Skip to main content

Sphingolipids Metabolism Following Cerebral Ischemia

  • Conference paper
Book cover Maturation Phenomenon in Cerebral Ischemia V

Abstract

It has been well known that ischemic insults induced the hydrolytic breakdown of polyphosphoinositides by calcium-dependent phospholipase C, and diacylglycerol (DAG) was hydrolyzed to free fatty acids (FFAs) by DAG lipase [1, 2, 11, 22, 26]. The composition of FFAs consists mainly of stearic (C18:0) and arachidonic acids (C20:4). These processes are thought to act at early phase of the ischemia. Prolonged ischemia induces the degradation of membrane phospholipids, and the level of various phospholipids decrease at late phase of the ischemia. To determine a therapeutic time window of the ischemic penumbra, it is essential to evaluate the time course of the degradation of glycerophospholipids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe K, Kogure K, Yamamoto H, Imazawa M, Miyamoto K (1987) Mechanism of arachidonic acid liberation during ischemia in gerbil cerebral cortex. J Neurochem 48:503–509

    Article  PubMed  CAS  Google Scholar 

  2. Bazan NGJ (1970) Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochim Biophys Acta 218:1–10

    Article  PubMed  CAS  Google Scholar 

  3. Brugg B, Michel PP, Agid Y, Ruberg M (1996) Ceramide induces apoptosis in cultured mesen-cephalic neurons. J Neurochem 66:733–739

    Article  PubMed  CAS  Google Scholar 

  4. Casaccia-Bonnefil P, Aibel L, Chao MV (1996) Central glial and neuronal populations display differential sensitivity to ceramide-dependent cell death. J Neurosci Res 43:382–389

    Article  PubMed  CAS  Google Scholar 

  5. Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  6. Hannun YA (1996) Functions of ceramide in coordinating cellular responces to stress. Science 24:1855–1859

    Article  Google Scholar 

  7. Hannun YA, Loomis CR, Merrill AHJ, Bell RM (1986) Sphingosine inhibition of protein kinase C activity and phorbol dibutyrate binding in vitro and in human platelets. J Biol Chem 261:12604–12609

    PubMed  CAS  Google Scholar 

  8. Hara A, Taketomi T (1983) Detection of D-erythro and L-threo sphingosine bases in preparative sphingosylphosphorylcholine and its N-acylated derivatives and some evidence of their different chemical configurations. J Biochem 94:1715–1718

    PubMed  CAS  Google Scholar 

  9. Harel R, Futerman AH (1993) Inhibition of sphingolipid synthesis affects axonal outgrowth in cultured hippocampal neurons. J Biol Chem 268:14476–14481

    PubMed  CAS  Google Scholar 

  10. Hauser G, Eichberg J, Gonzalez-Sastre F (1971) Regional distribution of polyphosphoinositides in rat brain. Biochim Biophys Acta 248:87–95

    Article  PubMed  CAS  Google Scholar 

  11. Ikeda M, Yoshida S, Busto R, Santiso M, Ginsberg MD (1986) Polyphosphoinositides as a probable source of brain free fatty acids accumulated at the onset of ischemia. J Neurochem 47:123–132

    Article  PubMed  CAS  Google Scholar 

  12. Jayadev S, Linardic CM, Hannun YA (1994) Identification of arachidonic acid as a mediator of sphingomyelin hydrolysis in response to tumor necrosis factor. J Biol Chem 269:5757–5763

    PubMed  CAS  Google Scholar 

  13. Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239:57–69

    Article  PubMed  CAS  Google Scholar 

  14. Kitagawa K, Matsumoto M, Tagaya M, Hata R, Ueda H, Niinobe M, Handa N, Fukunaga R, Kimura K, Mikoshiba K, Kamada T (1990) Ischemic tolerance’ phenomenon found in the brain. Brain Res 528:21–24

    Article  PubMed  CAS  Google Scholar 

  15. Kubota M, Nakane M, Narita K, Nakagomi T, Tamura A, Hisaki H, Shimasaki H, Ueta N (1998) Mild hypothermia reduces the rate of metabolism of arachidonic acid following postischemic reperfusion. Brain Res 779:297–300

    Article  PubMed  CAS  Google Scholar 

  16. Kubota M, Narita K, Nakagomi T, Tamura A, Shimasaki H, Ueta N, Yoshida S (1996) Sphingomyelin changes in rat cerebral cortex during focal ischemia. Neurol Res 18:337–341

    PubMed  CAS  Google Scholar 

  17. Lee C, Hajra AK (1991) Molecular species of diacylglycerols and phosphoglycerides and the postmortem changes in the molecular species of diacylglycerols in rat brains. J Neurochem 56:370–379

    Article  PubMed  CAS  Google Scholar 

  18. Nakano S, Kogure K, Abe K, Yae T (1990) Ischemia-induced alterations in lipid metabolism of the gerbil cerebral cortex: I. Changes in free fatty acid liberation. J Neurochem 54:1911–1916

    Article  PubMed  CAS  Google Scholar 

  19. Nitatori T, Sato N, Waguri S, Karasawa Y, Araki H, Shibanai K, Kominami E, Uchiyama Y (1995) Delayed neuronal death in the CAl pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. J Neurosci 15:1001–1011

    PubMed  CAS  Google Scholar 

  20. Obeid LM, Linardic CM, Karolak LA, Hannun YA (1993) Programmed cell death induced by ceramide. Science 259:1769–1771

    Article  PubMed  CAS  Google Scholar 

  21. Schwarz A, Futerman AH (1997) Distinct roles for ceramide and glucosylceramide at different stages of neuronal growth. J Neurosci 17:2929–2938

    PubMed  CAS  Google Scholar 

  22. Siesjo BK, Katsura K, Zhao Q, Folbergrova J, Pahlmark K, Siesjo P, Smith ML (1995) Mechanisms of secondary brain damage in global and focal ischemia: a speculative synthesis. J Neurotrauma 12:943–956

    Article  PubMed  CAS  Google Scholar 

  23. Stoffel W, Melzner I (1980) Studies in vitro on the biosynthesis of ceramide and sphingomyelin. A re-evaluation of proposed pathways. Hoppe-Seyler’s Z Physiol Chem 361:755–771

    Article  PubMed  CAS  Google Scholar 

  24. Tamura A, Graham DI, McCulloch J, Teasdale GM (1981) Focal cerebral ischaemia in the rat: 1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J Cereb Blood Flow Metab 1:53–60

    Article  PubMed  CAS  Google Scholar 

  25. Tamura A, Graham DI, McCulloch J, Teasdale GM (1981) Focal cerebral ischaemia in the rat: 2. Regional cerebral blood flow determined by [14Cliodoantipyrine autoradiography following middle cerebral artery occlusion. J Cereb Blood Flow Metab 1:61–69

    Article  PubMed  CAS  Google Scholar 

  26. Yoshida S, Inoh S, Asano T, Sano K, Kubota M, Shimazaki H, Ueta N (1980) Effect of transient ischemia on free fatty acids and phospholipids in the gerbil brain: Lipid peroxidation as a possible cause of postischemic injury. J Neurosurg 53:323–331

    Article  PubMed  CAS  Google Scholar 

  27. Yoshida S, Inoh S, Asano T, Sano K, Kubota M, Shimazaki H, Ueta N (1980) Effect of transient ischemia on free fatty acids and phospholipids in the gerbil brain. Lipid peroxidation as a possible cause of postischemic injury. J Neurosurg 53:323–331

    Article  PubMed  CAS  Google Scholar 

  28. Zhang JP, Sun GY (1995) Free fatty acids, neutral glycerides, and phosphoglycerides in transient focal cerebral ischemia. J Neurochem 64:1688–1695

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kubota, M. et al. (2004). Sphingolipids Metabolism Following Cerebral Ischemia. In: Buchan, A.M., Ito, U., Colbourne, F., Kuroiwa, T., Klatzo, I. (eds) Maturation Phenomenon in Cerebral Ischemia V. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18713-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18713-1_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40874-1

  • Online ISBN: 978-3-642-18713-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics