Skip to main content

Nonstandard Nonobtuse Refinements of Planar Triangulations

  • Chapter
Conjugate Gradient Algorithms and Finite Element Methods

Part of the book series: Scientific Computation ((SCIENTCOMP))

Abstract

Throughout the paper, we consider conforming planar triangulations of a given polygon into triangles, i.e., the union of all triangles of any particular triangulation is always equal to the polygon, and any two different triangles in any particular triangulation may only have a common edge, or a common vertex, or no common point (cf. [12]). In most of cases namely such conforming triangulations are used in the finite element modelling and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. S. Baker, E. Grosse, and C. S. Rafferty, Nonobtuse triangulation of polygons, Discrete Comput. Geom. 3 (1988), 147–168.

    Article  MATH  MathSciNet  Google Scholar 

  2. R. E. Bank, PLTMG: A Software Package for Solving Partial Differential Equations: Users’ Guide 7.0, SIAM, Philadelphia, 1994.

    MATH  Google Scholar 

  3. G. F. Carey, Computational Grids. Generation, Adaptation, and Solution Strategies, Series in Computational and Physical Processes in Mechanics and Thermal Sciences, Taylor & Francis, Washington, DC, 1997.

    Google Scholar 

  4. P. G. Ciarlet, P. A. Raviart, Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Engrg. 2 (1973), 17–31.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. M. Feistauer, J. Felcman, M. Rokyta, and Z. Vläšek, Finite-element solution of flow problems with trailing conditions, J. Comput. Appl. Math. 44 (1992), 131–165.

    Article  MATH  MathSciNet  Google Scholar 

  6. H. Fujii, Some remarks on finite element analysis of time-dependent field problems, Theory and Practice in Finite element Structural Analysis, Univ. Tokyo Press, Tokyo, 1973, pp. 91–106.

    Google Scholar 

  7. J. L. Gerver, The dissection of a polygon into nearly equilateral triangles, Geom. Dedicata 16 (1984), 93–106.

    Article  MATH  MathSciNet  Google Scholar 

  8. R. Kornhuber, R. Roitzsch, On adaptive grid refinement in the presence of internal or boundary layers, Impact Comput. Sci. Engrg. 2 (1990), 40–72.

    Article  Google Scholar 

  9. S. Korotov, M. Křížek, Acute type refinements of tetrahedral partitions of polyhedral domains, SIAM J. Numer. Anal. 39 (2001), 724–733.

    Article  MATH  MathSciNet  Google Scholar 

  10. S. Korotov, M. Křížek, and P. Neittaanmäki, Weakened acute type condition and the discrete maximum principle, Math. Comp. 70 (2001), 107–119.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. S. Korotov, J. Stańdo, Yellow-red and nonobtuse refinements of planar triangulations, Math. Notes (Miskolc) 3 (2002), 39–46.

    MATH  MathSciNet  Google Scholar 

  12. M. Křížek, P. Neittaanmäki, Mathematical and Numerical Modelling in Electrical Engineering: Theory and Applications, Kluwer Academic Publishers, Dordrecht, 1996.

    Google Scholar 

  13. M. Křížek, Qun Lin, On diagonal dominancy of stiffness matrices in 3D, East-West J. Numer. Math. 3 (1995), 59–69.

    MATH  MathSciNet  Google Scholar 

  14. M. Křížek, J. Šolc, Acute versus nonobtuse tetrahedralizations, in: Conjugate Gradients Algorithms and Finite Element Methods, SpringerVerlag, Berlin, 2004, pp. 161–170.

    Google Scholar 

  15. V. Ruas Santos, On the strong maximum principle for some piecewise linear finite element approximate problems of non-positive type, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982), 473–491.

    MATH  MathSciNet  Google Scholar 

  16. G. Strang, G. J. Fix, An Analysis of the Finite Element Method, Prentice Hall, Englewood Cliffs, N. J., 1973.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Korotov, S., Stańdo, J. (2004). Nonstandard Nonobtuse Refinements of Planar Triangulations. In: Křížek, M., Neittaanmäki, P., Korotov, S., Glowinski, R. (eds) Conjugate Gradient Algorithms and Finite Element Methods. Scientific Computation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18560-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18560-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62159-8

  • Online ISBN: 978-3-642-18560-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics