Skip to main content

Application of the RNA Interference (RNAi) Technology to Angiogenesis Research

  • Chapter
  • 714 Accesses

Part of the book series: Springer Lab Manuals ((SLM))

Abstract

Important discoveries within the past decade,which demonstrated the ability of small duplex RNAs to profoundly regulate gene expression, have opened the door to a new era of gene regulation research while providing a powerful tool to specifically down-regulate genes. Originally discovered in the nematode C. elegans, RNA interference, or RNAi, is defined as the sequence specific silencing of gene expression brought about by the introduction of exogenous double stranded RNA (Fire et al. 1998). In the initial experiments, researchers found that the injection of long (>500bp) dsRNA into nematodes interfered with the expression of specific genes that were homologous in sequence to the injected dsRNAs. Since this initial discovery, it has been shown that long dsRNA is not the direct effector of RNAi. It is cleaved into 21–23 nt duplex RNAs, termed small interfering RNAs, or siRNAs, which are the bona fide effectors of RNAi (Elbashir et al. 2001a). Prior to this discovery, it was not possible to induce RNAi in mammalian cells since the introduction of long dsRNAs induces the interferon response, leading to cell cycle alterations and apoptosis (Elbashir et al. 2001a). However, duplex RNA less than 30 nucleotides in length does not trigger the interferon response (Elbashir et al. 2001a, Elbashir et al. 2001b), and it has become possible to silence specific genes in mammalian cells with the use of siRNA.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ancellin N, Colmont C, Su J, Li Q, Mittereder N, Chae SS, Stefansson S, Liau G, Hla T (2002) Extracellular export of sphingosine kinase-1 enzyme. Sphingosine 1-phosphate generation and the induction of angiogenic vascular maturation. J Biol Chem 277:6667–6675

    Article  PubMed  CAS  Google Scholar 

  • Benimetskaya L, Tonkinson JL, Koziolkiewicz M, Karwowski B, Guga P, Zeltser R, Stec W, Stein CA (1995) Binding of phosphorothioate oligodeoxynucleotides to basic fibroblast growth factor, recombinant soluble CD4, laminin and fibronectin is P-chirality independent. Nucleic Acids Res 23:4239–4245

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet P (2003) Angiogenesis in health and disease.Nat Med 9:653–660

    CAS  Google Scholar 

  • Chi JT, Chang HY, Wang NN, Chang DS, Dunphy N, Brown PO (2003) Genomewide view of gene silencing by small interfering RNAs. Proc Natl Acad Sci USA 100:6343–6346

    Article  PubMed  CAS  Google Scholar 

  • Dobrosotskaya IY, Seegmiller AC, Brown MS, Goldstein JL, Rawson RB (2002) Regulation of SREBP processing and membrane lipid production by phospholipids in Drosophila. Science 296:879–883

    Article  PubMed  CAS  Google Scholar 

  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001a) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  PubMed  CAS  Google Scholar 

  • Elbashir SM, Lendeckel W, Tuschl T (2001b) RNA interference is mediated by 21-and 22-nucleotide RNAs.Genes Dev 15:188–200

    CAS  Google Scholar 

  • Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T (2001c) Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. Embo J 20:6877–6888

    Article  PubMed  CAS  Google Scholar 

  • Fares H, Greenwald I (2001) Genetic analysis of endocytosis in Caenorhabditis elegans: coelomocyte uptake defective mutants. Genetics 159:133–145

    PubMed  CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  • Harborth J, Elbashir SM, Bechert K, Tuschl T, Weber K (2001) Identification of essential genes in cultured mammalian cells using small interfering RNAs. J Cell Sci 114:4557–4565.

    PubMed  CAS  Google Scholar 

  • Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Le Bot N, Moreno S, Sohrmann M, Welchman DP, Zipperlen P, Ahringer J (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421:231–237

    Article  PubMed  CAS  Google Scholar 

  • Lassus P, Rodriguez J, Lazebnik Y (2002) Confirming specificity of RNAi in mammalian cells. Sci STKE 2002, PL13

    Article  PubMed  Google Scholar 

  • Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, Tuschl T (2002) Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110:563–574

    Article  PubMed  CAS  Google Scholar 

  • Nykanen A, Haley B, Zamore PD (2001) ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107:309–321

    Article  PubMed  CAS  Google Scholar 

  • Passaniti A, Taylor RM, Pili R, Guo Y, Long PV, Haney JA, Pauly RR, Grant DS, Martin GR (1992) A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab Invest 67:519–528

    PubMed  CAS  Google Scholar 

  • Tuschl T, Zamore PD, Lehmann R, Bartel DP, Sharp PA (1999) Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev 13:3191–3197

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chae, SS., Paik, JH., Shubert-Coleman, J., Furneaux, H., Hla, T. (2004). Application of the RNA Interference (RNAi) Technology to Angiogenesis Research. In: Augustin, H.G. (eds) Methods in Endothelial Cell Biology. Springer Lab Manuals. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18725-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18725-4_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21397-0

  • Online ISBN: 978-3-642-18725-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics