    PubMed  CAS  Google Scholar 

  • Hirsch EC, Graybiel AM, Agid YA (1988) Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 334:345–348

    PubMed  CAS  Google Scholar 

  • Hirsch EC, Mouatt A, Thomasser M, Javo y-Agid F, Agid Y, Graybiel AM (1992) Expression of calbindin D28K-like im-munoreactivity in catecholaminergic cell groups in the human midbrain. Normal distribution and distribution in Parkinson’s disease. Neurodegeneration 1:83–93

    Google Scholar 

  • Hoehn MM, Yahr MD (1969) Parkinsonism: onset, progression and mortality.}Neurology 17:427–442

    Google Scholar 

  • Hoogendijk WJ, Pall CW, Troost D, et al(1995) Image analysis-assisted morphometry of the locus caeruleus in Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Brain 118:131–143

    PubMed  Google Scholar 

  • Horowski R, Horowski L, Vogel S, Poewe W, Kielhorn FW (1995) An essay on Wilhelm von Humboldt and the shaking palsy: first comprehensive description of Parkinson’s disease by a patient. Neurology 45:565–568

    PubMed  CAS  Google Scholar 

  • Hunot S, Brugg B, Ricard D, et al(1999) Fcepsilon-RII/CD23 is expressed in Parkinson’s disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells. J Neurosci 19:3440–3447

    PubMed  CAS  Google Scholar 

  • Isacson O, Costantini L, Schumacher JM, Cicchetti F, Chung S, Kim K (2001) Cell implantation therapies for Parkinson’s disease using neural stem, transgenic or xenogenic donor cells. Parkinsonism Relat Disord 7:205–212

    PubMed  Google Scholar 

  • Isgreen WP, Chutorian AM, Fahn S (1976) Sequential parkinsonism and chorea following „mild“ influenza. Trans Am Neurol Assoc 101:56–59

    PubMed  CAS  Google Scholar 

  • Ishikawa A, Tsuji S (1996) Clinical analysis of 17 patients in 12 Japanese families with autosomal-recessive type juvenile parkinsonism. Neurology 47:160–166

    PubMed  CAS  Google Scholar 

  • Itoh K, Weis S, Mehraein P, Muller-Hocker J (1997) Defects of cytochrome c oxidase in the substantia nigra of Parkinson’s disease: an immunohistochemical and morphometric study. Mov Disord 12:9–16

    PubMed  CAS  Google Scholar 

  • Janetzky B, Hauck S, Youdim MB, et al(1994) Unaltered aconitase activity, but decreased complex I activity in substantia nigra pars compacta of patients with Parkinson’s disease. Neurosci Lett 169:126–128

    PubMed  CAS  Google Scholar 

  • Jellinger KA (1991) Pathology of Parkinson’s disease: Changes other than the nigrostriatal pathway. Mol Chem Neuropathol 14:153–197

    PubMed  CAS  Google Scholar 

  • Jellinger KA (1999) Post mortem studies in Parkinson’s disease — is it possible to detect brain areas for specific symptoms? J Neural Transm (Suppl) 56:1–29

    CAS  Google Scholar 

  • Jellinger KA (2000) Cell death mechanisms in Parkinson’s disease. J Neural Transm 107:1–29

    PubMed  CAS  Google Scholar 

  • Jellinger KA (2001) The pathology of Parkinson’s disease. In: Calne D, Calne S (eds) Advances in Neurology, vol 86, Parkinson’s disease. Lippincott Williams&Wilkins, Philadelphia, pp 55–72

    Google Scholar 

  • Jenner P, Olanow CW (1996) Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology 47:161–170

    Google Scholar 

  • Jensen PH, Nielsen MS, Jakes R, Dotti CD, Goedert M (1998) Binding of a-Synuclein to brain vesicles is abolished by familial Parkinson’s disease mutation. J Biol Chem 273:2629–26294

    Google Scholar 

  • Kish SJ, Morito CH, Hornykiewics O (1985) Glutathione peroxidase activity in Parkinson’s disease brain. Neurosci Lett 58:343–346

    PubMed  CAS  Google Scholar 

  • Koutsilieri E, Chen TS, Rausch WD, Riederer P (1996) Selegilin is neuroprotective in primary brain cultures treated with 1-methyl-4-phenyl pyridium. Eur J Pharmacol 306:181–186

    PubMed  CAS  Google Scholar 

  • Krüger R, Kuhn W, Müller T, et al(1998) Ala39Pro mutation in the gene encoding a-Synuclein in Parkinson’s disease. Nature Genet 18:106–108

    PubMed  Google Scholar 

  • Krüger R, Vieira-Saecker AM, Kuhn W, et al(1999) Increased susceptibility to sporadic Parkinson’s disease by a certain combined alpha-synuclein/apolipoprotein E genotype. Ann Neurol 45:611–617

    PubMed  Google Scholar 

  • Landfield PW, Applegate MD, Schwitzer-Osborne SE, Naylor CE (1991) Phosphate/calcium alterations in the first stages of Alzheimer’s disease: implications for etiology and pathogenesis. J Neurol Sci 106:221–229

    PubMed  CAS  Google Scholar 

  • Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:989–980

    Google Scholar 

  • Latchman DS, Coffin RS (2001) Viral vectors for gene therapy in Parkinson’s disease. Rev Neurosci 12:69–78

    PubMed  CAS  Google Scholar 

  • Le Couteur DG, Leighton PW, McCann SJ, et al(1997) Association of a polymorphism in the dopamine-transporter gene with Parkinson’s disease. Move Disord 12:760–763

    Google Scholar 

  • Leenders KL, Salmon EP, Tyrrell P, et al(1990) The nigrostriatal dopaminergic system assessed in vivo by positron emission tomography in healthy volunteer subjects and patients with Parkinson’s disease. Arch Neurol 47:1290–1298

    PubMed  CAS  Google Scholar 

  • Leigh P, Probst A, Gale G, et al(1989) New aspects of the pathology of neurodegenerative disorders as revealed by ubiquitin antibodies. Acta Neuropathol (Berl) 79:61–72

    CAS  Google Scholar 

  • Leroy E, Boyer R, Auburger G, et al(1998) The ubiquitin pathway in Parkinson’s disease. Nature 395:451–452

    PubMed  CAS  Google Scholar 

  • Leutner S, Eckert A, Müller WE (2001) ROS generation, lipid peroxidation and antioxidant enzyme activities in the aging brain. J Neural Transm 108:955–967

    PubMed  CAS  Google Scholar 

  • Leveugle B, Faucheux BA, Bouras C, Nillesse N, Spik G, et al (1996) Cellular distribution of the iron-binding protein lactotransferrin in the mesencephalon of Parkinson’s disease. Acta Neuropathol 91:566–572

    PubMed  CAS  Google Scholar 

  • Lewy FH (1912) Paralysis agitans: I. Pathologische Anatomie. In: Lewandowsky M (Hrsg) Handbuch der Neurologie, Vol 3, Springer, Berlin, S 920–933

    Google Scholar 

  • Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:1130–1132

    PubMed  CAS  Google Scholar 

  • Lowe J, Lennox G, Leigh PN (1997) Disorders of movement and system degenerations. In: Graham D, Lantos PL (eds) Greenfield’s neuropathology, 6th ed. Arnold, London, pp 280–366

    Google Scholar 

  • Maraganore DM, Farrer EM, Hardy JA, et al(1999) Casecontrol study of the ubiquitin carboxy-terminal hydrolase L1 gene in Parkinson’s disease. Neurology 53:1858–1860

    PubMed  CAS  Google Scholar 

  • Marcusson J, Oreland L, Winblad B (1984) Effect of age on human brain serotonin (S-1) binding sites. J Neurochem 43:1699–1705

    PubMed  CAS  Google Scholar 

  • Marder KS, TangMX, Mejia H, et al(1996) Risk of Parkinson’s disease among first-degree relatives: a community based study. Neurology 47:155–160

    PubMed  CAS  Google Scholar 

  • Maroteaux L, Campanelli JT, Scheller RH (1988) Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci 8:2804–2815

    PubMed  CAS  Google Scholar 

  • Maroteaux L, Scheller RH (1991) The rat brain synucleins; family of proteins transiently associated with neuronal membrane. Mol Bran Res 11:335–343

    CAS  Google Scholar 

  • Marti MJ, James CJ, Oo TF et al(1997) Early developmental destruction of terminals in the striatal target induces apoptosis in dopamine neurons of the substantia nigra. J Neuroscience 77:1037–1048

    Google Scholar 

  • Martilla RJ, Kaprio J, Koskenvuo M, Rinne UK (1988a) Parkinson’s disease in a nationwide twin cohort. Neurology 38:1217–1219

    Google Scholar 

  • Martilla RJ, Lorentz H, Rinne UK (1988b) Oxygen toxicity protecting enzymes in Parkinson’s disease: increase of superoxid-dismutase-like activity in the substantia nigra and basal nucleus. J Neurol Sci 86:321–331

    Google Scholar 

  • Matsumine H, Saito M, Shimoda-Matsubayashi S, et al (1997) Localization of a gene for an autosomal recessive form of juvenile Parkinsonism to chromosome 6q25.2-27. Am J Hum Genet 60:588–596

    PubMed  CAS  Google Scholar 

  • Mattson MP (1988) Neurotransmitter in the regulation of neuronal cytoarchitecture. Brain Res Rev 13:179–212

    CAS  Google Scholar 

  • McCall T, Vallance P (1991) Nitric oxide takes center stage with newly defined roles. Trends Pharmacol Sci 13:1–6

    Google Scholar 

  • McNaught KSP, Jenner P (2000) Extracellular accumulation of nitric oxide, hydrogen peroxide and glutamate in astrocytic cultures following glutathione depletion, complex I inhibition and/or lipopolysaccharide-induced activation. Biochem Pharmacol 60:979–988

    PubMed  CAS  Google Scholar 

  • Mitchell IJ, Clarke CE, Boyce S et al(1989) Neural mechanisms underlying Parkinsonian symptoms based upon regional uptake of 2-deoxyglucose in monkeys exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neuroscience 32:213–226

    PubMed  CAS  Google Scholar 

  • Mizuno Y, Ohta S, Tanaka M, et al(1989) Deficiencies in complex I subunits of the respiratory chain in Parkinson’s disease. Biochem Biophys Res Commun 163:1450–1455

    PubMed  CAS  Google Scholar 

  • Mizuno Y, Hattori N, Kitada T, et al (2001) Familial Parkinson’s disease. In: Calne D, Calne S (eds) Parkinson’s disease. Advances in Neurology, vol 86, Lippincott Williams &Wilkins, Philadelphia, pp 13–21

    Google Scholar 

  • Mjörnes H (1949) Paralysis agitans: a clinical and genetic study. Acta Psychiatr Neurol 54:1–95

    Google Scholar 

  • Mochizuki H, Goto K, Mori H, et al(1996) Histochemical detection of apoptosis in Parkinson’s disease. J Neurol Sci 137:120–123

    PubMed  CAS  Google Scholar 

  • Mogi M, Harada M, Narabayashi H, Inagaki H, Minami M, Nagatsu T (1996) Interleukin (IL)-1 beta, Il-2, Il-4, Il-6 and transforming growth factor-alpha levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson’s disease. Neurosci Lett 211:13–16

    PubMed  CAS  Google Scholar 

  • Montine TJ, Farris DB, Graham DG (1995) Covalent crosslinking of neurofilament proteins by oxidized catechols as a potential mechanism of Lewy body formation. J Neuropathol Exp Neurol 54:311–319

    PubMed  CAS  Google Scholar 

  • Morrish PK, Sawle GV, Brooks DJ (1996) An [18F]dopa-PET and clinical study of the rate of progression in Parkinson’s disease. Brain 119:585–591

    PubMed  Google Scholar 

  • Muenter MD, Forno S, Hornykiewics O, et al(1998) Hereditary form of parkinsonism dementia. Ann Neurol 43:768–781

    PubMed  CAS  Google Scholar 

  • Münch G, Gerlach M, Sian J, Wong A, Riederer P (1998) Advanced glycation end products in neurodegeneration: more than early makers of oxidative stress? Ann Neurol 44(Suppl l):85–88

    Google Scholar 

  • Münch G, Lüth HJ, Wong A, et al(2000) Crosslinking of a-synuclein by advanced glycation endproducts — an early pathophysiological step in Lewy body formation. J Clin Neuroanatomy 20:253–257

    Google Scholar 

  • Naoi M, Hosoda S, Ota M, Takahashi T, Nagatsu T (1991) Inhibition of tryptophan hydroxylase by food-derived carcinogenic heterocyclic amines, 3-amino-l-methyl-5H-pyrido[4,3-b]indole and 3-amino-l,4-dimethyl-5H-pyrido[4,3-b]indole. Biochem Pharmacol 41:199–203

    PubMed  CAS  Google Scholar 

  • Naoi M, Maruyama W, Akao Y, Zhang J, Parvez H (2000) Apoptosis induced by an endogenous neurotoxin, N-methyl(R)salsolinol, in dopamine neurons. Toxicology 153:123–141

    PubMed  CAS  Google Scholar 

  • Narhi L, Wood S, Steavenson S, et al(1999) Both familial Parkinson’s disease mutations accelerate a-synuclein aggregation. J Biol Chem 274:9843–9846

    PubMed  CAS  Google Scholar 

  • Neystat M, Lynch T, Przedborski S, Kholodilov N, Rzhetskaya M, Burke RE (1999) a-Synuclein expression in substantia nigra and cortex in Parkinson’s disease. Move Disord 14:417–422

    CAS  Google Scholar 

  • Ochu EE, Rothwell NJ, Waters CM (1998) Caspases mediate 6-hydroxydopamine-induced apoptosis but not necrosis in PC12 cells. J Neurochem 70:2637–2640

    PubMed  CAS  Google Scholar 

  • Oesterreicher E, Sengstock GJ, Riederer P, Olanow CW, Dunn AJ, Arendash G (1994) Degeneration of nigrostriatal dopaminergic neurons increases iron within the substantia nigra: a histochemical and neurochemical study. Brain Res 660:8–18

    Google Scholar 

  • Olanow CW (1992) Magnetic resonance imaging in parkinsonism. Neurol Clin 10:405–420

    PubMed  CAS  Google Scholar 

  • Olanow CW (1996) Selegiline: current perspectives on issues related to neuroprotection and mortality. Neurology 47:210–216

    Google Scholar 

  • Osterova-Golts N, Petrucelli L, Hardz J, Lee JM, Farer M, Wolozin B (2000) The A53T a-synuclein mutation increases iron-dependent aggregation and toxicity. J Neurosci 20:6048–6054

    Google Scholar 

  • Parent A, Cicchetti F (1998) The current model of basal ganglia organisation under scrutiny. Mov Disord 13:199–202

    PubMed  CAS  Google Scholar 

  • Parkinson J (1817) Essay on the shaking palsy. Whittingham &Rowland, London

    Google Scholar 

  • Parkinson Study Group (1997) Entacapone improves motor fluctuations in levodopa treated Parkinson’s disease. Ann Neurol 42:747–755

    Google Scholar 

  • Parsian A, Racette B, Zhang ZH, et al(1998) Mutation, sequence analysis, and association studies of alpha-synuclein in Parkinson’s disease. Neurology 51:1757–1759

    PubMed  CAS  Google Scholar 

  • Paulus W, Jellinger K (1991) The neuropathologic basis of different clinical subtypes of Parkinson’s disease. J Neuropathol Exp Neurol 50:143–155

    Google Scholar 

  • Perry TL, Young VW, Ito M, et al(1984) Nigrostriatal dopaminergic neurons remain undamaged in rats given high doses of L-Dopa and carbidopa chronically. J Neurochem 43:990–993

    PubMed  CAS  Google Scholar 

  • Piccini P, Burn DJ, Ceravolo R, Maraganore D, Brooks DJ (1999) The role of inheritance in sporadic Parkinson’s disease: evidence from a longitudinal study of dopaminergic function in twins. Ann Neurol 45:577–582

    PubMed  CAS  Google Scholar 

  • Pilas B, Sarna T, Kalyanaraman B, Swartz HM (1988) The effect of melanin on iron associated decomposition of hydrogen peroxide. Free Radical Biol Med 4:285–293

    CAS  Google Scholar 

  • Plaitakis A (1991) Olivopontocerebellar atrophy with glutamate dehydrogenase deficiency. In: Jong de JM (ed) Handbook of clinical neurology, vol 16, Hereditary neuropathies and spinocerebellar degenerations. Elsevier, Amsterdam, pp 551–568

    Google Scholar 

  • Plaitakis A, Shashidharan P (2000) Glutamate transport and metabolism in dopaminergic neurons of substantia nigra: implications for the pathogenesis of Parkinson’s disease. J Neurol 247:25–35

    Google Scholar 

  • Pollanen MS, Dickson DW, Bergeron C (1993) Pathology and biology of the Lewy body. J Neuropathol Exp Neurol 52:183–191

    PubMed  CAS  Google Scholar 

  • Polymeropoulos MH, Lavedan C, Leroy E, et al(1997) Mutation in the a-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047

    PubMed  CAS  Google Scholar 

  • Poskanzer DC, Schwab RS (1963) Cohort analysis of Parkinson’s syndrome: evidence for a single etiology related to subclinical infection about 1920. J Chron Dis 16:961–973

    PubMed  CAS  Google Scholar 

  • Radi R, Beckmann JS, Bush KM, Freeman BA (1991) Peroxynitrite-induced membrane peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 288:481–487

    PubMed  CAS  Google Scholar 

  • Rajput AH, Uitti RJ, Stern W, Laverty W (1986) Early onset Parkinson’s disease and childhood environment. Adv Neurol 45:295–297

    Google Scholar 

  • Rajput AH, Ryan J, Uitti W, et al (1987) Geography, drinking water chemistry, pesticides and herbicides and the etiology of Parkinson’s disease. Can J Neurol Sci 14:414–418

    PubMed  CAS  Google Scholar 

  • Ravenholt RT, Foege WH (1982) 1918 influenza, encephalitis lethargica, parkinsonism. Lancet 2:860–864

    PubMed  CAS  Google Scholar 

  • Reichmann H, Riederer P (1989) Biochemical analyses of respiratory chain enzymes in different brain regions of patients with Parkinson’s disease. BMFT Symposium „Morbus Parkinson und andere Basalganglienerkrankungen“, Bad Kissingen (Abstract S 44)

    Google Scholar 

  • Reichmann H, Janetzky B (2000) Mitochondrial dysfunction — a pathogenetic factor in Parkinson’s disease. J Neurol 247:63–67

    Google Scholar 

  • Reichmann H, Lestienne P, Jellinger K, Riederer P (1993) Parkinson’s disease and the electron transport chain in post mortem brain. In: Narabayashi H, Nagatsu T, Yanagisawa, Mizuno Y (eds) Advances in Neurology, vol 60, Parkinson’s disease: from basic research to treatment. Raven, New York, pp 297–299

    Google Scholar 

  • Reif DW, Simmons RD (1990) Nitric oxide mediates iron release from ferritin. Arch Biochem Biophys 283:537–541

    PubMed  CAS  Google Scholar 

  • Reilly CE (2001) Glial cell line-derived neurotrophic factor (GDNF) prevents neurodegeneration in models of Parkinson’s disease. J Neurol 248:76–78

    PubMed  CAS  Google Scholar 

  • Retz W, Kornhuber J, Riederer P (1996) Neurotransmission and ontogeny of human brain. J Neural Transm 103:403–419

    PubMed  CAS  Google Scholar 

  • Riederer P (1999) Dopaminrezeptoragonisten: Der neuroprotektive Ansatz. In: Riederer P, Laux G, Pöldinger W (Hrsg): Neuro-Psychopharmaka, ein Therapiehandbuch. Bd 5: Parkinsonmittel und Antidementiva. 2. Aufl, Springer, Wien New York, S 238–240

    Google Scholar 

  • Riederer P, Youdim MB (1993) Iron in central nervous system disorders. Springer, Wien New York

    Google Scholar 

  • Riederer P, Rausch WD, Schmidt B, et al(1988) Biochemical fundamentals of Parkinson’s disease. Mt Sinai J Med 55:21–28

    PubMed  CAS  Google Scholar 

  • Riederer P, Sofic E, Rausch WD et al(1989) Transition metals, ferritin, glutathione and ascorbic acid in Parkinsonian brains. J Neurochem 52:515–520

    PubMed  CAS  Google Scholar 

  • Riederer P, Foley P, Bringmann G, Feineis D, Brückner R, Gerlach M. Biochemical and pharmacological characterization of TaClo: a biologically relevant neurotoxin? (eingereicht)

    Google Scholar 

  • Rinne JO, Lönneberg P, Marjamäki P (1990) Age-dependent decline in human brain dopamine D1 and D2 receptors. Brain Res 508:349–352

    PubMed  CAS  Google Scholar 

  • Rubanyi GM, Ho EH, Cantor EH, Lumma WC, Botelho LH (1991) Cytoprotective function of nitric oxide: inactivation of superoxide radicals produced by human leukocytes. Biochem Biophys Res Commun 181:1392–1397

    PubMed  CAS  Google Scholar 

  • Sanchez-Ramos JR, Hefti F, Weiner WJ (1987) Paraquat and Parkinson’s disease. Neurology 37:728

    PubMed  CAS  Google Scholar 

  • Schipper HM, Leberman A, Stopa EG (1998) Neural heme oxygenase-1 expression in idiopathic Parkinson’s disease. Exp Neurol 150:60–68

    PubMed  CAS  Google Scholar 

  • Secchi GP, Angetti V, Piredda M, et al(1992) Acute and persistent parkinsonism after use of diquat. Neurology 42:261–263

    Google Scholar 

  • Seeman P, Bzowej NH, Guan H-C, et al(1987) Human brain dopamin receptors in children and aging adults. Synapse 1:399–404

    PubMed  CAS  Google Scholar 

  • Semchuk K, Love EJ, Lee RG (1993) Parkinson’s disease: a test of the multifactorial etiologic hypothesis. Neurology 43:1173–1180

    PubMed  CAS  Google Scholar 

  • Shimamoto H, Morimitsu H, Sugita S, Nakahara K, Shigemori M (1999) Therapeutic effect of repetitive transcranial magnetic stimulation in Parkinson’s disease. Rinsho Shinkeigaku 39:1264–1267

    PubMed  CAS  Google Scholar 

  • Sian J, Dexter DT, Lees AJ, Daniel S, Jenner P, Marsden CD (1994) Glutathione-related enzymes in brain in Parkinson’ s disease. Ann Neurol 36:356–361

    PubMed  CAS  Google Scholar 

  • Siebner HR, Mentschel C, Auer C, Conrad B (1999) Repetitive transcranial magnetic stimulation has a beneficial effect on bradykinesia in Parkinson’s disease. Neuroreport 10:589–594

    PubMed  CAS  Google Scholar 

  • Sims KS, Williams RS (1990) The human amygdaloid complex. Neuroscience 36:449–472

    PubMed  CAS  Google Scholar 

  • Smith CA, Gough AC, Leigh PN, et al(1992) Debrisoquine hydroxylase gene polymorphism and susceptibility to Parkinson’s disease. Lancet 339:1375–1377

    PubMed  CAS  Google Scholar 

  • Smith LA, Jackson MG, Bonhomme C, Chezaubernard C, Pearce RK, Jenner P (2000) Transdermal administration of piribedil reverses MPTP-induced motor deficits in the common marmoset. Clin Neuropharmacol 23:133–142

    PubMed  CAS  Google Scholar 

  • Sofic E, Riederer P, Heinsen H, et al(1988) Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J Neural Transm 74:199–205

    PubMed  CAS  Google Scholar 

  • Sofie E, Lange KW, Jellinger K, Riederer P (1992) Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson’s disease. Neurosci Lett 142:128–130

    Google Scholar 

  • Solbrig MV (1993) Acute parkinsonism in suspected herpes simplex encephalitis. Mov Disord 8:233–234

    PubMed  CAS  Google Scholar 

  • Spencer JP, Jenner A, Aruoma OI, et al(1994) Intense oxidative DNA damage promoted by L-Dopa and its metabolites: implications for neurodegenerative disease? FEBS Lett 353:246–250

    PubMed  CAS  Google Scholar 

  • Srinivasan A, Roth KA, Sayers RO et al(1998) In situ immunodetection of activated caspase-3 in apoptotic neurons in the developing nervous system. Cell Death Diff 5:1004–1016

    CAS  Google Scholar 

  • Stocchi F, Brusa L (2000) Cognition and emotion in different stages and subtypes of Parkinson’s disease. J Neurol 247(Suppl 2):114–121

    Google Scholar 

  • Subramanian T (2001) Cell transplantation for the treatment of Parkinson’s disease. Semin Neurol 221:103–115

    Google Scholar 

  • Sugita M, Izuno T, Tatemichi M, Otahara Y (2001) Metaanalysis for epidemiologie studies on the relationship of smoking and Parkinson’s disease. Epidemiol 11:87–94

    CAS  Google Scholar 

  • Tabrizi SJ, Orth M, Wilkinson JM, Taanman JW, Warner TT, Cooper JM, Schapira AH (2000) Expression of mutant alpha-synudein causes increased susceptibility to dopamine toxicity. Hum Mol Genet 9:2683–2689

    PubMed  CAS  Google Scholar 

  • Takahashi H, Ohama E, Suzuki S, et al(1994) Familial juvenile parkinsonism: clinical and pathologic study in a family. Neurology 44:437–441

    PubMed  CAS  Google Scholar 

  • Tatton NA, Mallean-Fraser A, Tatton WG, et al (1998) A fluorescent double labeling method to detect and confirm apoptotic nuclei in Parkinson’s disease. Ann Neurol 44: S142–148

    Google Scholar 

  • Thompson CB (1995) Apoptosis in the pathogenesis of disease. Science 267:1456–1462

    PubMed  CAS  Google Scholar 

  • Tompkins MM, Hill WD (1997) Contribution of somal Lewy bodies to neuronal death. Brain Res 775:24–29

    PubMed  CAS  Google Scholar 

  • Trétiakoff C (1919) Contribution à l’étude de l’anatomie pathologique du locus niger de Soemmering avec quelques déductions relatives à la pathogénie des troubles du tonus musculaire et de la maladie de Parkinson. Thèse, Faculté de Médecine, Université de Paris

    Google Scholar 

  • Trojanowski JQ, Lee VM (2001) Parkinson’s disease and related neurodegenerative synucleinopathies linked to progressive accumulation of synuclein aggregates in brain. Parkinsonism&Related Disorders 7:247–251

    Google Scholar 

  • Tu PH, Robinson KA, Snoo de F, et al(1997) Selective degeneration of Purkinje cells with Lewy body-like inclusions in aged NFHLACZ transgenic mice. J Neurosci 17:1064–1074

    PubMed  CAS  Google Scholar 

  • Turmel H, Hartmann A, Parain K, et al(2001) Caspase-3 activation in 1-methyl-4-phenyl-l,2,3,6-tetrahydropyridin (MPTP)-treated mice. Move Disord 16:185–189

    CAS  Google Scholar 

  • Turnbull S, Tabner BJ, El-Agnaf OM, Moore S, Davies Y, Allsop D (2001) a-synuclein implicated in Parkinson’s disease catalyses the formation of hydrogen peroxide in vitro. Free Radical Biol Med 30:1163–1170

    CAS  Google Scholar 

  • Valente EM, Bentivoglio AR, Dixon PH, et al(2001) Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35-p36. Am J Hum Genet 68:895–900

    PubMed  CAS  Google Scholar 

  • Vaughan JR, Farrer M, Wszolek ZK, et al(1998) Sequencing of the alpha-synuclein gene in a large series of families with familial Parkinson’s disease fails to reveal any further mutations. Hum Mol Genet 7:751–753

    PubMed  CAS  Google Scholar 

  • Vieregge P, Schifke A, Kompf D (1992) Parkinson’s disease in twins. Neurology 42:1453–1461

    PubMed  CAS  Google Scholar 

  • Wachtel H (1999) Dopamin-Rezeptor-Agonisten: Apomorphin, Bromocriptin, Lisurid, Pergolid. In: Riederer P, Laux G, Pöldinger W (Hrsg) Neuro-Psychopharmaka, Bd 5, 2. Aufl, Springer, Wien, S 201–237

    Google Scholar 

  • Walinshaw G, Waters CM (1995) Induction of apoptosis in catecholaminergic PC12 cells by L-Dopa: implications for the treatment of Parkinson’s disease. J Clin Invest 95:2458–2464

    Google Scholar 

  • Walters JH (1960) Postencephalitic Parkinson syndrome after meningoencephalitis due to Coxsacki virus group B, type 2. N Engl J Med 263:744–747

    Google Scholar 

  • Ward CD, Duvoisin RC, Ince SE, et al(1983) Parkinson’s disease in 65 pairs of twins and in a set of quadruplets. Neurology 33:815–824

    PubMed  CAS  Google Scholar 

  • World Health Organization (1998) World Health Report, World Health Organization, Geneva

    Google Scholar 

  • Wszolek ZK, Gwinn-Hardy K, Wszolek EK, et al (2001) Family C (German-American) with late onset parkinsonism: longitudinal observations including autopsy. Neurology 52(Suppl 2):A221

    Google Scholar 

  • Wüllner U, Kornhuber J, Weller M (1999) Cell death and apoptosis regulating proteins in Parkinson’s disease — a cautionary note. Acta Neuropathol 97:408–412

    PubMed  Google Scholar 

  • Yamada T (1995) Further observations on MxA-positive Lewy bodies in Parkinson’s disease brain tissues. Neurosci Lett 195:41–44

    PubMed  CAS  Google Scholar 

  • Yamada T, McGeer PL, Baimbridge KG, McGeer EG (1990) Relative sparing in Parkinson’s disease of substantia nigra neurons containing calbindin D28 K. Brain Res 526:303–307

    PubMed  CAS  Google Scholar 

  • Yamada T, McGeer PL, McGeer EG (1992) Lewy bodies in Parkinson’s disease are recognized by antibodies to complement proteins. Acta Neuropathol 84:100–104

    PubMed  CAS  Google Scholar 

  • Ye FQ, Allen PS, Martin WR (1996) Basal ganglia iron content in Parkinson’s disease measured with magnetic resonance. Mov Disord 11:243–249

    PubMed  CAS  Google Scholar 

  • Yoshida E, Mokuno K, Aoki SI et al(1994) Cerebrospinal fluid levels of superoxide dismutase. J Neurol Sci 124:25–31

    PubMed  CAS  Google Scholar 

  • Youdim MB, Ben-Shachar D, Riederer P (1994) The enigma of neuromelanin in Parkinson’s disease substantia nigra. J Neural Transm 43:113–122

    CAS  Google Scholar 

  • Zayed J, Ducic S, Campanella G, et al(1990) Facteurs environnementeaux dans la maladie de Parkinson. Can J Neurol Sci 17:286–291

    PubMed  CAS  Google Scholar 

  • Zecca L, Gallorini M, Schünemann V, et al(2001) Iron, neuromelanin and ferritin in substantia nigra of normal subjects at different ages. Consequences for iron storage and neurodegenerative processes. J Neurochem 76:1766–1773

    PubMed  CAS  Google Scholar 

  • Zesiewicz TA, Hauser RA (2001) Neurosurgery for Parkinson’s disease. Semin Neurol 21:91–101

    PubMed  CAS  Google Scholar 

  • Zubenko GS (1992) Biological correlates of clinical heterogeneity in primary dementia. Neuropsychopharmacol 6:72–93

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berg, D., Riederer, P. (2004). Die Parkinson-Krankheit. In: Ganten, D., Ruckpaul, K., Ruiz-Torres, A. (eds) Molekularmedizinische Grundlagen von altersspezifischen Erkrankungen. Molekulare Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18741-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18741-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62272-4

  • Online ISBN: 978-3-642-18741-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics