Skip to main content

Transgenic Mutants for the Investigation of Molecular Stroke Mechanisms

  • Conference paper
Maturation Phenomenon in Cerebral Ischemia V
  • 115 Accesses

Abstract

Brain damage induced by focal interruption of blood flow can be differentiated in two pathophysiologically different categories: a hemodynamic type of injury, resulting in primary necrotic brain damage, and a molecular type of injury which leads to delayed or secondary brain injury [15]. Primary necrotic brain injury occurs when blood flow declines - and remains - below the threshold of energy failure. In anaesthetized laboratory animals, this threshold gradually increases from about 15% of control shortly after the onset of ischemia to about 30% after several hours of vascular occlusion [29].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aoki Y, Huang ZH, Thomas SS, Bhide PG, Huang I, Moskowitz MA, Reeves SA (2000) Increased susceptibility to ischemia-induced brain damage in transgenic mice overexpressing a dominant negative form of SHP2. FASEB Journal 14:1965–1973

    Article  PubMed  CAS  Google Scholar 

  2. Astrup J, Symon L, Siesjö BK (1981) Thresholds in cerebral ischemia - The ischemic penumbra. Stroke 12:723–725

    Article  PubMed  CAS  Google Scholar 

  3. Besselmann M,Föcking M,Korhonen L,Lindholm D,Hossmann K-A,Trapp T (2001) Analysis of apoptotic and survival pathways after transient cerebral ischemia in mice. Journal of Cerebral Blood Flow & Metabolism 21 (Supp 1):S9

    Google Scholar 

  4. Bilbao FD, Guarin E, Nef P, Vallet P, Giannakopoulos P, Dubois-Dauphin M (2000) Cell death is prevented in thalamic fields but not in injured neocortical areas after permanent focal ischaemia in mice overexpressing the anti-apoptotic protein Bd-2. European Journal of Neuroscience 12:921–934

    Article  PubMed  Google Scholar 

  5. Bruce AJ, Boling W, Kindy MS, Peschon J, Kraemer PJ, Carpenter MK, Holtsberg FW, Mattson MP (1996) Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nature Medicine 2:788–794

    Article  PubMed  CAS  Google Scholar 

  6. Brusa R (1999) Genetically modified mice in neuropharmacology. Pharmacological Research 39:405–419

    Article  PubMed  CAS  Google Scholar 

  7. Campagne MV, Thibodeaux H, van Bruggen N, Cairns B, Gerlai R, Palmer JT, Williams SP, Lowe DG (1999) Evidence for a protective role of metallothionein-1 in focal cerebral ischemia. Proceedings of the National Academy of Sciences of the United States of America 96:12870–12875

    Article  Google Scholar 

  8. Chan PH (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. Journal of Cerebral Blood Flow and Metabolism 21:2–14

    PubMed  CAS  Google Scholar 

  9. Chan PH, Kamii H, Yang GY, Gafni J, Epstein CJ, Carlson E, Reola L (1993) Brain infarction is not reduced in SOD-1 transgenic mice after a permanent focal cerebral ischemia. Neuroreport 5:293–296

    Article  PubMed  CAS  Google Scholar 

  10. Chen JF, Huang ZH, Ma JY, Zhu JM, Moratalla R, Standaert D, Moskowitz MA, Fink JS, Schwarzschild MA (1999) A (2a) adenosine receptor deficiency attenuates brain injury induced by transient focal ischemia in mice. Journal of Neuroscience 19:9192–9200

    PubMed  CAS  Google Scholar 

  11. Clark WM, Rinker LG, Lessov NS, Hazel K, Hill JK, Stenzel-Poore M, Eckenstein F (2000) Lack of interleukin-6 expression is not protective against focal central nervous system ischemia. Stroke 31:1715–1720

    Article  PubMed  CAS  Google Scholar 

  12. Connolly ES, Winfree CJ, Stern DM, Solomon RA, Pinsky DJ (1996) Procedural and strain-related variables significantly affect outcome in a murine model of focal cerebral ischemia. Neurosurgery 38:523–531

    PubMed  Google Scholar 

  13. Crumrine RC, Thomas AL, Morgan PF (1994) Attenuation of p53 expression protects against focal ischemic damage in transgenic mice. Journal of Cerebral Blood Flow and Metabolism 14:887–891

    Article  PubMed  CAS  Google Scholar 

  14. Dalkara T, Yoshida T, Irikura K, Moskowitz MA (1994) Dual role of nitric oxide in focal cerebral ischemia. Neuropharmacology 33:1447–1452

    Article  PubMed  CAS  Google Scholar 

  15. Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends in Neurosciences 22:391–397

    Article  PubMed  CAS  Google Scholar 

  16. Eliasson MJL, Huang ZH, Ferrante RJ, Sasamata M, Molliver ME, Snyder SH, Moskowitz MA (1999) Neuronal nitric oxide synthase activation and peroxynitrite formation in ischemic stroke linked to neural damage. Journal of Neuroscience 19:5910–5918

    PubMed  CAS  Google Scholar 

  17. Eliasson MJL, Sampei K, Mandir AS, Hum PD, Traystman RJ, Bao J, Pieper A, Wang ZQ, Dawson TM, Snyder SH, Dawson VL (1997) Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nature Medicine 3:1089–1095

    Article  PubMed  CAS  Google Scholar 

  18. Fujii M, Hara H, Meng W, Vonsattel JP, Huang ZH, Moskowitz MA (1997) Strain-related differences in susceptibility to transient forebrain ischemia in SV129 and C57Black/6 mice. Stroke 28:1805–1810

    Article  PubMed  CAS  Google Scholar 

  19. Fujimura M, Morita-Fujimura Y, Kawase M, Copin J-C, Calagui B, Epstein CJ, Chan PH (1999) Manganese superoxide dismutase mediates the early release of mitochondrial cytochrome c and subsequent DNA fragmentation after permanent focal cerebral ischemia in mice. Journal of Neuroscience 19:3414–3422

    PubMed  CAS  Google Scholar 

  20. Grotta J (1995) Why do all drugs work in animals but none in stroke patients? 2. Neuroprotective therapy. Journal of Internal Medicine 237:89–94

    Article  PubMed  CAS  Google Scholar 

  21. Guo ZH, Kindy MS, Kruman I, Mattson MP (2000) Als-linked Cu/Zn-SOD mutation impairs cerebral synaptic glucose and glutamate transport and exacerbates ischemic brain injury. Journal of Cerebral Blood Flow and Metabolism 20:463–468

    PubMed  CAS  Google Scholar 

  22. Hara H, Huang PL, Panahian N, Fishman MC, Moskowitz MA (1996) Reduced brain edema and infarction volume in mice lacking the neuronal isoform of nitric oxide synthase after transient MCA occlusion. Journal of Cerebral Blood Flow and Metabolism 16:605–611

    PubMed  CAS  Google Scholar 

  23. Hata R, Gass P, Mies G, Wiessner C, Hossmann K-A (1998) Attenuated c-fos mRNA induction after middle cerebral artery occlusion in CREB knockout mice does not modulate focal ischemic injury. Journal of Cerebral Blood Flow and Metabolism 18:1325–1335

    PubMed  CAS  Google Scholar 

  24. Hata R, Gillardon F, Michaelidis TM, Hossmann K-A (1999) Targeted disruption of the bd-2 gene in mice exacerbates focal ischemic brain injury. Metabolic Brain Disease 14:117–124

    Article  PubMed  CAS  Google Scholar 

  25. Hata R, Maeda K, Hermann D, Mies G, Hossmann K-A (2000) Dynamics of regional brain metabolism and gene expression after middle cerebral artery occlusion in mice. Journal of Cerebral Blood Flow and Metabolism 20:306–315

    PubMed  CAS  Google Scholar 

  26. Hata R, Maeda K, Hermann D, Mies G, Hossmann K-A (2000) Evolution of brain infarction after transient focal cerebral ischemia in mice. Journal of Cerebral Blood Flow and Metabolism 20:937–946

    PubMed  CAS  Google Scholar 

  27. Hata R, Mies G, Wiessner C, Fritze K, Hesselbarth D, Brinker G, Hossmann K-A (1998) A reproducible model of middle cerebral artery occlusion in mice - hemodynamic, biochemical, and magnetic resonance imaging. Journal of Cerebral Blood Flow and Metabolism 18:367–375

    PubMed  CAS  Google Scholar 

  28. Holschneider DP, Scremin OU, Huynh L, Chen K, Shih JC (1999) Lack of protection from ischemic injury of monoamine oxidase B-deficient mice following middle cerebral artery occlusion. Neuroscience Letters 259:161–164

    Article  PubMed  CAS  Google Scholar 

  29. Hossmann K-A (1994) Viability thresholds and the penumbra of focal ischemia. Annals of Neurology 36:557–565

    Article  PubMed  CAS  Google Scholar 

  30. Huang ZH, Huang PL, Panahian N, Dalkara T, Fishman MC, Moskowitz MA (1994) Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 265:1883–1885

    Article  PubMed  CAS  Google Scholar 

  31. Iadecola C, Zhang FY, Casey R, Nagayama M, Rose ME (1997) Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. Journal of Neuroscience 17:9157–9164

    PubMed  CAS  Google Scholar 

  32. Kadotani H, Namura S, Katsuura G, Terashima T, Kikuchi H (1998) Attenuation of focal cerebral infarct in mice lacking NMDA receptor subunit NR2C. Neuroreport 9:471–475

    Article  PubMed  CAS  Google Scholar 

  33. Keller JN, Kindy MS, Holtsberg FW, Stclair DK, Yen HC, Germeyer A, Steiner SM, Brucekeller AJ, Hutchins JB, Mattson MP (1998) Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. Journal of Neuroscience 18:687–697

    PubMed  CAS  Google Scholar 

  34. Kinouchi H, Epstein CJ, Mizui T, Carlson E, Chen SF, Chan PH (1991) Attenuation of focal cerebral ischemic injury in transgenic mice overexpressing CuZn superoxide dismutase. Proceedings of the National Academy of Sciences of the United States of America 88:11158–11162

    Article  PubMed  CAS  Google Scholar 

  35. Kitagawa K, Matsumoto M, Mabuchi T, Yagita Y, Ohtsuki T, Hori M, Yanagihara T (1998) Deficiency of intercellular adhesion molecule 1 attenuates microcirculatory disturbance and infarction size in focal cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism 18:1336–1345

    PubMed  CAS  Google Scholar 

  36. Kogure K, Alonso OF (1978) A pictorial representation of endogenous brain ATP by a bioluminescent method. Brain Research 154:273–284

    Article  PubMed  CAS  Google Scholar 

  37. Kondo T, Reaume AG, Huang TT, Carlson E, Murakami K, Chen SF, Hoffman EK, Scott RW, Epstein CJ, Chan PH (1997) Reduction of CuZn-superoxide dismutase activity exacerbates neuronal cell injury and edema formation after transient focal cerebral ischemia. Journal of Neuroscience 17:4180–4189

    PubMed  CAS  Google Scholar 

  38. Lawrence MS, Ho DY, Sun GH, Steinberg GK, Sapolsky RM (1996) Overexpression of bd-2 with herpes simplex virus vectors protects CNS neurons against neurological insults in vitro and in vivo. Journal of Neuroscience 16:486–496

    PubMed  CAS  Google Scholar 

  39. Le D, Das SY, Wang YF, Yoshizawa T, Sasaki YF, Takasu M, Nemes A, Mendelsohn M, Dikkes P, Lipton SA, Nakanishi N (1997) Enhanced neuronal death from focal ischemia in AMPA-receptor transgenic mice. Molecular Brain Research 52:235–241

    Article  PubMed  CAS  Google Scholar 

  40. Lo EH, Hara H, Rogowska J, Trocha M, Pierce AR, Huang PL, Fishman MC, Wolf GL, Moskowitz MA (1996) Temporal correlation mapping analysis of the hemodynamic penumbra in mutant mice deficient in endothelial nitric oxide synthase gene expression. Stroke 27:1381–1385

    Article  PubMed  CAS  Google Scholar 

  41. Lukkarinen JA, Grohn OHJ, Alhonen LI, Janne J, Kauppinen RA (1999) Enhanced ornithine decarboxylase activity is associated with attenuated rate of damage evolution and reduction of infarct volume in transient middle cerebral artery occlusion in the rat. Brain Research 826:325–329

    Article  PubMed  CAS  Google Scholar 

  42. Maeda K, Hata R, Bader M, Walther T, Hossmann K-A (1999) Larger anastomoses in angiotensinogen-knockout mice attenuate early metabolic disturbances after middle cerebral artery occlusion. Journal of Cerebral Blood Flow and Metabolism 19:1092–1098

    PubMed  CAS  Google Scholar 

  43. Maeda K, Hata R, Gillardon F, Hossmann K-A (2001) Aggravation of brain injury after transient focal ischemia in p53 deficient mice. Molecular Brain Research 88:54–61

    Article  PubMed  CAS  Google Scholar 

  44. Maeda K, Hata R, Hossmann K-A (1998) Differences in the cerebrovascular anatomy of C57Black/6 and SV129 mice. Neuroreport 9:1317–1319

    Article  PubMed  CAS  Google Scholar 

  45. Maeda K, Hata R, Hossmann K-A (1999) Regional metabolic disturbances and cerebrovascular anatomy after permanent middle cerebral artery occlusion in C57Black/6 and SV129 mice. Neurobiology of Disease 6:101–108

    Article  PubMed  CAS  Google Scholar 

  46. Martinou JC, Dubois-Dauphin M, Staple JK, Rodrigues I, Frankowski H, Missotten M, Alberti-ni P, Talabot D, Catsicas S, Pietra C, Huarte J (1994) Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 13:1017–1030

    Article  PubMed  CAS  Google Scholar 

  47. Mattson MP, Culmsee C, Yu ZF (2000) Apoptotic and antiapoptotic mechanisms in stroke. Cell and Tissue Research 301:173–187

    Article  PubMed  CAS  Google Scholar 

  48. Mies G, Ishimaru S, Xie Y, Seo K, Hossmann K-A (1991) Ischemic thresholds of cerebral protein synthesis and energy state following middle cerebral artery occlusion in rat. Journal of Cerebral Blood Flow and Metabolism 11:753–761

    Article  PubMed  CAS  Google Scholar 

  49. Mies G, Trapp T, Kilic E, Oláh L, Hata R, Hermann D, Hossmann K-A (2001) Relationship between DNA fragmentation, energy state, and protein synthesis after transient focal cerebral ischemia in mice In• Bazan N, Ito U, Marcheselli V, Kuroiwa T, Klatzo I (eds) Maturation Phenomenon in Cerebral Ischemia IV. Springer, Berlin, Heidelberg, New York, pp 85–92

    Chapter  Google Scholar 

  50. Morikawa E, Mori H, Kiyama Y, Mishina M, Asano T, Kirino T (1998) Attenuation of focal ischemic brain injury in mice deficient in the epsilonl (NR2A) subunit of NMDA receptor. Journal of Neuroscience 18:9727–9732

    PubMed  CAS  Google Scholar 

  51. Nagai N, Mol MD, Lijnen HR, Carmeliet P, Cohen D (1999) Role of plasminogen system components in focal cerebral ischemic infarction. A gene targeting and gene transfer study in mice. Circulation 99:2440–2444

    Article  PubMed  CAS  Google Scholar 

  52. Panahian N, Yoshiura M, Maims MD (1999) Overexpression of heme oxygenase-1 is neuroprotective in a model of permanent middle cerebral artery occlusion in transgenic mice. Journal of Neurochemistry 72:1187–1203

    Article  PubMed  CAS  Google Scholar 

  53. Paschen W, Olah L, Mies G (2000) Effect of transient focal ischemia of mouse brain on energy state and NAD levels: No evidence that NAD depletion plays a major role in secondary disturbances of energy metabolism. Journal of Neurochemistry 75:1675–1680

    Article  PubMed  CAS  Google Scholar 

  54. Pieper AA, Blackshaw S, Clements EE, Brat DJ, Krug DK, White AJ, Pinto-Garcia P, Favit A, Conover JR, Snyder SH, Verma A (2000) Poly(ADP-ribosyl)ation basally activated by DNA strand breaks reflects glutamate-nitric oxide neurotransmission. Proceedings of the National Academy of Sciences of the United States of America 97:1845–1850

    Article  PubMed  CAS  Google Scholar 

  55. Rajdev S, Hara K, Kokubo Y, Mestril R, Dillmann W, Weinstein PR, Sharp FR (2000) Mice overexpressing rat heat shock protein 70 are protected against cerebral infarction. Annals of Neurology 47:782–791

    Article  PubMed  CAS  Google Scholar 

  56. Sampei K, Goto S, Alkayed NJ, Crain BJ, Korach KS, Traystman RJ, Demas GE, Nelson RJ, Hurn PD (2000) Stroke in estrogen receptor-alpha-deficient mice. Stroke 31:738–743

    Article  PubMed  CAS  Google Scholar 

  57. Schauwecker PE, Steward O (1997) Genetic determinants of susceptibility to excitotoxic cell death: Implications for gene targeting approaches. Proc Natl Acad Sci USA 94:4103–4108

    Article  PubMed  CAS  Google Scholar 

  58. Sharp FR (1998) Stress genes protect brain. Annals of Neurology 44:581–583

    Article  PubMed  CAS  Google Scholar 

  59. Sheng H, Bart RD, Oury TD, Pearlstein RD, Crapo JD, Warner DS (1999) Mice overexpressing extracellular superoxide dismutase have increased resistance to focal cerebral ischemia. Neuroscience 88:185–191

    Article  PubMed  CAS  Google Scholar 

  60. Soriano SG, Lipton SA, Wang YMF, Xiao M, Springer TA, Gutierrez-Ramos JC, Hickey PR (1996) Intercellular adhesion molecule-l-deficient mice are less susceptible to cerebral ischemia-reperfusion injury. Annals of Neurology 39:618–624

    Article  PubMed  CAS  Google Scholar 

  61. Tabrizi P, Wang L, Seeds N, McComb JG, Yamada S, Griffin JH, Carmeliet P, Weiss MH, Zlokovic BV (1999) Tissue plasminogen activator (tPa) deficiency exacerbates cerebrovascular fibrin deposition and brain injury in a murine stroke model. Studies in tPa-deficient mice and wild-type mice on a matched genetic background. Arteriosclerosis Thrombosis and Vascular Biology 19:2801–2806

    Article  CAS  Google Scholar 

  62. Takagi Y, Mitsui A, Nishiyama A, Nozaki K, Sono H, Gon Y, Hashimoto N, Yodoi J (1999) Overexpression of thioredoxin in transgenic mice attenuates focal ischemic brain damage. Proceedings of the National Academy of Sciences of the United States of America 96:4131–4136

    Article  PubMed  CAS  Google Scholar 

  63. Walder CE, Green SP, Darbonne WC, Mathias J, Rae J, Dinauer MC, Curnutte JT, Thomas GR (1997) Ischemic stroke injury is reduced in mice lacking a functional NADPH oxidase. Stroke 28:2252–2258

    Article  PubMed  CAS  Google Scholar 

  64. Walther T, Olah L, Harms C, Maul B, Bader M, Hörtnagel H, Schultheiss H-P, Mies G (2002) Ischemic injury in experimental stroke depends on angiotensin II. FASEB Journal 16:169–176

    Article  PubMed  CAS  Google Scholar 

  65. Wang YMF, Tsirka SE, Strickland S, Stieg PE, Soriano SG, Lipton SA (1998) Tissue plasminogen activator (tPA) increases neuronal damage after focal cerebral ischemia in wild-type and tPA-deficient mice. Nature Medicine 4:228–231

    Article  PubMed  CAS  Google Scholar 

  66. Weisbrot-Lefkowitz M, Reuhl K, Perry B, Cahn PH, Inouye M, Mirochnitchenko O (1998) Over-expression of human glutathione peroxidase protects transgenic mice against focal cerebral ischemia/reperfusion damage. Molecular Brain Research 53:333–338

    Article  PubMed  CAS  Google Scholar 

  67. Wiessner C, Allegrini PR, Rupalla K, Sauer D, Oltersdorf T, McGregor AL, Bischoff S, Böttiger BW, Putten Hvd (1999) Neuron-specific transgene expression of Bc1-XL but not Bd-2 genes reduced lesion size after permanent middle cerebral artery occlusion in mice. Neuroscience Letters 268:119–122

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hossmann, KA., Hata, R., Maeda, K., Trapp, T., Mies, G. (2004). Transgenic Mutants for the Investigation of Molecular Stroke Mechanisms. In: Buchan, A.M., Ito, U., Colbourne, F., Kuroiwa, T., Klatzo, I. (eds) Maturation Phenomenon in Cerebral Ischemia V. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18713-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18713-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40874-1

  • Online ISBN: 978-3-642-18713-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics