Skip to main content

Überlagernde Muskel- und Nervenstimulation

  • Chapter
  • 570 Accesses

Zusammenfassung

Die willkürliche Aktivierung der Skelettmuskulatur ist nach Verletzungen oder Operationen am Bewegungsapparat häufig nur noch eingeschränkt möglich.

Um muskuläre Hemmungen zu messen, verwendet man derzeit die Methode der überlagernden Nerven- oder Muskelstimulation (»superimposed twitch technique«). Dabei wird während einer isometrischen Maximalkraftmessung ein kurzer und intensiver Stromimpuls direkt auf den Muskel oder »indirekt« über den zuleitenden Nerven appliziert. Bei unvollständiger Muskelaktivierung führt dies zu einem deutlichen Kraftanstieg.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Allen GM, Gandevia SC, Neering IR, Hickie I, Jones R, Middleton J (1994) Muscle performance,voluntary activation and perceived effort in normal subjects and patients with prior poliomyolitis. Brain 117: 661–670

    Article  PubMed  Google Scholar 

  • Alien GM, Gandevia SC, McKenzie DK (1995) Reliability of measurements of muscle strength and voluntary activation using twitch interpolation. Muscle Nerve 18:593–600

    Article  Google Scholar 

  • Behm DG, St-Pierre MM, Perez D (1996) Muscle inactivation: assessment of interpolated twitch technique. J Appl Physiol 81:2267–2273

    PubMed  CAS  Google Scholar 

  • Belanger AY, McComas A J (1981) Extent of motor unit activation during effort. J Appl Physiol 51:1131–1135

    PubMed  CAS  Google Scholar 

  • Bellemare F, Bigland-Ritchie B (1984) Assessment of human diaphragm strength and activation using phrenic nerve stimulation. Respiration Physiology 58:263–277

    Article  PubMed  CAS  Google Scholar 

  • Bülow PM, Norregaard J, Danneskiold-Samsøe B, Mehlsen J. (1993) Twitch interpolation technique in testing of maximal muscle strength: Influence of potentiation, force level, stimulus intensity and preload. Eur J Appl Physiol 67:462–466

    Article  Google Scholar 

  • Chapman SJ, Edwards RHT, Greig C, Rutherford O (1984) Practical application of the twitch interpolation technique for the study of voluntary contraction of the quadriceps in man. J Physiol 353:3

    Google Scholar 

  • DeLuca CJ, LeFever RS, McCue MP, Xenakis AP (1982a) Behaviour of hurnan motor unitsin different muscles during linearly varying contractions. J Physiol Lond 329:113–128

    CAS  Google Scholar 

  • DeLuca G, LeFever RS, McCue MP, Xenakis AP (1982b) Control scheme governing concurrently active motor units during voluntary contractions. J Physiol Lond 329:129–142

    CAS  Google Scholar 

  • De Luca CJ (1985) Control properties of motor units. J Exp Biol 115:125–136

    PubMed  Google Scholar 

  • Dowling JJ, Konert E, Ljucovic P, Andrews DM (1994) Are humans able to voluntarily elicit maximum muscle force? Neurosci Lett 179:25–28

    Article  PubMed  CAS  Google Scholar 

  • Freund HJ (1983) Motor unit and muscle activity in voluntary motor control. Physiol Rev 63:387–436

    PubMed  CAS  Google Scholar 

  • Froböse I, Nellesen G (1998) Training in der Therapie. Ullstein Medical, Wiesbaden

    Google Scholar 

  • Gandevia SC, McKenzie DK (1988) Activation of human muscles at short muscle lengths during maximal static efforts. J Physiol. 407:599–613

    PubMed  CAS  Google Scholar 

  • Hales JP, Gandevia SC (1988) Assessment of maximal voluntary contraction with twitch interpolation: an instrumentto measure twitch responses. J Neurosci Methods 25:97–102

    Article  PubMed  CAS  Google Scholar 

  • Herbert RD, Gandevia SC (1996) Muscle activation in unilateral and bilateral efforts assessed by motor nerve and cortical stimulation. J Appl Physiol 80:1351–1356

    PubMed  CAS  Google Scholar 

  • Hurley MV, Jones DW, Wilson D, Newham DJ (1992) Rehabilitation of the quadriceps inhibited due to isolated rupture of the anterior cruciate ligament. J Orthop Rheumatol 5:145–154

    Google Scholar 

  • Jones DW, Jones DA, Newham DJ (1987) Chronic knee effusion and aspiration: The effect of quadriceps inhibition. Br J Rheumatol 26:370–374

    Article  PubMed  CAS  Google Scholar 

  • Kent-Braun JA, Le Blanc R (1996) Quantification of central activation failure during maximal voluntary contractions in humans. Muscle Nerve 19:861–869

    Article  PubMed  CAS  Google Scholar 

  • Koutedakis Y, Frischknecht R, Vrbová G, Sharp NCC, Budgett R (1992) Maximal voluntary quadriceps strength patterns in Olympic overtrained athletes. Med Sci Sports Exerc 27:492–504

    Google Scholar 

  • Kramer J F (1987) Comparison of voluntary and electrical stimulation induced torques at selected knee angles in male and female subjects. Physiother Can 39:157–163

    Google Scholar 

  • Kukulka CG, Clamann HP (1981) Comparison of the recruitment and discharge propertiesof motor units in human brachial biceps and adductor pollicis during isometric contractions. Brain Res 219:45–55

    Article  PubMed  CAS  Google Scholar 

  • McComas AJ, Kereshi S, Quinlan J (1983) A method for detecting functional weakness. J Neurol Neurosurg Psychiatry 46:280–286

    Article  PubMed  CAS  Google Scholar 

  • Merton PA (1954) Voluntary strength and fatigue. J Physiol 123:553–564

    PubMed  CAS  Google Scholar 

  • Newham DJ, Hurley MV, Jones DW (1989) Ligamentous knee injuries and muscle inhibition. J Orthop Rheumatol 2:163–173

    Google Scholar 

  • Norregaard J, Bülow PM, Vestergaarden-Poulsen P, Thomsen C, Danneskiold-Samsøe B (1995) Muscle strength, voluntary activation and cross-sectional muscle area in patients with fibromyalgia. Br J Rheumatol 34: 925–931

    Article  PubMed  CAS  Google Scholar 

  • Nørregaard J, Lykkegaard JJ, Bülow PM, Danneskiold-Samsøe (1997) The twitch interpolation technique for the estimation of true quadriceps muscle strength. Clin Physiol 17:523–532

    Article  PubMed  Google Scholar 

  • Pfeifer K (1996) Bewegungsverhalten und neuromuskuläre Aktivierung. LinguaMed, Neu-Isenburg

    Google Scholar 

  • Pfeifer K, Vogt L, Banzer W (2001) Direkte und indirekte überlagernde Muskelstimulation zur Aufdeckung neuromuskulärer Hemmungen. Phys Rehab Kur Med 11:87–93

    Article  Google Scholar 

  • Rutherford OM, Jones DA, Newham DJ (1986) Clinical and experimental application of the percutaneous twitch superimposition technique for the study of human muscle activation. J Neurol Neurosurg Psychiatry 49: 1288–1291

    Article  PubMed  CAS  Google Scholar 

  • Rutherford OM, Jones DA, Round JM (1990) Long-lasting unilateral muscle wasting and weak-ness following injury and immobilisation. Scand J Rehabil Med 22:33–37

    PubMed  CAS  Google Scholar 

  • Schmidtbleicher D (1987) Motorische Beanspruchungsform Kraft. Deutsche Zeitschrift für Sportmedizin 38:355–376

    Google Scholar 

  • Schmidtbleicher D (1994) Konzeptionelle Überlegungen zur muskulären Rehabilitation. Med OrthTech 114:170–173

    Google Scholar 

  • Schmidtbleicher D, Gullich A (1999) Dimensionen des Kraftverhaltens. Orthopädische Praxis 35:683–687

    Google Scholar 

  • Snyder-Mackler L, DeLuca PF, Williams PR, Eastlack ME, Bartolozzi AR (1994) Reflex inhibition of the quadriceps femoris muscle after injury or reconstruction of the anterior cruciate ligament. J Bone Joint Surg 76-A:555–560

    Google Scholar 

  • Snyder-Mackler L, Delitto A, Bailey SL, Stralka SW (1995) Strength of the quadriceps femoris muscle and functional recovery after reconstruction of the anterior cruciate ligament. J Bone Joint Surg 77-A:1166–1173

    Google Scholar 

  • Stokes M, Young A (1984) The contributions of reflex inhibitions to arthrogenous muscle weakness. Clin Sci 67:7

    PubMed  CAS  Google Scholar 

  • Strojnik V (1992) Effect of additional electrical stimulation on maximal force productions. In: Rodano R, Ferrigno G, Santambrogio CG (Eds) Proceedings of the 10th International Symposium on Biomechanics in Sports. Milano: Ermes, S 136–138

    Google Scholar 

  • Strojnik V (1995) Muscle activation level during maximum voluntary effort. Eur J Appl Physiol 72:144–149

    Article  CAS  Google Scholar 

  • Suter E, Herzog W (1997) Extent of muscle inhibition as a function of knee angle. J Electromyogr Kinesiol 7:123–130

    Article  PubMed  CAS  Google Scholar 

  • Suter E, Herzog W (2000) Does muscle inhibition after knee injury increase the risk of osteoarthritis? Exercise and Sport Science Reviews 28:15–18

    CAS  Google Scholar 

  • Tidow G (1999) Zur Wirkungsspezifität ausgewählter Krafttrainingsmethoden auf das neuromuskuläre System. Orthopädische Praxis 35:688–697

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pfeifer, K. (2004). Überlagernde Muskel- und Nervenstimulation. In: Banzer, W., Pfeifer, K., Vogt, L. (eds) Funktionsdiagnostik des Bewegungssystems in der Sportmedizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18626-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18626-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62536-0

  • Online ISBN: 978-3-642-18626-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics