Skip to main content

Part of the book series: Molekulare Medizin ((MOLMED))

  • 187 Accesses

Zusammenfassung

Jeanne L. Calment, geboren am 21. Februar 1875, gestorben am 4. August 1997 im Alter von 122 Jahren in einem Alterspflegeheim in Arles, Frankreich, war der bisher älteste Mensch, dessen Lebensalter bestätigt ist. In den westlichen Industriestaaten steigt der Anteil der älteren Bevölkerung stetig an. Dies wird dazu führen, dass bis zum Jahr 2050 etwa ein Viertel der Bevölkerung über 65 Jahre alt sein wird. Noch zu Beginn des letzten Jahrhunderts lag die durchschnittliche Lebenserwartung des Menschen in den entwickelten Ländern bei etwa 37 Jahren. Heute beträgt diese etwa 73 Jahre, Tendenz steigend. Den steilsten Anstieg in der Lebenserwartung erlebt seit 1950 Japan, wo das durchschnittliche Lebensalter sogar 87 Jahre bei Frauen und 78 Jahre bei Männern beträgt (Wemmer 1993). Die Gründe für diese immense Verlängerung der Lebenserwartung seit dem letzten Jahrhundert sind vielfältig und werden unter anderem in der verbesserten Hygiene, der veränderten Ernährung und nicht zuletzt in den wesentlich weiterentwickelten Behandlungsmethoden der Medizin gesehen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Adams JM, Cory S (1998) The bcl-2 protein family — arbiters of cell survival. Science 281:1322–1326

    PubMed  CAS  Google Scholar 

  • Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB, Greider CW et al (1992) Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA 89:10114–10118

    PubMed  CAS  Google Scholar 

  • Beal MF (1995) Aging, energy, and oxidative stress in neuro-degenerative diseases. Ann Neurol 38:357–366

    PubMed  CAS  Google Scholar 

  • Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78:547–581

    PubMed  CAS  Google Scholar 

  • Behl C (1999) Alzheimer’s disease and oxidative stress: implications for novel therapeutic approaches. Prog Neuro-biol 57:301–23

    CAS  Google Scholar 

  • Behl C (2000) Apoptosis and Alzheimer’s disease. J Neural Transm 107:1325–44

    PubMed  CAS  Google Scholar 

  • Behl C (2001) Estrogen — mystery drug of the brain? Springer, Berlin Heidelberg New York

    Google Scholar 

  • Behl C, Holsboer F (1999) The female sex hormone oestrogen as a neuroprotectant. Trends Pharmacol Sci 20:441–444

    PubMed  CAS  Google Scholar 

  • Behl C, Widmann M, Trapp T, Holsboer F (1995) 17-beta es-tradiol protects neurons from oxidative stress-induced cell death in vitro. Biochem Biophys Res Comm 216:473–482

    PubMed  CAS  Google Scholar 

  • Bestilny LJ, Brown CB, Miura Y, Robertson LD, Riabowol KT (1996) Selective inhibition of telomerase activity during terminal differentiation of immortal cell lines. Cancer Res 56:3796–3802

    PubMed  CAS  Google Scholar 

  • Bhattacharyya A, Blackburn EH (1997) A functional telomerase RNA swap in vivo reveals the importance of non-template RNA domains. Proc Natl Acad Sci USA 94:2823–2827

    PubMed  CAS  Google Scholar 

  • Bjorksten J, Tenhu H (1990) The cross linking theory of aging-added evidence. Exp Gerontol 25:91–95

    PubMed  CAS  Google Scholar 

  • Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB et al (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279:349–352

    PubMed  CAS  Google Scholar 

  • Bond J, Haughton M, Blaydes J, Gire V, Wynford-Thomas D, Wyllie F (1996) Evidence that transcriptional activation by p53 plays a direct role in the induction of cellular senescence. Oncogene 13:2097–2104

    PubMed  CAS  Google Scholar 

  • Bryan TM, Englezou A, Dalia-Pozza L, Dunham MA, Reddel RR (1997) Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat Med 3:1271–1274

    PubMed  CAS  Google Scholar 

  • Burek MJ, Oppenheim RW (1996) Programmed cell death in the developing nervous system. Brain Pathol 6:427–446

    PubMed  CAS  Google Scholar 

  • Butler RN, Fossel M, Pan CX, Rothman DJ, Rothman SM (2000) Anti-aging medicine. 2. Efficacy and safety of hormones and antioxidants. Geriatrics. 55:48–58

    PubMed  CAS  Google Scholar 

  • Chang E, Harley CB (1995) Telomere length and replicative aging in human vascular tissues. Proc Natl Acad Sci USA 92(24):11190–11194

    PubMed  CAS  Google Scholar 

  • Chen Q, Ames BN (1994) Senescence-like growth arrest induced by hydrogen peroxide in human diploid fibroblast F65 cells. Proc Natl Acad Sci USA 91:4130–4134

    PubMed  CAS  Google Scholar 

  • Cheney KE, Walford RL (1974) Immune function and dysfunction in relation to aging. Life Sci 14:2075–2084

    PubMed  CAS  Google Scholar 

  • Chin L, Artandi SE, Shen Q, Tarn A, Lee SL, Gottlieb GJ, Greider CW et al (1999) p53 deficiency rescues the adverse effects of telomere loss and cooperates with telo-mere dysfunction to accelerate carcinogenesis. Cell 97:527–538

    PubMed  CAS  Google Scholar 

  • Collins K (2000) Mammalian telomeres and telomerase. Curr Opin Cell Biol 12:378–383

    PubMed  CAS  Google Scholar 

  • Cristofalo VJ, Allen RG, Pignolo RJ, Martin BG, Beck JC (1998) Relationship between donor age and the replicative lifespan of human cells in culture: a reevaluation. Proc Natl Acad Sci USA 95:10614–10619

    PubMed  CAS  Google Scholar 

  • Dhaene K, Van Marck E, Parwaresch R (2000) Telomeres, telomerase and cancer: an up-date. Virchows Arch 437:1–16

    PubMed  CAS  Google Scholar 

  • Duggan DJ, Bittner M, Chen YD, Meltzer P, Trent JM (1999) Expression profiling using cDNA microarrays. Nat Genet 21(Suppl S):10–14

    PubMed  CAS  Google Scholar 

  • Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S (1998) A caspase-activated DNASE that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391:43–50

    PubMed  CAS  Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    PubMed  CAS  Google Scholar 

  • Geiszt M, Kopp JB, Varnai P, Leto TL (2000) Identification of renox, an NAD(P)H oxidase in kidney. Proc Natl Acad Sci USA 97:8010–8014

    PubMed  CAS  Google Scholar 

  • Golubev AG (1996) The other side of metabolism — a review. Biochemistry (Moscow) 61:1443–1460

    Google Scholar 

  • Gottschling DE, Aparicio OM, Billington BL, Zakian VA (1990) Position effect at S. cerevisiae telomeres: reversible repression of pole II transcription. Cell 63:751–762

    PubMed  CAS  Google Scholar 

  • Gray MD, Shen JC, Kamath-Loeb AS, Blank A, Sopher BL, Martin GM, Oshima J et al (1997) The Werner syndrome protein is a DNA helicase. Nat Genet.}17:100–103

    PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press

    Google Scholar 

  • Halvorsen TL, Beattie GM, Lopez AD, Hayek A, Levine F (2000) Accelerated telomere shortening and senescence in human pancreatic islet cells stimulated to divide in vitro. J Endocrinol 166:103–109

    PubMed  CAS  Google Scholar 

  • Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460

    PubMed  CAS  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 2:298–300

    Google Scholar 

  • Harman D (1998a) Extending functional life span. Exp Gerontol 33:95–112

    PubMed  CAS  Google Scholar 

  • Harman D (1998b) Aging: phenomena and theories. Ann N Y Acad Sci 854:1–7

    PubMed  CAS  Google Scholar 

  • Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ (1993) The p21 Cdk-interacting protein Cipl is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805–816

    PubMed  CAS  Google Scholar 

  • Harrington L, McPhail T, Mar V, Zhou W, Oulton R, Bass MB, Arruda I et al (1997) A mammalian telomerase-asso-ciated protein. Science 275:973–977

    PubMed  CAS  Google Scholar 

  • Hayflick L (1965) The limited in vitro lifetime of human di-ploid cell strains. Exp Cell Res 37:614–636

    PubMed  CAS  Google Scholar 

  • Hayflick L (1987) Origins of longevity. In: Warner HR, Butler RN, Sprott RL, Schneider EL (eds) Modern biological theories of aging. Raven, New York, pp 21–34

    Google Scholar 

  • Hisama FM, Chen YH, Meyn MS, Oshima J, Weissman SM (2000) WRN or telomerase constructs reverse 4-nitroqui-noline 1-oxide sensitivity in transformed Werner syndrome fibroblasts. Cancer Res 60:2372–2376

    PubMed  CAS  Google Scholar 

  • Igarashi H, Sakaguchi N (1997) Telomerase activity is induced in human peripheral B lymphocytes by the stimulation to antigen receptor. Blood 89:1299–1307

    PubMed  CAS  Google Scholar 

  • Johnson FB, Sinclair DA, Guarente L (1999) Molecular biology of aging. Cell 96:291–302

    PubMed  CAS  Google Scholar 

  • Jung CW, Rong YQ, Doctrow S, Baudry M, Malfroy B, Xu ZS (2001) Synthetic superoxide dismutase/catalase mimetics reduce oxidative stress and prolong survival in a mouse amyotrophic lateral sclerosis model. Neurosci Lett 304:157–160

    PubMed  CAS  Google Scholar 

  • Kang SS, Kwon T, Kwon DY, Do SI (1999) Protein kinase enhances human telomerase activity through phosphorylation of telomerase reverse transcriptase subunit. J Biol Chem 274:13085–13090

    PubMed  CAS  Google Scholar 

  • Kanungo MS (1994) Genes and aging. Cambridge University Press

    Google Scholar 

  • Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM et al (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266:2011–2015

    PubMed  CAS  Google Scholar 

  • Kirkwood TBL, Austad SN (2000) Why do we age? Nature 408:233–238

    PubMed  CAS  Google Scholar 

  • Klapper W, Parwaresch R, Krupp G (2001) Telomere biology in human aging and aging syndromes. Mech Ageing Dev 122:695–712

    PubMed  CAS  Google Scholar 

  • Kothakota S, Azuma T, Reinhard C, Klippel A, Tang J, Chu KT, Mcgarry TJ et al (1997) Caspase-3-generated fragment of gelsolin — effector of morphological change in apoptosis. Science 278:294–298

    PubMed  CAS  Google Scholar 

  • Kuida K, Zheng TS, Na S, Kuan C, Yang D, Karasuyama H, Rakic P et al (1996) Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384:368–372

    PubMed  CAS  Google Scholar 

  • Kuroo M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:45–51

    CAS  Google Scholar 

  • LaBranche H, Dupuis S, Ben-David Y, Bani MR, Wellinger RJ, Chabot B (1998) Telomere elongation by hnRNP Al and a derivative that interacts with telomeric repeats and telomerase. Nat Genet 19:199–202

    PubMed  CAS  Google Scholar 

  • Lee AC, Fenster BE, Ito H, Takeda K, Bae NS, Hirai T, Yu ZX et al (1999) Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J Biol Chem 274:7936–7940

    PubMed  CAS  Google Scholar 

  • Lee CK, Weindruch R, Prolla TA (2000) Gene-expression profile of the ageing brain in mice. Nat Genet 25:294–297

    PubMed  CAS  Google Scholar 

  • Li H, Zhao LL, Funder JW, Liu JP (1997) Protein phos-phatase 2A inhibits nuclear telomerase activity in human breast cancer cells. J Biol Chem 272:16729–16732

    PubMed  CAS  Google Scholar 

  • Lindsey J, McGill NI, Lindsey LA, Green DK, Cooke HJ (1991) In vivo loss of telomeric repeats with age in humans. Mutat Res 256:45–48

    PubMed  CAS  Google Scholar 

  • Liu JP (1999) Studies of the molecular mechanisms in the regulation of telomerase activity. FASEB J 13:2091–2104

    PubMed  CAS  Google Scholar 

  • Liu XS, Zou H, Slaughter C, Wang XD (1997) DFF, a hetero-dimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89:175–184

    PubMed  CAS  Google Scholar 

  • Löffler G, Petrides PE (1998) Biochemie und Pathobiochemie. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Maggio ET, Ramnarayan K (2001) Recent developments in computational proteomics. Trends Biotechnol 19:266–272

    PubMed  CAS  Google Scholar 

  • Mattson MP, Duan WZ, Lee J, Guo ZH (2001) Suppression of brain aging and neurodegenerative disorders by dietary restriction and environmental enrichment: molecular mechanisms. Mech Ageing Dev 122:757–778

    PubMed  CAS  Google Scholar 

  • Melov S, Ravenscroft J, Malik S, Gill MS, Walker DW, Clayton PE, Wallace DC et al (2000) Extension of life-span with superoxide dismutase/catalase mimetics. Science 289:1567–1569

    PubMed  CAS  Google Scholar 

  • Metz T, Harris AW, Adams JM (1995) Absence of p53 allows direct immortalization of hematopoietic cells by the myc and raf oncogenes. Cell 82:29–36

    PubMed  CAS  Google Scholar 

  • Meyerson M, Counter CM, Eaton EN, Eliisen LW, Steiner P, Caddie SD, Ziaugra L et al (1997) hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 90:785–795

    PubMed  CAS  Google Scholar 

  • Miki T, Morishima A, Nakura J (2000) The genes responsible for human progeroid syndromes. Intern Med 39:327–328

    PubMed  CAS  Google Scholar 

  • Miquel J, Economos AC (1979) Favorable effects of the anti-oxidants sodium and magnesium thiazolidine carboxylate on the vitality and life span of Drosophila and mice. Exp Gerontol 14:279–285

    PubMed  CAS  Google Scholar 

  • Mockett RJ, Orr WC, Rahmandar JJ, Sohal BH, Sohal RS (2001) Antioxidant status and stress resistance in long-and short-lived lines of Drosophila melanogaster. Exp Gerontol 36:441–463

    PubMed  CAS  Google Scholar 

  • Morin GB (1989) The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell 59:521–529

    PubMed  CAS  Google Scholar 

  • Moser MJ, Kamath-Loeb AS, Jacob JE, Bennett SE, Oshima J, Monnat RJ Jr (2000) WRN helicase expression in Werner syndrome cell lines. Nucleic Acids Res 28:648–654

    PubMed  CAS  Google Scholar 

  • Nakamura TM, Morin GB, Chapman KB, Weinrich SL, Andrews WH, Lingner J, Harley CB, Cech TR (1997) Telomerase catalytic subunit homologues from fission yeast and human. Science 277:955–959

    PubMed  CAS  Google Scholar 

  • Nakayama J, Saito M, Nakamura H, Matsuura A, Ishikawa F (1997) TLP1: a gene encoding a protein component of mammalian telomerase is a novel member of WD repeats family. Cell 88:875–884

    PubMed  CAS  Google Scholar 

  • Nakura J, Ye L, Morishima A, Kohara K, Miki T (2000) Helicases and aging. Cell Mol Life Sci 57:716–730

    PubMed  CAS  Google Scholar 

  • Niida H, Matsumoto T, Satoh H, Shiwa M, Tokutake Y, Furuichi Y, Shinkai Y (1998) Severe growth defect in mouse cells lacking the telomerase RNA component. Nat Genet 19:203–206

    PubMed  CAS  Google Scholar 

  • Noda A, Ning Y, Venable SF, Pereira-Smith OM, Smith JR (1994) Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp Cell Res 211:90–98

    PubMed  CAS  Google Scholar 

  • Okuda K, Khan MY, Skurnick J, Kimura M, Aviv H, Aviv A (2000) Telomere attrition of the human abdominal aorta: relationships with age and atherosclerosis. Atherosclerosis 152:391–398

    PubMed  CAS  Google Scholar 

  • Olovnikov AM (1996) Telomeres, telomerase, and aging: origin of the theory. Exp Gerontol 31:443–448

    PubMed  CAS  Google Scholar 

  • Orr WC, Sohal RS (1994) Extension of life-span by overex-pression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263:1128–1130

    PubMed  CAS  Google Scholar 

  • Packer L, Fuehr K (1977) Low oxygen concentration extends the lifespan of cultured human diploid cells. Nature 267:423–425

    PubMed  CAS  Google Scholar 

  • Pallini R, Pierconti F, Falchetti ML, D’Arcangelo D, Fernandez E, Maira G, D’Ambrosio E et al (2001) Evidence for telomerase involvement in the angiogenesis of astrocytic tumors: expression of human telomerase reverse transcriptase messenger RNA by vascular endothelial cells. J Neurosurg 94:961–969

    PubMed  CAS  Google Scholar 

  • Parkes TL, Elia AJ, Dickinson D, Hilliker AJ, Phillips JP, Boulianne GL (1998) Extension of Drosophila lifespan by overexpression of human SOD1 in motoneurons. Nat Genet 19:171–174

    PubMed  CAS  Google Scholar 

  • Poole JC, Andrews LG, Tollefsbol TO (2001) Activity, function, and gene regulation of the catalytic subunit of telomerase (hTERT). Gene 269:1–12

    PubMed  CAS  Google Scholar 

  • Raff MC, Barres BA, Burne JF, Coles HS, Ishizaki Y, Jacob-son MD (1993) Programmed cell death and the control of cell survival: lessons from the nervous system. Science 262:695–700

    PubMed  CAS  Google Scholar 

  • Reed JC (2001) Apoptosis-regulating proteins as targets for drug discovery. Trends Mol Med 7:314–319

    PubMed  CAS  Google Scholar 

  • Reiter RJ, Tan DX, Qi W, Manchester LC, Karbownik M, Calvo JR (2000) Pharmacology and physiology of melatonin in the reduction of oxidative stress in vivo. Biol Signals 9:160–171

    CAS  Google Scholar 

  • Rohme D (1981) Evidence for a relationship between longevity of mammalian species and life spans of normal fibro-blasts in vitro and erythrocytes in vivo. Proc Natl Acad Sci USA 78:5009–5013

    PubMed  CAS  Google Scholar 

  • Saretzki G, Feng J, Zglinicki T von, Villeponteau B (1998) Similar gene expression pattern in senescent and hyper-oxic-treated fibroblasts. J Gerontol A Biol Sci Med Sci 53:B438-442

    Google Scholar 

  • Sasgary S, Wieser M, Cernì C (2001) Targeted inhibition of telomerase in human cancer: will it be a double-edged sword? Oncology 24:22–26

    CAS  Google Scholar 

  • Sastre J, Pallardo FV, Asuncion JG de la, Vina J (2000) Mitochondria, oxidative stress and aging. Free Radic Res 32:189–198

    PubMed  CAS  Google Scholar 

  • Serra V, Grune T, Sitte N, Saretzki G, Zglinicki T von (2000) Telomere length as a marker of oxidative stress in primary human fibroblast cultures. Ann N Y Acad Sci 908:327–30

    PubMed  CAS  Google Scholar 

  • Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593–602

    PubMed  CAS  Google Scholar 

  • Sharma HW, Sokoloski JA, Perez JR, Maltese JY, Sartorelli AC, Stein CA, Nichols G et al (1996) Differentiation of immortal cells inhibits telomerase activity. Proc Natl Acad Sci USA 92:12343–12346

    Google Scholar 

  • Shay JW (1999) Toward identifying a cellular determinant of telomerase repression. J Natl Cancer Inst 91:4–6

    PubMed  CAS  Google Scholar 

  • Shay JW, Bacchetti S (1997) A survey of telomerase activity in human cancer. Eur J Cancer 33:787–791

    PubMed  CAS  Google Scholar 

  • Sies H (1986) Biochemistry of oxidative stress. Angew Chemie (Int edn) 12:1058–1071

    Google Scholar 

  • Sies H (1993) Strategies of antioxidant defense. Eur J Bio-chem 215:213–219

    CAS  Google Scholar 

  • Sitte N, Huber M, Grune T, Ladhoff A, Doecke WD, Zglinicki T von, Davies KJ (2000) Proteasome inhibition by lipofuscin/ceroid during postmitotic aging of fibroblasts. FASEB J 14:1490–1498

    PubMed  CAS  Google Scholar 

  • Smith MA, Sayre LM, Monnier VM, Perry G (1995) Radical aging in Alzheimer’s disease. Trends Neurosci 18:172–176

    PubMed  CAS  Google Scholar 

  • Steensel B van, Smogorzewska A, Lange T de (1998) TRF2 protects human telomeres from end-to-end fusions. Cell 92(3):401–413

    PubMed  Google Scholar 

  • Suh YA, Arnold RS, Lassegue B, Shi J, Xu X, Sorescu D, Chung AB (1999) Cell transformation by the superoxide-generating oxidase moxl. Nature 401:79–82

    PubMed  CAS  Google Scholar 

  • Takahashi Y, Kuroo M, Ishikawa F (2000) Aging mechanisms. Proc Natl Acad Sci USA 97:12407–12408

    PubMed  CAS  Google Scholar 

  • Thomas M et al (2000) Formation of functional tissue from transplanted adrenocortical cells express in telomerase reverse transcriptase. Nat Biotechnol 18:39–42

    PubMed  CAS  Google Scholar 

  • Toda T (2000) Current status and perspectives of proteomics in aging research. Exp Gerontol 35:803–810

    PubMed  CAS  Google Scholar 

  • Utsugi T, Ohno T, Ohyama Y, Uchiyama T, Saito Y, Matsu-mura Y, Aizawa H et al (2000) Decreased insulin production and increased insulin sensitivity in the klotho mutant mouse, a novel animal model for human aging. Metabolism 49:1118–1123

    PubMed  CAS  Google Scholar 

  • Vojta PJ, Barrett JC (1995) Genetic analysis of cellular senescence. Biochim Biophys Acta 1242:29–41

    PubMed  Google Scholar 

  • Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283:1482–1488

    PubMed  CAS  Google Scholar 

  • Wang J, Hannon GJ, Beach DH (2000) Risky immortalization by telomerase. Nature 405:755–756

    PubMed  CAS  Google Scholar 

  • Wemmer U (1993) Entwicklung der Weltbevölkerung. Biol Med 22:5–10

    Google Scholar 

  • Weng NP, Palmer LD, Levine BL, Lane HC, June CH, Hodes RJ (1998) Tales of tails: regulation of telomere length and telomerase activity during lymphocyte development, differentiation, activation, and aging. Immun Rev 160:43–54

    Google Scholar 

  • Williams GT, Smith CA (1993) Molecular regulation of apoptosis: genetic controls on cell death. Cell 74:777–779

    PubMed  CAS  Google Scholar 

  • Wyllie AH, Kerr JF, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251–306

    PubMed  CAS  Google Scholar 

  • Wyllie FS, Jones CJ, Skinner JW, Haughton MF, Wallis C, Wynford-Thomas D, Faragher RG et al (2000) Telomerase prevents the accelerated cell ageing of Werner syndrome fibroblasts. Nat Genet 24:16–17

    PubMed  CAS  Google Scholar 

  • Yahata K, Mori K, Arai H, Koide S, Ogawa Y, Mukoyama M, Sugawara A et al (2000) Molecular cloning and expression of a novel klotho-related protein. J Mol Med 78:389–394

    PubMed  CAS  Google Scholar 

  • Yamaguchi F, Morrison RS, Takahashi H, Teramoto A (1999) Anti-telomerase therapy suppressed glioma proliferation. Oncol Res 6:773–776

    CAS  Google Scholar 

  • Yang J, Chang E, Cherry AM, Bangs CD, Oei Y, Bodnar A, Bronstein A et al (1999) Human endothelial cell life extension by telomerase expression. J Biol Chem 274:26141–26148

    PubMed  CAS  Google Scholar 

  • Zglinicki T von, Saretzki G, Docke W, Lotze C (1995) Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? Exp Cell Res 220:186–193

    Google Scholar 

  • Zhu L, Skoultchi A (2001) Coordinating cell proliferation and differentiation. Curr Opin Genet Dev 11:91–97

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Behl, C. (2004). Molekulare Grundlagen des Alterns — eine Einführung. In: Ganten, D., Ruckpaul, K., Ruiz-Torres, A. (eds) Molekularmedizinische Grundlagen von altersspezifischen Erkrankungen. Molekulare Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18741-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18741-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62272-4

  • Online ISBN: 978-3-642-18741-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics