Skip to main content

Molecular Information Theory: Solving the Mysteries of DNA

  • Chapter
Modelling in Molecular Biology

Part of the book series: Natural Computing Series ((NCS))

Summary

DNA is the foundation stone of molecular information. Therefore, any theory that accounts for the basic molecular properties and behaviours of DNA inside the living cell can be viewed as constituting a molecular information theory. It is posited that the necessary and sufficient conditions for unraveling the workings of DNA are the successful construction of a computer model of the living cell that (i) takes into account not only information but also free energy transactions mediated by molecular machines, (ii) utilizes sequence-specific conformational strains of biopolymers (called conformons) as the immediate driving force for all teleonomic functions of molecular machines, and (iii) implements cell language in the form of fuzzy if-then rules at the levels of both molecular machines and the living cell. One important application of computer models of the cell is thought to be in the field of DNA microarray data analysis. It is suggested that, without computer models of the cell, it might be nearly impossible to extract meaningful biological information from microarray data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.W. Gibbs. The Unseen Genome: Gems among the Junk. Sci. Am., Vol. 289(5), pp.48–53, 2003.

    Article  Google Scholar 

  2. S. Ji. Energy and Negentropy in Enzymic Catalysis. Ann. N.Y. Acad. Sci., Vol. 227, pp.419–437, 1974.

    Article  Google Scholar 

  3. S. Ji. Free energy and information contents of Conformons in proteins and DNA. BioSystems, Vol. 54, pp.107–130, 2000.

    Article  Google Scholar 

  4. C.J. Benham. Energetics of the strand separation transition in superhelical DNA. J. Mol. Biol., Vol. 225, pp.835–847, 1992.

    Article  Google Scholar 

  5. C.J. Benham. Sites of predicted stress-induced DNA duplex destabilization occur preferentially at regulatory sites. Proc. Natl. Acad. Sci. USA, Vol. 90, pp.2999–3003, 1993.

    Article  Google Scholar 

  6. C.J. Benham. Duplex destabilization in superhelical DNA is predicted to occur at specific transcriptional regulatory regions. J. Mol. Biol., Vol. 255, pp.425–434, 1996.

    Article  Google Scholar 

  7. C.J. Benham. Computation of DNA structural variability: a new predictor of DNA regulatory regions. CABIOS, Vol. 12(5), pp.375–381, 1996.

    Google Scholar 

  8. R.D. Astumian. The role of thermal activation in motion and force generation by molecular motors. Phil. Trans. R. Soc. Lond. B, Vol. 355, pp.511–522, 2000.

    Article  Google Scholar 

  9. B. Kosko. Fuzzy Thinking: The New Science of Fuzzy Logic, Hyperion, New York, 1993.

    Google Scholar 

  10. G.U. Nienhaus, J.D. Muller, B.H. McMahon, H. Frauenfelder. Exploring the conformational energy landscape of proteins. Physica D, Vol. 107, pp.297–311, 1997.

    Article  Google Scholar 

  11. B. Kosko. Fuzzy Systems as Universal Approximators. IEEE Trans. Comput., Vol. 43(11), pp.1329–1333, 1994.

    Article  MATH  Google Scholar 

  12. K. Kilic, B.A. Sproule, I.B. Turksen, C.A. Naranjo. Fuzzy system modeling in pharmacology: an improved algorithm. Fuzzy Sets Syst., Vol. 130, pp.253–264, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Ji. A Cell Linguistic Analysis of Apoptosis. Comments Toxicol., Vol. 5(6), pp.571–585, 1997.

    Google Scholar 

  14. S. Ji. Isomorphism between cell and human languages: molecular biological, bioinformatic and linguistic implications. BioSystems, Vol. 4, pp.17–39, 1997.

    Article  Google Scholar 

  15. S. Ji. Biocybernetics: A Machine Theory of Biology. In: Molecular Theories of Cell Life and Death, Rutgers University Press, New Brunswick, pp.1–237, 1991.

    Google Scholar 

  16. S. Ji. The Bhopalator: An Information/Energy Dual Model of the Living Cell (II). Fundam. Inf., Vol. 49(1-3), pp.147–165, 2002.

    MATH  Google Scholar 

  17. S. Ji. Microsemiotics of DNA. Semiotica, Vol. 138, pp.15–42, 2002.

    Google Scholar 

  18. M. Schena, D. Shalon, R.W. Davis, P.O. Brown. Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray. Science, Vol. 270, pp.467–470, 1995.

    Article  Google Scholar 

  19. A.C. Pease, D. Solas, E.J. Sullivan, M.T. Cronin, C.P. Holmes, S.P. Fodor. Lightgenerated Oligonucleotide arrays for Rapid DNA Sequence Analysis. Proc. Natl. Acad. Sci. USA, Vol. 91, pp.5022–5026, 1994.

    Article  Google Scholar 

  20. M.B. Eisen, P.T. Spellman, P.O. Brown, D. Botstein. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA, Vol. 95, pp.14863–14868, 1998.

    Article  Google Scholar 

  21. N.S. Holter, M. Mitra, A. Maritan, M. Cieplak, J.R. Banavar, N.V. Fedoroff. Fundamental patterns underlying gene expression profiles: simplicity from complexity. Proc. Natl. Acad. Sci. USA, Vol. 97(15), pp.8409–8414, 2000.

    Article  Google Scholar 

  22. S.J. Watson, U. Akil. Gene Chips and Arrays Revealed: A Primer on Their Power and Their Uses. Biol. Psychiatry, Vol. 45, pp.533–543, 1999.

    Article  Google Scholar 

  23. U. Alon, N. Barkai, D.A. Notterman, K. Gish, S. Ybarra, D. Mack, A.J. Levine. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. USA, Vol. 96, pp.6745–6750, 1999.

    Article  Google Scholar 

  24. K.P. White, S.A. Rofkin, P. Hurban, D.S. Hogness. Microarray Analysis of Drosophila Development During Metamorphosis. Science, Vol. 286, pp.2179–2184, 1999.

    Article  Google Scholar 

  25. D.G. Hoel. A Simple Two-Compartmental Model Applicable to Enzyme Regulation. J. Biol. Chem., Vol. 245, pp.5811–5812, 1970.

    Google Scholar 

  26. D.J. Shapiro, J.E. Blume, D.A. Nielsen. Regulation of Messenger RNA Stability in Eukaryotic Cells. BioEssays, Vol. 6(5), pp.221–226, 1987.

    Article  Google Scholar 

  27. S.J. Watson, U. Akil. Gene Chips and Arrays Revealed: A Primer on Their Power and Their Uses. Biol. Psychiatry, Vol. 45, pp.533–543, 1999.

    Article  Google Scholar 

  28. U. Alon, N. Barkai, D.A. Notterman, K. Gish, S. Ybarra, D. Mack, A.J. Levine. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. USA, Vol. 96, pp.6745–6750, 1999.

    Article  Google Scholar 

  29. K.P. White, S.A. Rofkin, P. Hurban, D.S. Hogness. Microarray Analysis of Drosophila Development During Metamorphosis. Science, Vol. 286, pp.2179–2184, 1999.

    Article  Google Scholar 

  30. D.G. Hoel. A Simple Two-Compartmental Model Applicable to Enzyme Regulation. J. Biol. Chem., Vol. 245, pp.5811–5812, 1970.

    Google Scholar 

  31. D.J. Shapiro, J.E. Blume, D.A. Nielsen. Regulation of Messenger RNA Stability in Eukaryotic Cells. BioEssays, Vol. 6(5), pp.221–226, 1987.

    Article  Google Scholar 

  32. J.L. Hargrove, F.H. Schmidt. The role of mRNA and protein stability in gene expression. FASEB J., Vol. 3, pp. 2360–2370, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ji, S. (2004). Molecular Information Theory: Solving the Mysteries of DNA. In: Ciobanu, G., Rozenberg, G. (eds) Modelling in Molecular Biology. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18734-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18734-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62269-4

  • Online ISBN: 978-3-642-18734-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics