Skip to main content

Nanoscale and Microsystem-Technology: New Approaches for Thermoelectric Devices

  • Conference paper
MicroNano Integration

Part of the book series: VDI-Buch ((VDI-BUCH))

  • 203 Accesses

Abstract

A survey will be given on the state of the art of advanced thermoelectric microdevices “thermogenerators and Peltier coolers” mainly for the favourite material systems Bi2Te3- (V-VI), PbTe- (IV-VI) compounds, and silicon/germanium (IV-IV) alloys. Aspects of advanced nanoscaled architectures for low dimensional high efficient thermoelectric materials, so called high ZT materials, will be included. Recent results proof either the capability to implement low dimensional material into microthermoelectric devices or the wafer based microelectronic technologies for the fabrication of thermoelectric devices. Prospects for further R&D will be presented. The main emerging markets will be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Seebeck, T.J., “Magnetic polarization of metals and minerals”, Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin, 265, 1822–23.

    Google Scholar 

  2. Peltier, J.C., “Nouvelle experieces sur la caloricite des courans electrique”, Ann. chim., LVI 371, 1834.

    Google Scholar 

  3. Rowe, D.M.(edit.), CRC Handbook of Thermoelectrics CRC Press, BocaRato, New York, London, Tokyo,1995 ISBN 0–8493–0146.

    Google Scholar 

  4. Altenkirch, E., “Über den Nutzeffekt der Thermosäule”, Physikalische Zeitschrift, 10 (1909), 560.

    MATH  Google Scholar 

  5. Hicks, L. D. et al., “Effect of quantum-well structures on the thermoelectric figure of merit”, Phys. Rev. B, Vol. 47, No. 19 (1993), pp. 12727–12731.

    Article  Google Scholar 

  6. Dresselhaus, M. S. et al., “Low Dimensional Thermoelectrics,” Proc. 16th International Conference on Thermoelectrics, Dresden, Germany, August 1997, pp. 92–99.

    Google Scholar 

  7. Harman, T. C. et al., “High Thermoelectric Figures of Merit in PbTh Quantum Wells,” J. Electronic Mater., Vol. 25, No. 7 (1996), pp. 1121–1127.

    Article  Google Scholar 

  8. Harman, T.C. et al., Proc. 18th Int. Conf. on Thermoelectrics, Baltimore, MD, USA, 1000, pp. 280–84.

    Google Scholar 

  9. Chapters “Superlattice and Nanostructure”, Proc. 20th Int. Conf. on Thermoelectrics, Beijing, China, 2001, pp. 331–367.

    Google Scholar 

  10. Chapter “Low Dimensional Structure”, Proc. 21st Int. conf. on Thermoelectrics, Long Beach, CA, USA, 2002, pp. 238–92.

    Google Scholar 

  11. Toprak, M. et al., to be published in: Proc. 22nd Int. Conf. on Thermoelectrics, La Grande Motte, France, August 2003.

    Google Scholar 

  12. Kantser, V. et al., to be published in: Proc. 22nd Int. Conf. on Thermoelectrics, La Grande Motte, France, August 2003.

    Google Scholar 

  13. Venkatasubramanian, R. et al., Proc. 13th Int. Conf. on Thermoelectrics, Kansas City, KS, USA, 1994.

    Google Scholar 

  14. Venkatasubramanian, R. et al., Mat. Res. Soc. Symp. Proc. 478 (1997), 478.

    Google Scholar 

  15. Nurnus, J. et al., to be published in: Proc. 22nd Int. Conf. on Thermoelectrics, La Grande Motte, France, August 2003.

    Google Scholar 

  16. Harman, T.C. et al.,Science 29 (2002), 2229–32.

    Article  Google Scholar 

  17. Alley, R. et al., Proc. 21st Int. conf. on Thermoelectrics, Long Beach, CA, USA, 2002, pp. 528–30.

    Google Scholar 

  18. Venkatasubramanian,R., “Lattice Thermal Conductivity Reduction and Phonon Localizationlike Behavior in Superlattice Structures, Phys. Rev. B Vol. 61, (2000), pp. 3091–309.

    Google Scholar 

  19. Venkatasubramanian, R. et at., “Thin-film Thermoelectric Devices with High Room-temperature Figures of Merit”, Nature, Vol. 413, 11 Oct. 2001, pp. 597–602.

    Article  Google Scholar 

  20. Nurnus, J. et al., Proc. 21st Int. conf. on Thermoelectrics, Long Beach, CA, USA, 2002, pp. 523–27.

    Google Scholar 

  21. Fan, X. et al., “Integrated Cooling for Si-Based Microelectronics”, Proc 20th Int. Conf. Thermoelectrics, Beijing, China, June 2001, pp. 405–408.

    Google Scholar 

  22. Shakouri, A., Proc 16th Int. Conf. Thermoelectrics, Dresden, Germany, August 1997, pp. 636–640. Proc.

    Google Scholar 

  23. Fleurial, J.-P. et al., “Thermoelectric Microcoolers for Thermal Management Applications”, Proc 16th Int. Conf. Thermoelectrics, Dresden, Germany, August 1997, pp. 641–645.

    Google Scholar 

  24. Semeniouk, V., Fleurial, J.-P., “Novel High Performance Thermoelectric Microcoolers with Diamond Substrates”, Proc 16th Int. Conf. Thermoelectrics, Dresden, Germany, August 1997, pp. 683–686.

    Google Scholar 

  25. Semenyuk, V., Proc. 20th Int. Conf. on Thermoelectrics, Beijing, China, 2001, pp.391–96.

    Google Scholar 

  26. Semenyuk, V., Proc. 21st Int. conf. on Thermoelectrics, Long Beach, CA, USA, 2002, pp. 531–34.

    Google Scholar 

  27. Semenyuk, V., to be published in: Proc. 22nd Int. Conf. on Thermoelectrics, La Grande Motte, France, August 2003.

    Google Scholar 

  28. Magri, P. et al., “Electrodeposition of Bi2Te3 Films”, Proc 13th Int. Conf. Thermoelectrics Kansas City, USA, August 1994, pp. 277–281.

    Google Scholar 

  29. Fleurial, et al., “Microfabricated Thermoelectric Power-Generation Device”, Int.Appl.No PCT/US99/18036, WO 00/08693, US Patent 6.388.185 B1, May 14, 2002.

    Google Scholar 

  30. Lim, J.R. et al., Proc. 21st Int. conf. on Thermoelectrics, Long Beach, CA, USA, 2002, pp. 535–39.

    Google Scholar 

  31. Snyder, G.J. et al., Nature Materials 2 (2003), pp. 528–31

    Article  Google Scholar 

  32. Diliberto, S., “Wafer-level electrodeposition of thermoelectric bismuth tellurides”, to be presented at Proc. 7th Europ. Workshop on Thermoelectrics, Pamplona, Spain, Oct. 2002.

    Google Scholar 

  33. Diliberto, S. et al., to be published in: Proc. 22nd Int. Conf. on Thermoelectrics, La Grande Motte, France, August 2003.

    Google Scholar 

  34. Böttner, H. et al., Proc. 21st Int. conf. on Thermoelectrics, Long Beach, CA, USA, 2002, pp. 511–18.

    Google Scholar 

  35. Böttner, H. et al., “New thermoelectric compounds using micro-system-technologies”, to be published in: IEEE Journal of MEMS, 2003.

    Google Scholar 

  36. http://www.micropelt.comBöttner,H.etal.,unpublished data.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Böttner, H., Nurnus, J. (2004). Nanoscale and Microsystem-Technology: New Approaches for Thermoelectric Devices. In: Knobloch, H., Kaminorz, Y. (eds) MicroNano Integration. VDI-Buch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18727-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18727-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62265-6

  • Online ISBN: 978-3-642-18727-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics